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APPLICATIONS OF THE FINITE LAPLACE TRANSFORM
TO LINEAR CONTROL PROBLEMS*

RICHARD DATKOS"

Abstract. The finite Laplace transform is applied to various control problems involving linear ordinary
and linear partial differential equations. Since the finite Laplace transform is an entire function, rather explicit
conditions can be given concerning the nature of the controls.

1. Introduction. Consider a differential vector function f: [0, T] - R n. Let s be an
arbitrary complex number. The finite Laplace transform of f is

T

frO
T

G(s)= fo e-(t) dt =f(r) e-r--’(O)+s e-?(t) dt
(1.1)

]’(r) e-ST--f(O)+ sF(s).

The complex valued functions F and G are entire and satisfy the conditions

(1.2) [F(iw)l2 dw <, IG(iw)l2 dw <

(see e.g. [4]). Exploiting these two properties and the fact that the initial and terminal
states of f occur in the finite Laplace transform of f it is possible to compute controls for
a variety of autonomous linear control problems expressed by ordinary or partial
differential equations. Briefly what one does in the case of ordinary differential
equations is converts the given problem to a finite Laplace transform and isolates the
transform of the trajectory, $(s), on the left hand side of a certain equation. On the right
hand side of the equation the initial and terminal states of the system and the finite
Laplace transform of the control function explicitly occur in linear combination
multiplied by a holomorphic complex valued linear operator. If the initial and terminal
states of the trajectory are given then the constraint that its finite Laplace transform be
an entire vector function imposes conditions on the transformed control (s), namely
that the numerators of certain expressions have zeros of the same order as the poles of
the holomorphic operator. These conditions can then be used to find the finite Laplace
transform of the control which guides the system from its initial to its terminal state. A
variant of the above technique can be used to solve the quadratic regulator problem
over finite time intervals. Problems of this type are the content of 2.

Sections 3 and 4 discuss the case of control problems involving certain types of
hyperbolic and parabolic partial differential equations. In these problems the finite
Laplace transform converts the original system into a linear elliptic partial differential
equation with a forcing term depending on initial, terminal and distributed data. A
Green’s function for the elliptic nonhomogeneous system is constructed. This function
is holomorphic in the complex variable s. The poles of the Green’s function determine
conditions which the finite Laplace transform of the boundary or distributed data must
satisfy. This information, at least in the case of the hyperbolic examples in this paper,
permits one to construct finite Laplace transforms of boundary or distributed controls
which steer the initial state to the zero state in a finite time.

Sections 3 and 4 of this paper overlap previous work in [9] and [11 ]. In 11 Russell
reduced a control problem for a hyperbolic partial differential equations to construction
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of a function f which satisfies condition (3.28) of Example 3.2 in this paper. (His
conditions are given by Equations (2.24)-(2.27) in [11].) Russell arrived at this
condition by observing that an associated homogeneous equation is a Sturm-Liouville
eigenvalue problem and hence the Fourier method applies. We obtain the same
condition by forcing the finite Laplace transform of the distributed control to be such
that it cancels out the poles of a holomorphic family of Green’s functions. In the most
general setting of system (3.1) given in this paper, the Sturm-Liouville approach will not
be applicable since the coefficient D(x) of/xt in (3.1) prohibits a separation of variables
approach.

The one dimensional heat equation considered in Section 4 is a slightly generalized
version of the work in [9]. In that paper the finite Laplace transform was used to
construct a control which could bring a body from a uniform nonzero temperature to a
uniform zero temperature in a finite time. However our viewpoint and that taken in [9]
are somewhat different. In [9] Goldwyn et al. seek only bang-bang controls. In this paper
we determine conditions which the finite Laplace transform of an admissible control
must satisfy and then try to fit entire functions to these conditions. When "bang-bang"
controls are sought the problem reduces to the one considered in [9].

The finite Laplace transform does not introduce new properties of linear control
systems, but, we believe, it does offer a useful computational tool which can be used to
attack control problems expressed by autonomous differential systems. Furthermore it
unifies the study of linear autonomous nonhomogeneous differential equations in that it
does not discriminate between initial value problems and boundary value problems.
That is, a nonhomogeneous linear autonomous ordinary differential or partial differen-
tial equation with mixed initial and boundary data is converted by a finite Laplace
transform into a problem in which the initial data, the terminal data and the transforms
of the forcing terms (or boundary values in the case of partial differential equations)
appear explicitly and linearly in the transform. Thus if any two are given they determine
nontrivial conditions which the third must satisfy. For example, if the initial data and the
forcing terms are known, then the condition that the terminal data be such that a finite
Laplace transform exists is equivalent to inverting the ordinary Laplace transform of
the original system.

The eposition in this paper is primarily through examples. Its purpose is to
demonstrate that converting a linear control system to a finite Laplace transform often
leads to conditions which permit direct computation of the controls or at least the
transforms of the controls. It should be mentioned that one important class of control
problem is not discussed in this paper and that is control of linear functional differential
equations. This class certainly falls into the same category of problem as do ordinary
and partial differential equations. However so far as the application of the finite Laplace
transform is concerned there is one important technical difference. That is, for many
problems in linear ordinary and partial differential equations it is legitimate to assume a
knowledge of the spectra associated with their differential operators. Unfortunately this
is not the case with linear functional differential equations.

Preliminaries. The following are definitions and notational conventions which will
be used throughout this paper.

1. will denote the complex plane, s will denote a point in % Re s and Im s will
stand for the real and imaginary parts of a complex number.

2. I will be for n-dimensional identity matrix. If A is an n n matrix, adj A will
denote the transposed cofactor matrix of A and A* will denote the conjugate transpose
of A. The symbol o-(A) will denote the set of characteristic values of A. If ,t o-(A), u(,
will denote the index of h (see e.g. [5, p..556]).
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3. If f: [0, T]- R n, T < c, is an L1 integrable mapping, then the finite Laplace
transform of f, denoted by f, is given by " e-S’f(t) dt. Throughout this paper the finite
Laplace transform will be abbreviated to F.L.T., and its dependence on T will not in
general be emphasized.

4. The characteristic function of a measurable set E in R will be denoted by XE(t).
We now present the fundamental theorem on which this paper is based (see e.g. [4,

pp. 238, 241]).
THEOREM 1.1. Let " C - C be an entire function of exponential type, i.e. If(s)l-<-

a e blsl for all s C and fixed constants a and b. Then there exist nonnegative constants T
and T’ and a function .f6L2(-oo,+oo) with f(t)=0 if tC_[-T’, T] and f(s)=
_e-7(t) dt, iland onZ i Soo f(i,o)l 2 do oo, Moreover the constants T’ and Tsatisfy
the relations

T’ lim 1__ In I/7(x)l,

T lim 1_ In
X

2. Applications of the finite Laplace transform to finite dimensional control
problems. Consider the n-dimensional time optimal control problem

(2.1) (t)=Ax(t)+Bix(t), x(0) Xo.

Here A is an n n matrix, B is an n m matrix, Ix is a measurable m-vector constrained
to lie in some compact convex set, f c R ", called the control set. The problem is, given
X and R n, select a measurable control Ix, with values Ix (t) l-l, _-> 0, such that after
some finite time, T, the solution of (2.1), x(t, Xo, Ix), satisfies x(T, Xo, Ix) Xl. Moreover
it is desired that T be the smallest possible number for which this can be accomplished.
From the general theory of optimal control (see e.g. [6]) we know that if such a Ix exists it
can be chosen such that, for each in [0, T], Ix (t) lies on the boundary of l).

Suppose there is a measurable Ix: [0, T] f such that the solution of (2.1) satisfies
x(0, Xo, Ix) x0 and x(T, Xo, Ix)= xl. Then the F.L.T. of (2.1) for this solution can be
written

(2.2) (s)=(sI-A)-l[Xo-X1 e-r + B/2 (s)].

Since (s) is an F.L.T. this implies that for each A o-(A)

dk

(2.3) d--[adj (sl-A)(xo-xl e -st +B/./.(s))]ls=x =0, 0<-k_-< u(A)- 1.

Conversely, if for a given T < oo and measurable Ix" [0, T] f (2.3) is satisfied for all
A o-(A), then by Theorem 1.1 Ix is a control which transfers the solution of (2.1) from
Xo at time 0 to x at time T. Thus we can state the following theorem.

THEOREM 2.1. A necessary and sufficient condition ]:or a measurable mapping
Ix" [0, T] f to transfer the solution of (2.1) from Xo at 0 to x1at Tis that equation
(2.3) be satisfied for all A or(A).

The following examples will demonstrate the utility of (2.3) in the computation of
optimal controls.

Example 2.1. Consider the system

(2.4) (2)(0)-1 01)(X)y +(0)Ix (x(0)y(0)/=(X0)yo and IIx(t)l=l.<
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Let

For this system (2.2) has the explicit form

s
(2.6) ((s)’ S2+ 1’ (s))]"
Since we know the optimal controls are "bang-bang" (see e.g. [6]), we may assume that

tz(t) eo[Xo.,(t)-X,.(t)+" + (-1)X,.,a (t)]

where eo + 1, 0 =< t -< t2 -<_ T. Thus

t
e -st -st e-St(2.7) /2(s)=eo dt- e dt+...+(-1)" d

trrt

The spectrum, tr(A), for this problem is A +/-i. Substituting these values into (2.3) we
obtain the following independent equations.

ixo + Yo +/2 (i) 0.
(2.8)

-ixo + Yo +/2 (-i) 0..

Using (2.7) and (2.8) we solve for Xo and yo to obtain

xo=eo 1+2 (-1)cost-+(-1)’+cos
]=1

(2.9) yo=eo 2 F. (-1) sin t+(-1)’+ sin
]-1

eo= +/-1, O<-t<-_t.<-_ .<-T.

given (xo)the minimum value of T for which (2.9)is satisfied is the optimal time,Thus
\ /Yo

the value of eo is Ix (0) and the times ta, tz, , t,, are the switching times (i.e. the times
at which/z(t) changes sign).

Equations (2.9) could have been obtained via the usual method. However this
would have required integration of (2.4) which has been bypassed using the finite
Laplace transform.

Example 2.2. (See e.g. [1, p. 536-540].) Consider the scalar system

(2.10) ’+2=/z, x(0), i(0), (0).

Assume Itz (t)J <-- 1 for all >-0. As in Example 2.1, it is desired to drive the initial values
to x(T)= (T)= (T)= 0 in some minimum time T. If this is possible the F.L.T. of
(2.10) becomes

(2.11) (s) s2(s + 1)
[(s 2 + s)x(O)-(s + 1)(0)+ (0)+/2 (s)]

where t2 (s) is the F.L.T. of some measurable/x from [0, T] [- 1, 1 ]. By Theorems 1.1
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or 2.1 this implies that

x(O) + y(o) + g’(o) o,
(2.12) :(0) + 2(0)+/2(0) O,

2(0) +fi(-1) O.

Since we may assume/x(t) is "bang-bang" ([6]) and that there are at most two switch
(see e.g. [1])/2(s) must be of the form

[Io I ItTt]tl
e-St st -st(2.13) /2(s)=eo dt- e- dt + e d

where eo +1, 0_-<tl =<t._-< T. Thus between (2.12) and (2.13) we are led by some
simple calculations to the equations

(2.14)
2(0)=-/2(-1)= e0[1-2 eq+2 etZ--eT],
(0) fi (-- 1) --/2 (0) e0[-- 1 + 2 e q 2 e ’2 e T 2tl + 2t2 T],

x(0) =-/2(-1) + fi(0)-fi’(0)= eo[1-2 eq+2 et2-eT+2ta-2t2+ T+t21-t+T-],
O<-tl <=t2 <- T, eo+:i:l.

As in Example 2.1 the smallest value of T for which (2.14) is satisfied is the optimal time
of transfer to the origin, the switching times are t1 and t2 and eo is the value of/z(0).

Another type of finite dimensional control problem to which the F.L.T. may be
applied is to linear autonomous systems with quadratic cost. Thus let R be an
n-dimensional positive semi-definite matrix with real entries, W a real positive n-
dimensional real matrix and U a real positive m-dimensional matrix. Consider the
problem of minimizing the cost functional

T

(2.15) C(/.e) (Rx(T), x(T))+ Jo [(Wx(t), x(t))+(Ulx(t),/x(t))] dt

where f’ll/x (t)[[2 dt < o and x(t) is constrained by the differential equation

(2.16) .(t)=Ax(t)+Bix(t), x(0) x0.

We assume T <.
The solution of the problem (2.15)-(2.16) may be obtained by solving the following

2n-dimensional system of equations (see e.g. [7]).

=Ax-BU-IB*q(t),

(2.17)
Wx(t) A*q(t),

Iz(t) -U-IB*q(t),
x(O) Xo, q(T)=Rx(T).

The optimal cost C(/z) is given by

(2.18) c()= (q(o), x(O))

where q satisfies (2.17).
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The problem may thus be reduced to finding the solution of a two point boundary
value problem for a 2n-dimensional system of linear differential equations. Treating
x(0) as known, the F.L.T. of (2.17) is given by

(Y(s)) =(sI-A(2.19t
(s) \ W

BU-1B*]- x(O) (x(T) e -sT ’sI+A* ] I(q(O)J-\Rx(T) e-STJ]"
If we are only interested in determining q(0) and x(T) we see that it is not necessary

to integrate (2.17) but only to find the values of x(T) and q(0) for which the right side of
(2.19) is a finite Laplace transform. On the basis of Theorem 1.1 the following theorem
can be stated.

THEOREM 2.2. The solution of the problem (2.15)-(2.16) is found among the
n-vectors q(O) and x(T) which make the right-hand side of (2.19) a finite Laplace
transform.

Example 2.3. Consider the problem (see e.g. [1])

),
with cost

(2.21) C(/,) Ir [(x (t))2 + (y (t))2 + (/x (t))2] dt.

For this problem R 0, W L U 1. Let

(2.22)

For this problem (2.19) becomes

(2.23)

x(s)l
;(s)
(s)
(s)/

3s -s s 1 -s

-1 s 3 s -s 2

1--S 2
--S S3--S 1

s 1 --S
2

--S
2

S
3

4
S
2s- +1

(0)-x(T)(0)-y(T) e

t,(o)
(o)

The roots of the denominator on the right hand side of (2.23) are S1 =e (1/61’,
e (7/6)rri (11/6)r

S2 e (5/61’, s3 and $4 e Equating to zero the first row of the numerator
on the right of (2.23) for s Sl and s s2 and taking the real and imaginary parts of the
resulting equations we obtain four linear equations in the four unknowns/x (0), u(0),
x(T) and y(T). The solution of these equations will be the only solutions for which
(2.23) is a finite Laplace transform. To see this observe that the last three rows of the
matrix in (2.23) are multiples of the first row for some root s sj of the denominator.
Hence we will obtain four independent relations in x(T), y T), /z (0), and v(0) if we
equate to zero the real and imaginary parts of the numerator of any row on the right side
of (2.23) for any two roots s. and sk, j k, with g # Sk. In this case we have chosen s and



APPLICATIONS OF FINITE LAPLACE TRANSFORMS 7

s2 and the first row. When this is done the matrix equation

(2.24)

2
e cos -- sin - e cos-sin

0
1 -(/Y/2) -(x//2)Te cos sin e cos + sin

r( T 1 T) ( T 1 T)1
2

e(/ (/r-cos sin
0

1 ,/,r( 1 T ) r( 1 T
e cos + sin e

2 -cos-sin

0)

T)

T)

x(0) y(0)
2 2x(0) +y(0)

x(0) y(0)
2 2 /

is obtained.
Remark 2.1. The last example shows that the quadratic cost problem may be

solved by a method conceptually simpler than the usual Riccati method (see e.g. [1])
since it bypasses direct integration of (2.17) and yet yields the terminal value x (T) and
the initial value q(0). In general the above procedure may be used to solve the initial
value problem for an autonomous n-dimensional matrix Riccati equation of the form

(2.25) lie WEW+DW+ WF+ C, W(O) R

(see e.g. [2]). This is gone using the F.L.T. as follows. We consider the 2n-dimensional
matrix system

(2.26)
)2 FX EO

0 CX(t) + DO(t), x(0) =L O(0) R.

On the interval [0, b) for which X-l(t) exists we set

(2.27) W(t) x-l(t)O(t)

and observe that it satisfies (2.25). This is not new; what is new is that we may obtain
X(t) and Q(t) by using the requirement that the F.L.T. be an entire function. Thus the
F.L.T. of (2.26) is

(,(s))=(sI+F E )-l(I-X(t)e-St)(2.28) O(s)] -C sI-D R-O(t) e -s’

Hence the matrices O(t) and X(t) for which the right-hand side of (2.28) is a F.L.T. over
[0, t] will solve the Riccati equation (2.26).

3. Applications to hyperbolic partial differential equations. Consider an
autonomous hyperbolic partial differential equation with mixed boundary and initial
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data given by the equations

(3.1)

u. + C(x)u +D(x)u. + E(x)Ux +F(x) R (x)f(t).

u(x. O)= 4(x). u.(x. O)= (x).

u(O, t)= ao(t), u(1, t)= al(t).

Here C, D, E, F and R are continuous for x in [0, 1], C(x) _<- Co < 0 for some constant
Co and >_- 0. The functions b and 0 are assumed to be measurable and bounded and the
functions ao, a and f are integrable over finite intervals in [0, co).

Setting
T

U(x, s)= [ e-Stu(x, t) dt,

(3.2)
t’T t’T

Ao(S) | e-S’ao(t) dt, Al(S) | e-S’a l(t) dt
Jo o

and

(3.3) F(s) e t) dt

we can write the F.L.T. of (3.1) in the form

(3.4)

daU dU
C(X)---x2 (X S) -}- E(x)x (X s) q" (s 2 + sD(x) +F(x )) U(x, s)

s(ck(x)-u(x, T) e-T)+D(x)(ck(x)--u(x, T) e-t)+F(s)O(x)

U(O,s)=Ao(s), UI(s)=AI(s).

We fix s and assume Ul(x, s) and U2(x, s) are linearly independent solutions of the
homogeneous equation

C(x)-xZ(X,S)+E(x) (x,s)+(sZ+sD(x)+F(x))U(x,s)=O

such that

(3.6) UI(O, S) U2(1, s)- O.

(This last condition will be assumed to hold except for at most a countable number of s,
as it indeed does when D(x) O. See e.g. [8, the chapter on boundary value problems].)

In terms of (3.5) and (3.6) we can write the solution of (3.4) in the form

(3.7)

U(x,s)=
AI(S)UI(X,s)U’2 (1, s) Ao(s)Uz(x, s)U’l (0, s)

ao(1, s) Ao(O, s)

+o O(x, r, s)[(sck(cr)- u(o’, T) e-7")+ D(o’)(ck(r)- u(r, T) e -7")

+ (O(r)- ut(cr, T) e-ST")] do" + I01 G(x, r, s)R (r)F(s) do’.



APPLICATIONS OF FINITE LAPLACE TRANSFORMS 9

In (3.7)

(3.8)

and

(3.9)

d
U’(x,s)=(U(x,s)),

Ao(cr, s)= -U(O, s)U’ (0, s) exp E(r)/C(r) dz

U2(X,s)UI(O’,S)
G(x,o’,s)= 0_<-r_-<x,

Ao(r, s)

Ul(X, S)U2(o’, s)
G(x, o’, s) x <-cr <-_ l.

,Xo(o’, s)

Notice from the form of (3.7) and (3.8) that U(x, s) has a pole of order k at a point s if
and only if Ao(0, s) has a zero of order k at the same point, i.e. U2(0, s)U (0, s)= O.
Thus for the right-hand side of (3.7) to be a F.L.T. it is necessary that when we write

1
(3.10) U(x,s)=O(x;s),

zX0(0, s)

O(x, s) have a zero of order k whenever ZXo(0, s) has a zero of order k. This condition
allows us to find u(x, T) and u(x, T) for T>0. Conversely given u(x, T) and ut(x, T),
0 <- x <_- 1, T > 0, it permits us to find conditions on Ao(s), A (s) and F(s) such that ao(t),
a(t) and f(t) may act as boundary and distributed controls taking 4 and 0 to u(., T)
and ut(’, T) in time T. This is the content of Theorems 3.1 and 3.2.

THEOREM 3.1. Given integrable mappings 49 and 0 on [0, 1] a necessary and
sufficient condition that there exist a pair of integrable functions ao and a on the interval
[0, T] which act as boundary controls transferring ok, to u(. T), ut(" T) subject to the
dynamics (3.1) is that the finite Laplace transforms Ao and A1 of ao and al be such that
O(x, s) in (3.10) have a zero of order k whenever Ao(O, s) has a zero of order k.

THF.OREM 3.2. Given integrable mappings 4) and 0 on [0, 1] a necessary and
sufficient condition that there exist an integrable function f on [0, T] which acts as a
distributed control transferring 49, d/ to u ., T) and ut( T) subject to the dynamics (3.1) is
that the finite LaPlace transform Foffbe such that O(x, s) in (3.10) have a zero oforder k
whenever Ao(O, s) has a zero of order k.

Remark 3.1. If instead of the boundary conditions in (3.1) we substitute the
conditions

2 2

(3.11) a/x(0, t)+3lxx(O, t)=qo(t)., a +3 0,
,N(1, t)+61xx(1, t)=q(t), ]/2-1- 62 7 0

a, /3, u, and 6 constants, we obtain a theorem similar to Theorem 3.1. This is a
consequence of the fact that the F.L.T. of (3.11) has the form

aAo(s) + U’(O, s) glo(S), a + 0,
(3.12)

IAI(S) + U’(I,s)=gtl(S), ’2-b 2#0.
where in (3.12) we let U’(xo, s)=(dU/dx)(x,s)lx=xo. Differentiation of (3.7) and
substitution into (3.12) leads to a linear equation in which we can replace the quantities
Oi, =0, 1 with the quantities Ai, =0, 1. Thus the two problems are basically
equivalent.
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Example 3.1. Consider the control problem

Uxx Utt, >= 0, 0 <= X <-- 1,

(3.13) U(X, O)= (X), U,(X, O) O(X),

U(X, T) ut(x, T) 0, T < but unspecified.

The object is to select u(0, t) ao(t) and u(1, t) al(t) such that (3.13) is satisfied. For
the special case of (3.13) equation (3.7) becomes

O(x,s) 1
U(x, s) [A0(s) sinh (s(1-x))+Al(s) sinh (sx)]

sinh s sinh s

I sinh (s(1- x)) sinh (so’)[s (or)+ O(o’)] do"(3.14) +
Jo s sinh s

fl sinh (sx)sinh (s(1- o-))
+ rs6() + 0(r)] &r.

s sinh s

It is easily seen that no matter what Ao and A are s 0 is not a pole of (3.14). However
sinh s has zeros of order one at the points s +/-ncri, n 1, 2,. . Thus by a simple
calculation the finite Laplace transform of ao and a must satisfy the requirements

(3.15) (-1)"+aAo(nzri)+Al(nri) +
(_l)n+l fl sin nzrr(nTri(r) + O(r)) &r 0

o
at these points.

if we set

&" Io (sin (nrro’))(cr) do"

(3.16)

O Io (sin (nTrcr))O(cr) do"

n +/-1,. , we see that (3.15) is equivalent to

(3.17) (-l)"+aAo(nTri)+A(nTri)+(-l)"+a(i,+O) O.

Whatever requirements are placed on the controls their finite Laplace transforms must
satisfy (3.17). If, for example, we are merely interested in driving and to zero we
could select

1 e-2S
A0(S) 2 2rr2) n’n’ff,

n=l S(S2 + n
(3.18) and

-2s

A(s)= X (-1)"+x n..2 2
n=l S +

These would satisfy (3.17) and are respectively the finite Laplace transforms of the
functions

(1 cos (nrrt))
a0(t) $n, 0<=t<=2,

n=l

(3.19)
oo

)n+la(t)= Y’. (-1 (sin (nzrt))n, O_-__t<-2.
n=l
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Example 3.2. This example is a special case of a problem considered by Russell
[11]. The problem is to control to zero the system

(3.20)

Utt Uxx + r(x)u + v(x)f(t), 0 <- x <= 1,

u(x, o)= 4)(x), u,(x, o)= (x),

u(O,t)=u(1, t)=O.

t>=O,

The function v is assumed to satisfy certain conditions which will be given below and

f" [0, T] R, T as yet unspecified, is L2 integrable over [0, T].
Using (3.7) we can write the transformed solution of (3.20) in the form

t’

(3.21) U(x, s)= | G(x, r, s)[sd,(cr)+ O(r)] &r+ | G(x, r, s)v(o.)F(s)
.o Jo

G(x, o., s) in (3.21) has the structure

U(x,s)U(,s)
-U(O, s)Ui (o, s)

U(x, s)Ux(r, s)
U(O, s)Ui (0, s)

Ua(x, s) and Uz(x, s) satisfy

G.(x, o., s ), O <= o. <- x,

G(x, o., s), x <-o. <-_ l.

u(o, s) U(, s) O

and are, for all but a countable number of s, independent solutions of the differential
equation

d2

U(x, s) + (r(x)- sZ)U(x, s) O.(3.22)
dx 2

As Russell has pointed out in Section 2 of 11] there exists a strictly increasing sequence
of nonnegative numbers {Ak}, k 0, 1, , such that when s +Aki

Ua(x, s)= a(s)U2(x, s), a(s) O,

i.e. G(x, o-, s) has a pole of order one at these values of s. Moreover the {A} satisfy the
following two conditions, there exists D > 0 such that

1
lim

k
D, lim (Ak+ /k D

(3.23)
-,Ohk k

We write

F(x, o., s)= Uz(x, s)Ua(o., s), O-<-o.<=x,
(3.24)

F(x,o.,s)=Ua(x,s)Uz(o.,s), o.<=x<-l.

We see that (3.21) is an entire function in s for all 0 <= x <- 1 if and only if at the points
s +h,i

(3.25)

F(x, o., s)[sb (o.) + 0(o.)] do" + Io F(x, o’, s)v(o’)F(s) do. 0

IOI0 Ul(O’, s)[s(o.) -I- 0(o.)] do. + Ua(o., s)v(o.)F(s) ds.
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In [11] Russell assumes v(x) satisfies the conditions

(3.26) and
o

Ul(o", ,ki)V(o") do" 0

limk kilo U(o", hki)v(o") do"I >0.
Under the assumptions (3.26) we seek a function f: [0, T] R which is in L2[0, T] and
whose F.L.T. F satisfies (3.25) at s +hki, i.e.

(3.27) I Ul(O’, s)[s((tT") -[- (o’)] do"
F(s) =’ Io Ul(o", s)v(o") do"

for s +/-Aki.
Russell [11] shows that this is possible for T _>-2 (see Theorems 2 and 3 in [11]).

Our object is not to duplicate Russell’s results, but to indicate how one might proceed to
construct a F.L.T., F, satisfying (3.27). First observe that when s +hki

Ul(X, hki) U1 (x, --hki)

is a real function of x, since for these values of s (3.22) satisfies the usual Sturm-Liouville
boundary value problem

d2U
dx2 +(r(x)+h2g) U=O, U(O) U(1) O.

Thus when s +/- Aki, F(s) must satisfy

I U(o", +Aki)[+hki(o")+ 0(o")] do"
(3.28) F(+/-hki) =

Ux(o", +hd)u(o")do"
+/-iAkqk q-I’k

where qk and rk are real numbers. Russell [11], using properties of nonharmonic
Fourier series, has shown that there exists an f in L2[0, T] whose F.L.T. satisfies (3.28)
for T->2, i.e.

(3.29) F(s) e t), T>-_2.

His method is constructive in that it depends on finding a biorthogonal set in L2[0, T]
(see e.g. 11 ]).

The procedure given b.elow avoids the use of biorthogonal sets, but presents
another difficulty. This is the inversion of a complicated Laplace transform.

The construction of F satisfying (3.28). For each hk 0 we let

h 2k 1 e -2ks/
Gk (S)

rk s2 + 2
k

(Sqk + rk),

(3.30) and
1 -e

Go(s) ro if 0 {hki}.
S

Notice that Gk is a F.L.T. such that

Gk(+/-Aki) +/-Akqki + rk.
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Furthermore

lim
1

In IGk(t)l 0
t---

and if Ak 0

lim l_ln IGk(--t)l
2nvr

t-oo Ak

Thus by Theorem 1.1 Gk is the finite Laplace transform of a function gk whose support
is over [0, 2nr/Ak]. Using work of Redheffer [10] we can show there exists a countable
set S {wki}, Wk O, such that {Aki} S and

=s (1 k/

is an entire function which satisfies
r

(3.32) H(s)= e (t) dt,

(3.33) I (g )l NM for (-m, m)

where M <, T <m and h e L[0, T]. (See lso [11, p. 550-551] and use the Laplace
transform in place of the Fourier transform.)

For each Ii we now construct the functions

H(s) 2iF(s 2s +I H’(Ii)
(.4

N(sl
Fo(s) .

Since

H’(Aki)

Aki

Fk(S), as defined by (2.33), satisfies

H’(-Aki)

(3.35) Fk (A/i) 8, Fk (-Aii)

for each pair of integers k and j. Moreover because of (3.33) it is easy to verify that
IFk(s)l<=Mk < oo for s ito and to real, and that there exists f L2[0, T] such that

(3.36) F(s)- e (t) dr.

We now define

(3.37) F(s)= Y Fk(S)Gk(S).
k=O

By our construction for each k

(3.38) Fk(S)Gk(S)

is an entire function of s, is the Laplace transform of the convolution of fk and gk defined
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above and hence the support of this product for each k must be at most

2kzr]0, T+--.i
ifAk #0

and

[0, T+I] ifho=0.

Thus by assumption (3.24) the maximum support of fi,gk cannot be larger than

[0, T + lo](3.39)

where

lo max 1, sup--j.

This brings us to the question. Is F(s) defined by (2.37) the F.L.T. of some function f
over [0, T +/o]? We do not know the answer to this if (qk, r)# (0, 0) for an infinite
number of k. However if (q, r) (0, 0) for k _-> ko, then the answer is yes. Since in that
case G(s)=-0 for k -> ko and hence

) I((3.40) f(t)= fk(t--o’)gk(r) dtr.
k=0

The last example in this section concerns the boundary control to zero of the two
dimensional wave equation in a square region. The mechanics of this example are much
like those of the one dimensional wave equation of Example 3.1. However in this
example there is some geometry involved which permits us to make statements
concerning the boundary control to zero of the two dimensional wave equations for
arbitrary simply connected regions of the plane. To be specific, suppose we are given a
compact region D in R 2 and we wish to control the two dimensional wave equation to
zero in this region. We circumscribe about D some square, S. We may assume, if need
be, that the boundaries of S and D are disjoint. Let

Uxx -1- lgyy bltt

(3.41) &(x, y)= u(x, y, 0), (x, y)D,

0(X, y)= glt(X y, 0), (X, y)D,

represent the initial data. We wish to select u (x, y, t), > 0 and (x, y) 0(D) (boundary
of D) such that after some as yet unspecified time, T, u(x, y, T) ut(x, y, T)= 0 for all
(x, y) D. We accomplish this by extending the initial data on D to S. Thus on S we have
the boundary control problem

(3.42)

We seek a boundary control

u (x, y, t), (x, y) 60(S) (boundary of S), > 0

such that

u (x, y, T) ut(x, y, T) 0, for some T > 0 and all (x, y) 6 $.
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But if we accomplish this we have also solved the original problem. For u(x, y, t)
restricted to (x, y) O(D) will act as a boundary control on O(D) which drives the original
system to zero in time T. However in general this procedure cannot be time optimal,
since it restricts the class of boundary controls acting .on O(D). The main point is that
boundary control on a square is sufficient for boundary control on compact regions in
R 2"

Example 3.3. In this example all functions are assumed to have the necessary
integrability conditions.

Let

(3.43)

and on S consider

(3.44)

Let the boundary controls be

S ={(x, y):0<-x <- 1, 0-<y_-< 1}

Utt Uxx "Jr- b/yy,

u(x, y,O)=4)(x, y),

u,(x, y,O)=O(x, y),

u(O, y, t)= u(1, y, t)=O.

ao(x, t) u (x, O, t), > O, 0 <- x <= 1
(3.45)

a(x, t) u(x, l, t), > O, O=<x-<l.

We shall attempt to find conditions on the ai, 0, 1 such that after some time T > 0

(3.46) u(x, y, T)= ut(x, y, T)= O, (x, y) S.

The F.L.T. of (3.44) is

(3.47)

(3.48)

sU(x, y, s)-s4)(x, y)- 4,(x, y): u(x, y, s)+ u,,(x, y, s).
T

Ao(x, s)= Io u(x, O, t) e- dt U(x, O, s),

T

A l(X, S)-’- IO lg(X, 1, t) e -st= U(x, 1, s),

U(O, y, s) U(1, y, s) O.

We shall assume that A0 and A in (3.48) are representable in the forms

Ao(x, s)= 2 A(s) sin (nrx),
n=l

(3.49)
Al(X, s)= 2 A’(s) sin (nx).

n--1

For convenience we shall let

(3.50) J0 (sin nrr)(scD(r, r)+ O(r, r)) dr q,(cr), n 1,....

Using the notation (3.49) and (3.50) and the method of separation of variables the
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solution of (3.47)-(3.48) can be written

A(s) sin (nrx) sinh 4sE + nr(1 y)
U(x, y, s)= Z

sinh x/s 2 + n zr

A’;(s) sin (nzrx)sinh x/S-2+ nearE y+Y
2sinh x/s2+ n E

7/"

f’ sinh 4s2 + nEzr2(1 y) sinh x/sa+nrr o.
+ E sin nzrx Jo q o" do,

,--1 x/)2 + n2r2 sin x/s 2 + n2cr2

Iy sinh 4s2+ n2zr y sinh 4s+ n2zr:(1 -o’)
+ E sin (n’n’x) n 277’2 ----r:

=1 4S2 + sinh x/j2+ n rr
q,, (o’) do’.

A necessary condition for (3.51) to be a F.L.T. is that for each integer n the
corresponding entry in (3.51) be a finite Laplace transform. Since the zeros
of sinh x/s2n2zrE occur at the points

(3.52) s +ix/m 2 + n 2 r, m=l,2,...,

this is possible only when

Ao(gn E + m zri) + A1 (x/n + rn ri)
(3.53)

+
(--1)m+l I01 (sin (m,n’o’))q,(o’) do, O,
mTr

m=1.2,.... A similar expression holds when we replace x/(n2-m2)zri by
-x/(n + m2)zri. Taking note of (3.50) and setting

(3.54)

and

(3.55)

Ogmn= fO Io (sin (mro’))(sin (nTro’))b(7-, o’)dr &r

[3mn fO fo sin (mro’)sin (n,rt"r)J(T, o,) d,r do"

we can rewrite the conditions (3.53) in the form

(-1)m+lAg(+4nE + m2 zri) + A(+x/n 2 + m2 zri)
(3.56)

+
(- 1)m+l (+i)x/n + m’’2

Olmn +
rn

A choice for A(s) will be of the form

(--1)m+l

m

Ao (s(3 57) Ao(s)= E )-

where if x/n2+ mE is an integer

(3.58) A’"(s)
2 -2s 2s e (sinh 2x/s2 + n 7rE)b,,

x/S2’+ n 2 2zr (sE + (n 2 + m2)Tr2)
The coefficient b,,,, is chosen so that

’71"
bran(3.59) Ao (+ix/n 2 +mE rr) -(m2 + n2)

m
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Thus

(m 2 + n2)Tr
if x/n /m isan integer.

If x/m2 + n2 is not an integer it must be irrational and there is a natural number
such that.

l- 1 < 4m2n2 < l.

We define

k
(3.60) - 4m2.+ n 2

and observe that the inequality

2
(3.61) k,,-_

2x/m +n

is satisfied. We then define

(3.62) A"(s)
2 -kms 2 2s e sinh (k,. 2)x/s +n2"rr2(sinh 2x/s-2 + n 7r )bran

(S 2 + n 27r2)(s 2 + (n 2 + m 2),rr2)

It is not difficult to verify that (3.62) and (3.58) define finite Laplace transforms over
intervals of the form [0, km], 2 < k,,-< 2 +/. In the case of (3.62) we observe that
because /rn2+- is irrational (k)m is also. Thus sin (k,,Tr) # 0 and the equation

Ao(+X/ zri)
(m2 + n2)

3 (sin m.a’k,,,)b,,
m,

m zr m

has a solution for b,,n which is

(3.63)
2m r mn

2 2m + n sin (mzrk,,)

Similarly we define

(3.64) A(s)= E A’"(s)
m--1

where if x/rn+ n is an integer

A’"(s)

with

s e -2s sinh 2x/S2 + n ’,rr’2
x/s 2 +’n2.rr(s2 + (n 2 + m2).rr2)

amn

(3.65) a,, (- 1)’Tr.,a.,..

If x/m2 -b n 2 is not an integer we define

(3.66) A’"(s)
2 2

s e -k’s sinh (k,.- 2)4s"+"n27r2(sinh 2’s + n r )a,,,,
(s 2 + n2,rr2)(s 2 + (n 2 + m2)zr2)
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where
2 2

(3.67) a,,n 1)’/1 m 7r

sin (kmHm)

Notice that when /rn e + n e is not an integer the inequality (3.61) implies that equations
(3.63) and (3.67) tend to the quantities +(m/x/mS+ ne)[3,,, and +/-mrram, respectively.
Also observe that

A’"(+i4l2 / n) O, ] O, 1,

if/era.
As a final remark in this section it should be pointed out that the convergence of

A(s) and AT(s) in equations (3.57) and (3.64) has not been discussed. Since this paper
is meant to demonstrate a technique we shall not concern ourselves with this question.
Suffice it to say that if b(x, y) and (x, y) have finite Fourier expansions i.e. {a,,} and
{/3m} contain only a finite number of nonzero terms, then the above constructions will
always yield controls which drive (3.41) to the zero state in some time T _-< 2 + x/ (i.e.
the maximum possible k, given by inequality (3.61)).

4. A parabolic problem. Consider the heat equation in one dimension

(4.1) t>0, 0<x<l
Ot Ote

Assume

u(x,O)=6(x),

(4.2) u(0, t)= ao(t),

u(1, t)=al(t),

where b, ao and a are integrable over finite intervals.
If u(x, T) (x) for some T>0 and

TIo e-Stai(t) dt Ai(s), O, 1,

then using the techniques of Example 3.1, the F.L.T. of (4.1)-(4.2) is given by

Ao(s) sinh 4-s(1-x)+Al(S) sinh 4s x(4.3) U(, s)
sinh /

+ | F(x, r, s)[&(o’)- O(o’) e -sT] dr
do

where

F(x,r,s)=
1

sinh x/] tr sinh x/i(1- x)if 0_-<tr_-<x
x/ sinh

and

(4.4) F(x,o’,s)=
1

sinh 4 x sinh 4(1- o-)if o-_<-x <= 1.
s sinh

Suppose it is desired to drive an initial temperature 4 to the zero temperature in some
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time T > 0. Since the poles of (4.3) are of order one and occur at the points s n 2 2

n 1, 2,. , the numerator in (4.3) must satisfy the equations

(4.5) (-1)n+lAo(-n 2zr2) +A (-n 2zr 2)+(--1)’+lnT"r I01 (sin (nzro’)) (o’) do-= O.

Thus it is desired to find entire functions Ao(s) and Al(s) which are finite Laplace
transforms over [0, T] and which also satisfy (4.5). This is not always a practical
problem as the following special case shows (see e.g. [3]). Let

(4.6) b (x) bo constant 0.

For this value of b the equations (4.5) reduce to

(4,7) Ao(-n 2"rr 2) A (-/’/27r’2), n even,

and

(4.8) Ao(_n27r2)+A(_n27r:Z) -2bo
2 2, nodd.

n 7r

Assume

(4.9) Ao(s)=Al(S), i.e. ao(t)=al(t), and lao(t)<-I on[0, T].

If we also assuIne ao(t) is piecewise constant with a finite number of switches on [0, T]
then it is easily seen that (4.8) can never be satisfied. For if

N

ao(t) Y Ol.j,)([ti_l,ti) (t), 0 to <" < t, T,
/=1

then

r
s,).(4.10) Ao(s) =1- Z i(e-s -e-

Si=I

Clearly Ao(s) given by (4.10) can never satisfy (4.8).
However if we permit an infinite number of switches then it is possible to bring the

temperature to zero in any finite time T. For let

ao(t) al(t)= aiXt,_l.,,)(t),
/’=1

0= t0<ta<’’ .<t, T.

Then

(4.11) Ao(s)=A(s) =1- Z ai(e --s//-1 e-S
Si=I

and at the points --n 2 2
zr we have

(4.12) Ao(_n:zzrZ)=Aa(_nZTr2) 1 --"271"2//
2 2 2 ai(e "2=2//-’ e ).

nT"l’j=l

Thus (4.8) reduces to the moment problem (see e.g. [3]) of selecting {ai}, lal -< 1 for
/" 1, 2, , and 0 to < tl <" < t, -. T such that

(4.13) Y oQ(e n2r2//-1 e//) o.
This is a solvable problem (see e.g. [3]) which can be solved for any T > 0.
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DEFINITIONS OF ORDER AND JUNCTION CONDITIONS
IN SINGULAR OPTIMAL CONTROL PROBLEMS*

R. M. LEWIS,"

Abstract. The generalized Legendre-Clebsch higher order tests for optimality of singular arcs in optimal
control problems depend upon the orders of the arcs involved. To date three distinct definitions of order have
been given but many authors do not distinguish among them. The features of each definition are discussed
with special reference to the applicability of the higher order tests and of the conditions at junctions between
singular and nonsingular arcs; only in terms of one of the definitions are the junction conditions generally
valid. An illustrative example is presented.

Introduction. In optimal control problems an extremal arc or subarc is called
singular if it trivially satisfies the Pontryagin minimum principle, that is, a first order
control variation on the arc or subarc produces no change in cost, to first order (a
statement of the minimum principle and a precise definition of extremality are given in
the following section). Higher order conditions are needed to check the optimality of
such arcs and two different types of condition have evolved; those based upon higher
order control variations (see, for example [1]) and those in which the higher order
changes in cost due to the first order control variations are studied (for example, the
Gabasov-Jacobson condition [4]).

We are concerned here with the former type and in particular among these, the
generalized Legendre-Clebsch necessary conditions. Associated with these is the
notion of the order of a singular arc, of which various definitions have been given (some
authors define a quantity called degree which is just 2 order). We point out here that
these definitions are in need of interpretation and show by means of examples how
differing interpretations can yield different values for the order of some singular arcs.
This is not in itself a cause for concern; however, by failing to state precisely which
interpretation they are considering and, worse, by using different ones alternately, a
number of authors have created some confusion about this issue.

The purpose here is to clear this up. In 1 the class of problems is defined and the
phenomenon of singularity is briefly discussed. We then give a naive definition of order:
two interpretations of this yield, respectively, the notions of intrinsic and local order.
Most of the definitions in the literature correspond to one or the other of these but we do
find a third distinct one, combining the features of the other two yet being more suitable
with regard to applying the higher order optimality tests.

Conditions at the junctions between singular and nonsingular arcs are discussed in
3 where it is shown that the theorems of McDanell and Powers are valid only if stated

in terms of intrinsic order. Moreover, there exist problems to which none of their
theorems are applicable. The section is ended with an example around which much of
the work hinges. We conclude by considering the implications of these findings.

1. Problem |ormulation. We consider the optimal control problem of the form:
find the scalar control function u(. ) Ll[to, t] which minimizes the cost functional

(1.1) rt tl
J(u( ))= G(X(tl))+ Lo(t, x(t))+Ll(t, x(t))u(t) dt

* Received by the editors November 14, 1977, and in final revised form March 6, 1979.

" School of Mathematics, University of Bath, Bath, England. Now at Department of Electrical
Engineering, University of Newcastle, New South Wales, 2308, Australia.
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subject to the system equation

(1.2) 2(t)=fo(t, x(t))+fl(t, x(t))u(t) for almost every [t0, tl]

and the constraints

(1.3) lu(t)l<-g for almost every te[to, tl],

(1.4) X(to) Xo, g(x(tl)) O.

Here x( is an absolutely continuous n-vector function of and x(t) is called the state
of the system at time t. The functions G, L0, L1, f0, fl and g are assumed to be analytic
with g" R"I". x0 e R" is given and to and tl are specified initial and final times. We
further assume that a nontrivial set of solutions to (1.2), (1.3) and (1.4) exists and that J
has a minimum over this set.

The above problem is linear in the control. We shall deal with nonlinear problems,
in which Lo(t, x)+L(t, x)u and fo(t, x)+fl(t, x)u are replaced by analytic functions
L(t, x, u) and f(t, x, u) respectively, separately in 4. Many authors obtain results for
nonlinear problems by considering locally equivalent linearizations (see [1], [2]).

Restricting attention to scalar control problems considerably simplifies notation
and results, many of which (the junction conditions for example) are not available in the
case of vector controls. Admitting variable end times does not substantially affect what
follows.

As usual the Hamiltonian for the problem is defined by"

(1.5) n(t, x, A, u) A 7"fo(t, x)+ to(t, x)+ [A 7"fa(t, x)+ L(t, x)]u

where a e [". The well-known minimum principle provides that a necessary condition
for the control-state pair (u*(.), x*(. )) to be optimal is the existence of an absolutely
continuous function a*(. (the adjoint) satisfying

(1.6a) (*(t) -H(t, x*(t), a*(t), u*(t)) a.e. in [to,

(1.6b) A*(tl) 7" ,( 7" 7-poGx (x t,))+ v gx (x*(tl))

where o is a nonnegative scalar and u ’. Further,

H(t, x*(t), , *(t), u*(t)) <- H(t, x*(t), h *(t), v)
(1.7)

for all Iv]- K and for almost every [to, tl].

Here H(t, x*(t),A*(t), u*(t)) denotes the partial derivative of H with respect to x,
evaluated at (t, x*(t), ,*(t), u*(t)). T denotes transpose (the derivative is a row vector).
The right hand sides of (1.6b) and (1.8) (below) have a similar interpretation.

For any triple (x(.), (. ), u(. )) satisfying (1.2), (1.3) and (1.6a) set

(1.8) 6(t) h rfl(t, x(t)) + L(t, x(t)) (O/Ou)H(t, x(t), h (t), u(t)).

Expression (1.7) yields two distinct possibilities for optimal controls u*(. on sub-
intervals (t, tb) [to, tl], either

(1.9) qb*(t) O, u*(t) -K sgn (&*(t)), (t, tb),

or

(1.10) 6*(t) 0, t(t,t).

Any triple (x*(.),A*(. ), u*(. )) satisfying (1.2), (1.3), (1.4), (1.6) and (1.7) is
called an extremal for the problem of interest (b* above denotes evaluation of b along
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an extremal). An arc of an extremal corresponding to a subinterval (ta, tb) is called
nonsingular if (1.9) holds, otherwise, if (1.10) holds, it is called singular. Along
nonsingular arcs the minimum principle is strictly satisfied, that is, there exists v with

Ivl<=K giving strict inequality in (1.7). On singular arcs however, the first order
necessary condition (minimum principle) is trivially satisfied and we are led to seek
higher order tests for optimality.

Remark (i) Along nonsingular arcs (1.9) completely determines u*(. whilst on
singular arcs the control is usually completely specified by conditions implicit in (1.10),
namely (di/dti)4)*(t)=O i=O, 1,2,...,t(ta, tb). Singularity does not imply
indeterminacy of the control but that the first order control variations used to derive the
minimum principle produce no first order variations in cost, when applied at e (t tb).

Remark (ii) Singularity is strictly a property of extremals (x*(.), A*(. ), u*(. ))
and not of state-control pairs (x*(.), u*(. )) since for some such pair there may be more
than one adjoint function A *( making the triple extremal. This is a consequence of the
nonuniqueness of v in (1.6b).

Example. Maximize Xl(1) (minimize -x1(1)) subject to

l(t)=Xz(t)+u(t), 2(t)=xl(t)--U(t),
xl(0) xz(O) xz(1) 1, [u(t)[<= 1.

A candidate for optimality is (Xl(t), x2(t), u(t))= (1 +2t, 1, 1) 0<=t <- 1. (The functions
defining the problem are analytic in a neighborhood of the trajectory.) We have

that is

hence

,(l(t) O,

2(t) -A l(t)+ Az(t)x-2 (t) -A l(t) + A2(t),

al(t)=v0 and A2(t)=(v-vo)exp(t-1)+vo;

&(t) a l(t)-az(t)= (vo- v) exp (t- 1).

Therefore (t) 0 if v Vo whilst if v > uo, (t) < 0 and u(t) -sgn (t) 1.
Both singular and nonsingular extremals corresponding to (x l(" ), x2(" ), u (.)) are

possible.

2. The order of singular extremal arcs. We begin this section by defining the order
of a singular extremal arc. The value obtained in a particular problem is seen to depend
upon the interpretation given to the definition and this leads us to two different notions
of order. Four examples from the literature are then investigated to determine which
notions their authors had in mind and in so doing we discover a third independent one.

DEFINITION 2.1. The order of a singular extremal arc on (t, tb) is that integer q
such that (dq/dtZq)[Hu] is the lowest order total derivative of H, in which u appears
explicitly. (H (O/Ou)H L1 + a Tfl).

As Hu H(t, x, a), total derivatives of H are defined only when x(. and A (.)
are specified as functions of t. Then, strictly, H, H,(t) and detection of the explicit
appearance of u is impossible. It is therefore necessary to interpret the definition.

Interpretation 2.2. To determine the order of a singular extremal arc, form the
derivatives of H as follows:

T(d/dt)H H, +Huxx +H
=H,,+H,[fo(t,x)+fl(t,x)u]-HuxH,7" T
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i.e. substitute the functional forms given by the right hand sides of (1.2) and (1.6a) for
and A respectively. These forms hold along all extremal arcs; hence the above
expression for (d/dt)Hu is valid along all extremal arcs and is explicitly a function of
(t, x, A, u), M(t, x, A, u), say. It is easy to show directly that M M(t, x, A) and hence
(O/Ou)(d/dt)Hu =0.

Continuing, form

(dZ/dt2)Hu M,+Mr[fo(t,x)+fl(t,x)u] 7" r-MxHx =N(t,x,A,u).

This expression is also valid along all extremal arcs. If N depends explicitly upon u, i.e. if
for some (t, x, ,) e R x" xN" (O/Ou)N(t, x, A, u) O, then the order of the singular arc
is q 2/2 1; otherwise the above process is continued until a total derivative of H, is
found which is dependent upon u. If no such derivative exists, set q o0.

Note (a) It is implicit in Definition 2.1-Interpretation 2.2 that the first appearance
of u is in an even order derivative of H,. This is proved by Robbins [2] whose definition
of order is the same as Definition 2.1-Interpretation 2.2 (see below).

Note (b) Though we set out to determine the order of a particular singular extremal
arc, we note from Interpretation 2.2 that the number q arrived at there is a property of
all the extremal arcs in a given problem. This motivates:

DEFINITION 2.3. The intrinsic order of an optimal control problem in which the
control appears linearly is the least integer q such that (d2q/dt2")H, depends explicitly
upon u, with the Interpretation 2.2.

Note (i) The intrinsic order of a problem linear in the control is always greater than
or equal to one.

Note (ii) For problems linear in the state x as well as in the control, q
Note (iii) u appears linearly in (d2O/dt2q) Hu, that is (d2/dt2q)Hu

A(t,x,A)+B(t,x,A)u where B is not the null function. The importance of this is
discussed in 3.

A necessary condition for optimality of singular arcs is:
THEOREM 2.4. Suppose (x*( ), A *( ), u*( )) is a normal extremal for a problem

of intrinsic order q, with a singular arc on the interval (t, tb), and that lu*(t)l < K for
(t, tb). Then ]’or the extremal to be optimal it is necessary that

(2.5) (-1){(O/Ou)(d2/dtZ)Hu}* >- 0

]’or all points (t, tb) at which u* is analytic.
denotes evaluation along the extremal, i.e. the left hand side of (2.5) is

(-1)B(t, x*(t), A*(t)), where B is as in Note (iii) above.
Normality guarantees that the terminal constraints can be satisfied by varied

trajectories and is equivalent to uniqueness of the A*(. making (x*(.), A*(. ), u*(. ))
extremal [1]. Nonnormal extremals are included in a modified version of Theorem 2.4
at the end of this section.

A proof of Theorem 2.4 can be found in [2]. Condition (2.5) is known as the
generalized Legendre-Clebsch (GLC) condition. By the strengthened GLC condition
we mean that strict inequality holds. Of course it is possible to have B(t, x*(t), A*(t)) 0
for (to, ta)c (ta, tb) even though B is not the null function. Then on (t ta) the GLC
condition is trivially satisfied and does not provide a test for optimality of this subarc. To
obtain a test the following is needed:

DEFINITION 2.6. The local order of an extremal on the interval (to ta) is the least
integer p such that

{(O/Ou)(d2p/dt2p)Hu}* # 0 for all (t, td).
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Interpretation. The derivatives up to order 2q (q intrinsic order) are formed as
before, yielding

(d2/dtZ)Hu A(t, x, A + B(t, x, h )u

where B is not the null function. If however B(t, x*(t), A *(t)) 0 on (t, ta) we then form

(dE"+/dtEq+X)H A +Bu +[Aft+ Bu][fo(t, x)+f(t, x)u]

+[A+Bu][-Hff] +
=P(t,x,X,u, fi).

It can be shown that (b/Ou)(d2+l/dt2q+l)H, (b/Ou)P(t, x, A, u, ft) is zero along (x*(t),
A*(t), u*(t)) for (to, ta) because B 0 there [7]. Continuing, we have

(dZq+2/dt2q+Z)H p,+pT[fo+fu T T (up)-PxH + ft + Bii Q(t, x, A, u, ft, ii).

We now evaluate (O/Ou)(d2+2/dt2"+)H, (O/Ou)Q(t, x, A, u, fi, ii) along
(x*(t), A*(t), u*(t)) for (to, td). If it is nonzero there, then the local order of the
singular extremal (x*(t), A *(t), u*(t)) is p (2q + 2)/2 q + 1. Otherwise, continue the
above process until a total derivative of order 2q + 2r, r> 1, is found such that
(O/Ou)(d2+2/dt2q+2)H, is not zero along the extremal. If no such derivative exists, set

Note (i) To obtain (d2O+2/dt2+2)H, we appear to require u*(t) to be 2r times
differentiable on (t, t). As the value of r is not known a priori we therefore assume that
u*(. is piecewise analytic. This implies that the interval [to, ta] divides into at most a
finite number of subintervals on which the local order of the extremal is different. That
the local order can change along the extremal is shown by the example in 3.

Note (ii) Note that the coefficients of fi, // etc. are zero along the extremal
concerned. This may enable us to extend Definition 2.6 to extremals corresponding to
nonpiecewise analytic controls.

Note (iii) It is evident that if the local order p is greater than the intrinsic order q,
then u no longer appears linearly in (d2/dt2’)Hu. Indeed (d2/dt)H is generally a
polynomial of degree 2(p- q)+ 1 in u. (The function Q defined above is cubic in u.)

Note (iv) Proof that the first nonzero term {(O/Ou)(dk/dtk)Hu}* occurs for k even
is given in [7].

In terms of local order, the necessary conditions for optimality are the same.
THEOREM 2.7. ff (x*(’), A*(" ), u*(" )) is a normal extremal with a singular arc of

local order p on (t, ta) and lu*(t)l <K for (t, ta) then a necessary condition ]:or the
extremal to be optimal is

(2.8) (-1)P{(O/Ou)(dEp/dtE)H}* >= 0
]or all t (t, ta) at which u*( is analytic.

Using local order, for a normal extremal the higher order tests for optimality are
never trivially satisfied unless p c; no further definitions of order nor tests for
optimality of GLC type are possible. Of course satisfaction of the strengthened GLC
does not guarantee optimality, as an example due to Jacobson and Bell [4, pp. 94-96],
shows.

We conclude, provisionally, that there are two useful notions of order, the intrinsic
order of a problem and the local order of a particular extremal subarc and that these are
not the same. The literature on singular control problems abounds in different state-
ments of a definition of order. The stress here is on "statements" since many authors do
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not give interpretations of their definitions and in fact use the intrinsic order on some
and local order on other occasions. Some of these definitions are now examined, in
order of publication.

Note. Some authors quoted below refer to optimal arcs instead of extremals. Their
definitions actually apply to pairs (x*, u*) satisfying (1.6) and (1.7), for which the
extremal (x*, , *, u*) is unique.

Among the earliest derivations of the generalized Legendre-Clebsch conditions is
that of Kopp and Moyer I-3] who treat general, nonlinear problems and would therefore
be expected to use local order (see 4). Actually, they do not explicitly define the order
of a singular arc but state the GLC as"

(-1)’(c/Ou)[(d2/dt2)(c3H/c3u)]>-_O [3, (24)].

The left hand side is evaluated as above, along the singular arc of interest, k is to be
found as follows [3, p. 1443]: "If the inequality is met marginally (equality) for the first
necessary condition, in which case the test is inconclusive on the nature of the extremal
arc, the second test is applied and so on." The first test refers to [3, (24)] with k 1, the
second with k- 2 etc. This confirms that local order is being used as it is the same
procedure as used to determine local order. The authors also state the strengthened
GLC condition as necessary for optimality [3, (A12)]; this is true only when k is local
order.

Robbins, by contrast, gives a very detailed definition of degree (= 2x order). In [2],
linear problems with vector valued controls of dimension nc are considered, r control
variables are assumed singular, that is, correspond to components of H, which are zero.
The definition of degree is then [2, p. 365] (in [2] , is written as p):

The condition H, 0 is independent of u (as already noted) and hence gives a
relation among x, p and t. By use of the equations 2 H and =-H, the
other conditions given in (17) can successively be reduced to similar relations
among these variables, until sooner or later (in general) a relation will be
encountered which explicitly involves u. Let O denote the r x r matrix whose
elements are

and let M denote the smallest value of m for which Q,, has at least one
nonzero element. In general, M is a function of x, p and but to simplify
the discussion we shall assume that M is constant in the neighborhood of the
extremal arc of interest and make a similar assumption for the rank of QM.
These assumptions exclude certain atypical cases in which the extremal arc
coincides with a line or surface in the x, p or space where M is greater, or the
rank of QM is less, than at neighboring points. (I am indebted.., to my
attention.) These atypical cases will be discussed in section 8. In all other cases,
M is the first value of m for which the elements of Q,, do not all vanish
identically in the region of interest.
Defined in this way, degree equals twice intrinsic order. Robbins "atypical cases"

are those arcs along which local order is greater than intrinsic order. For the application
of the GLC condition to these cases, he specifies a procedure equivalent to the use of the
local order of the arc [2, p. 272].

The precision of Robbins definition is lacking in many subsequent to it. Typical of
these (and important since it appears in the first text on singular control) is (vector
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valued controls are considered: [tl, t2] is a subinterval of [te, tel, the interval of interest;
the word optimal should be replaced by extremal):

"Let Uk be an optimal singular element of the control vector u on the interval
It1, t2] which appears linearly in the Hamiltonian. Let the 2qth time derivative of Huk be
the lowest order total derivative in which uk appears explicitly with a coefficient which is
not identically zero on [/1, t2]. Then the integer q is called the order of the singular arc.
The control variable uk is referred to as a singular control." [4, p. 4 definition (1.1).].

This is difficult to interpret satisfactorily because of the simultaneous demands
"appears explicitly" and "not identically zero on [t, t2]". The first phrase indicates that
intrinsic order is meant, that is, explicit dependence of (d2q/dt2q)Huk on uk, considered
as a function of (t, x, A, u). The second phrase confuses this by requiringthat along the
arc of interest the coefficient be not identically zero, as a function of along the arc:
unless one is to understand that the "atypical cases" of Robbins are excluded from the
definition it is not sensible.. On the contrary, the authors do not seem to intend intrinsic
order for they write [4, p. 63]:

"In the following derivation of the GLC a sequence of special control variations
will be constructed which in turn will generate a sequence of necessary conditions.
Should the first condition of this sequence be trivially satisfied, then the second
condition is tested and so on until new information is obtained." This sequence of
testing implies consideration of local order.

It must be remarked again that from the point of view of applying the GLC tests it
does not matter which order is used, except that in terms of local order, the GLC
condition holds strongly except on a null set of points. However, this robustness of the
GLC condition is not shared by other necessary conditions (see 3).

Recently, Krener has given a hybrid definition of degree (= twice order) which
obviates the need for normality in the GLC condition, [1, p. 278 et seq.], (a nonlinear
problem is considered):

DEFINITION 2.9. Suppose u*(" and x*(. are a singular extremal control and
trajectory on [ta, tb ]. The pair is singular of degree m on this interval if m is the smallest
integer for which there exists A (.) satisfying the adjoint differential equation

A (t)= -H(t, x*(t), A (t), u*(t)),

the necessary conditions H(t, x*(t), A (t), u*(t))= O, (dk/dtk)H(t, x*(t), A (t), u*(t))= O,
k=0,..., c, and (O/Ou)(d’/dt")H,(t, x*(t),A(t), u*(t)) is not identically zero on
[ta, tb].

The adjoint A (.) in this definition need not be the same as the A*( forming the
extremal in that it need not satisfy the boundary conditions (1.6b).

Definition 2.9 has something of the flavor of the intrinsic order definition whilst
having local statement and q <-m/2<-p where q is intrinsic and p, local order. In
example 5.1 of [1], m/2 q < p while in the example in the following section q < p
m/2, so the above definition is not equivalent to either the local or the intrinsic one. It
should not be difficult to combine the features of these two examples to produce a
problem for which q < m/2 < p.

The GLC condition now takes the form:
TIEOREM 2.10. Assume that u*( and x*( are extremal and singular ofdegree

m on [ta, tb] and that lu*(t) < Kfort [ta, tb]. Then m is even and ifu*(. is optimal there
exists a A(. such that (x*( ), A(. ), u*(. )) is extremal and

(-1)’/2(O/Ou)(d"/dt’)Hu(t, x*(t), A (t), u*(t)) <- O.
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For normal problems, the A (.) above must be A*(. but in nonnormal cases the
GLC condition need not hold for A*(. ).

The major disadvantage of Definition 2.9 is that one may need to compute a large
number of multipliers A (.) to determine m, unless either (i) the multiplier satisfying
the conditions of Definition 2.9 is unique, in which case m p or (ii) a multiplier exists
for which

(O/Ou)(d2q/dt2q)Hu(t, x*(t), A (t), u*(t)) 0, whence m q.

Against this there is the advantage of including nonnormal extremals in Theorem 2.10.

3. Junction conditions. The generalized Legendre-Clebsch condition provides a
test for optimality along the singular subarcs of an extremal. At the junction between
singular and nonsingular subarcs, further tests are required. In [5], McDanell and
Powers give the first general junction conditions for problems linear in the control.

THEOrtEM 3.1. Let tc be a point at which singular and nonsingular subarcs of an
optimal control u(. are oined and let q be the order of the singular arc. Suppose the
strengthened GLC condition is satisfied at tc, i.e., (-1)q(O/Ou)(dZq/dtZq)Hu >0 and
assume that the control is piecewise analytic in a neighborhood of t. Let u (r) (r >-_ O) be the
lowest order derivative of u which is discontinuous at t. Then q + r is an odd integer.

This is Theorem 1 of [5]. The control does not actually have to be optimal but has to
satisfy the minimum principle and the GLC condition.

The discussion in 2 leads one to the question, for which definitions of order is this
theorem true? The definition of order given in [5], (definition 3), is virtually identical to
the confusing one offered in [4] except that it is restricted to linear problems with scalar
control. Local order is therefore indicated. However, the proof of the theorem given in
[5] depends upon (dZq/dt)H, being linear in u which is generally true only if q is
intrinsic order. Failure of the theorem when local order is used is shown in the example
below.

Accepting that intrinsic order is employed, the theorem is inapplicable when the
GLC condition holds trivially at t. Then "To treat this case note from Definition 3 that
for a qth order singular arc the GLC expression (O/Ou)(d2/dt2)H (i.e./3) cannot be
identically zero on the singular arc. Therefore in view of our analyticity assumptions a
derivative of some order must be nonzero at the junction point t even if/3 (to) 0. This
then leads to the following theorem, "[5, pp. 166-167]. This is incorrect, or at least
incompatible with q being intrinsic order, for the example below shows that it is in fact
possible for (O/Ou)(d2/dt2q)H, to be identically zero on the singular arc. We see then
that there is a class of problems whose junction point behavior is not specified by the
theorems in [5].

Example. Consider the problem of minimizing

subject to

J(u) (xl dt
0

21 X2U, Xl(t0) :1 # 1/2,
(3.2)

22 U --X1, Xz(to) 2 7fi 0;

(3.3) [ul-<l.
to, h, s and :2 are fixed but remain unspecified for the present. The Hamiltonian, the
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multiplier equations and the switching function are given by

(3.4) H A lx2u + A2(u -xl) + (xl _1/2)2,
A2-2(xx-1/2), A(tx) O,

(3.5)
,(2 =-Au, A2(ta) 0;

(3.6)

Arcs where d, # 0 are nonsingular and extremal controls for such arcs are given by
u* =-sgn (d). The extremal arc

(3.7) xl(t)=1/2, x2(t)=0, u(t)=1/2, Xl(t)=X2(t)=0

is singular. The increment in cost along (3.7) is zero and the necessary conditions
indicate that the optimal solution from any initial point (sr, 2)# (1/2, 0) comprises a
nonsingular arc from (ff, :2) reaching (1/2, 0) at time to, followed by the singular arc (3.7)
for tc -<_ -< t. It will be shown that , so2, to and t can be chosen so that such a trajectory
is extremal and has a piecewise analytic control.

The problem is autonomous so choose t 0 with to < 0 < t. The singular arc is on
the interval (0, q], the nonsingular on [to, 0). On [to, 0) let us attempt to construct an
extremal with 4 X 1X2 "" A2 < 0; then u =-sgn b 1 and (3.2) and (3.5) become:

or

(3.8) (d4/dt4 + 2dE/dt2 + 1)A2 1.

Thus A2(t) A sin + Bt sin + C cos +Dt cos + 1, [to, 0). From the bound-
ary conditions (3.7) at tc 0,

whence

(3.9)

Now

hence

A2(t) 1 -cos t-(t/2) sin

A (t) (t/2) cos t- (1/2) sin t,

x2(t) (1/2) sin and x(t) 1-(1/2) cos t,

qb(t) A x(t)x2(t) + A2(t)

1-cos t-(t/2) sin + (1/2) sin t((t/2) cos t-1/2 sin t)

1 cos t (t/2) sin + (t/8) sin (2t) + (1 /8)(cos (2t) 1),

(d/dt)c(t) (1/2)(sin t-t cos t)- (1/8)(sin (2t)-2t cos (2t)).

sin r-r cos r=(r-r3/3!+rS/5! )-r(1-r2/2!+r/4!
ra/3-rS/30+...

(d/dt)d(t) (1/2)(ta/3-ts/30+" )-(1/8)(8t3/3-32ts/30+
=-ta/6+7ts/60
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For negative but sufficiently near zero then (d/dt)ck(t)>O and b(0).=0 .implies
b(t) < 0. We conclude that there is an interval [to, 0) on which &(t) < 0 and therefore the
control u(t) 1 and trajectory Xl(t) 1 -(1/2) cos t, x2 (1/2) sin t are extremal. For
such a to, taking :1 1 -(1/2) cos to, :2 (1/2) sin to and any tl >0 the control problem
admits an extremal of the stated form.

Comments. The above detail is necessitated by the fact that problems very similar
to the one given do not admit extremals with piecewise analytic controls. Indeed, if we
replace the bilinear form .1 x2u above by A1 x2, the singular arc remains the same.
Assuming b < 0 on the nonsingular arc, u, Xl, x2, h and h 2 are as above but

b=A2 1-cos t-(t/2)sin t= 1-(1-t2/2!+t4/4!
-(t/2)(t- t3/3! + t5/5! ),

qb t4/12 O(tS),
i.e. & >0 near 0, a contradiction and it transpires that the switching function
switches infinitely often in a neighborhood of 0. The corresponding control is
measurable but not piecewise analytic; cf. [5], [6].

Let us determine the intrinsic order of the problem and the local order and degree
of the singular arc.

Hu A1x2 +A2,

(d/dt)H. (/2- 2(X1 1/2))X2 -["/ x(U X1)-/1U

(h 2 2(Xl 1/2))X2 h IX 1,

(d2/dt2)Hu (-/ u 2x2u)x2 -[- (h2- 2(x1 1/2))(u x1)- (/ 2 2(x1 1/2))Xx -/ xX2U

-2(h2- 2(x1- ))XI + (/2-- 2(Xl--)- 2(ha + Xz)Xz)U.
Hence (O/Ou)(dZ/dtZ)Hu=h2-2(Xl-1/2)-2(hl+x2)x2 and the intrinsic order is q=
2/2=1.

However, along the singular arc (O/Ou)(d2/dtZ)Hu 0 so the local order is greater
than 1. Since (dk/dtk)u(t) 0, k 1, 2, , along both arcs of the solution, these terms
are neglected in higher order derivatives of H,. We find"

(d3/dt3)Hu ((4(h "+" 2X2)X1 4(h2-- 2(Xl 1/2))X2) "" (--3/ -6x2)u)u

and as expected (O/Ou)(d3/dt3)nu 0 along the singular arc.

(da/dt4)nu ((8hzx- 16(Xl- 1/2)Xl --8X)
+ (14x + 8(h + 2x2)x2 7 (h 2(x 1/2)))U - (-6)u 2) u.

Along the singular arc

(O/Ou)(d4/dt4)nu -8x + 2(14xl)u + 3(-6)u= 2(1/4)

as u Xl .
The local order is therefore 4/= 2. Note that (-1)2(O/Ou)(d4/dt4)Hu =1/2>0, i.e.

the strengthened GLC condition is satisfied along the singular arc.
The adjoint multipliers associated with the singular arc are unique: we require

H, h lxz + ha h2 0 and h2 -h 1/2 which implies h ha 0. Therefore the degree
of the singular arc, as defined by Definition 2.9, is 4, twice the local order.
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Now, in terms of local order p, this example satisfies the conditions of the junction
theorem but p = 2 and r 0 (the control is discontinuous at 0) so p r 2, an even
integer. This contradiction shows that the theorem is invalid in terms of p.

4. Problems nonlinear in the control. Singularity of first order necessary condi-
tions can also occur in problems nonlinear in the control, where the functions Lo(t, x) +
Ll(t, x)u and f0(t, x)+’l(t, x)u in (1.1) and (1.2) are replaced by analytic functions
L(t, x, u) and/(t, x, u) respectively. The minimum principle takes the same form as in

1, with the Hamiltonian defined by

(4.1) H(t, x, A, u)= A r/(t, x, u)+L(t, x, u).

An extremal arc is singular if

(i
(4,1) H(t, x, A, u) 0 along the arc, 1, 2, .

We note that if a problem is strictly nonlinear in the control then there exist
(t, x, A, u) such that (02/Ou2)H(t, x, A, u) 0 and therefore the intrinsic order of such a
problem must be zero. Hence only Definitions 2.6 (local order) and 2.9 are useful here.
The interpretations of these are the same as for the linear case. Theorems 2.7 and 2.10
remain true (see [3] and [1]).

An interesting alternative procedure is given by Robbins [2]. He shows that
when replacing the nonlinear Hamiltonian H(t,x,A,u) by H(t, x, A, u)=
H(t, x, A, u*(t)) + (u u*(t))Hu(t, x, A, u*(t)) the effect of a second order control varia-
tion along the extremal (x*(,), A *(. ), u*(. )) is the same; hence/- can be used in place
of H in the GLC test for optimality. Using H the degree of the extremal can be
determined as in the linear case but this is not intrinsic as H depends on the extremal;
moreover it may not correspond to the local order either as H may be an "atypical
case". It therefore seems better to use local order ab initio.

In 3 we noted that the validity of the junction condition, Theorem 3.1, depends
upon the linearity of (d2q/dt2q)Hu with respect to u (q as in the statement of Theorem
3.1). In nonlinear problems this will not hold and neither therefore will the junction
conditions.

5. Conclusions. Loosely worded definitions of order have led to some confusion
and incorrect claims about the nature of singular control problems. Several important
ones have been studied here and it has been shown that their authors intended one of
the basic interpretations (a third, different definition is not yet widely used).

The junction conditions of McDanell and Powers are valid only in terms of the
weaker form, i.e. intrinsic order, and it appears that there are problems for which no
junction condition can be given. The frequency of occurrence of such examples is of
interest since various authors have either implied they do not exist [5] or called them
atypical cases [2]. The example given is a two dimensional bilinear one, not reducible to
a lower dimensional canonical form and not having special boundary conditions. Until
at least the class of bilinear problems has been exhaustively studied, it might be
advisable to refrain from any claims involving genericity.

The first results in this direction are given in [8], where the time optimal behavior of
systems linear in the control is considered. The functions Co(x, t) and1(x, t) are required
to be C and the set of control systems is given a Whitney topology. For systems of
dimension 2 it is shown that singular extremals cannot be generic, i.e. given a system
which admits a singular extremal and any open neighborhood of that system, there is a
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system in this neighborhood which does not admit singular extremals. However,
singular extremals can be generic among systems of dimension 3 or greater. With regard
to order, when dim 3 only 1st order extremals can be generic. It is tempting to suppose
that with increasing dimension higher order extremals can be generic but this has not yet
been proved. Then, since the order used in [8] is the local variety, we might be able to
make useful statements regarding the "atypical cases."

The problems considered here have all involved a scalar control variable u(. ).
With vector controls u(. )= [ul(" ),’’’, u,,(. )]7, problems can be singular of rank r
for any 1 <=r<-rn, by which we mean, in the linear case, that (O/Oui)H =0, on the
extremal arc, for r indices i. Clearly.the arc can have different order with respect to each
control ui, whatever definitions of order are used, and this complicates application of the
optimality tests. The simplest case, when for each u the local and intrinsic orders
coincide, is dealt with in [2]. Junction conditions for vector control problems are not yet
available.

Acknowledgments. I wish to thank Dr. D. Bell for discussions which led to the
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presentation of this material.
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REPRESENTATION AND APPROXIMATION
OF NONCOOPERATIVE SEQUENTIAL GAMES*

WARD WHITT-

Abstract. Noncooperative sequential games, including the noncooperative stochastic game of Rogers
(1969) and Sobel (1971), are investigated in the monotone contraction operator framework of Denardo
(1967). Sufficient conditions are determined for the existence of equilibrium points in this setting. Techniques
for comparing and approximating dynamic programs previously developed by the author are then applied to
these sequential games, yielding conditions for the existence of e-equilibrium points.

1. Introduction and Summary. It is now widely recognized in economics and
several other fields that there is a need for mathematical models which can represent the
behavior of several competing decision makers interacting over time, possibly under
uncertainty. A natural model for this purpose is the sequential game, which combines
the dynamic properties of dynamic programming with the competitive properties of
game theory. The purpose of the present paper is to provide a general framework for
analyzing and approximating a large class of noncooperative sequential games. We
focus on noncooperative equilibrium points in the sense of Nash (1951), i.e., we look for
policies or strategies for all players with the property that no single player acting alone
can do better by changing. We consider the important questions of existence and
approximation. Approximation seems particularly worth studying because it opens the
way to computation and existence proofs for larger games.

The framework we suggest is the monotone contraction operator model intro-
duced by Denardo (1967). He showed that this model encompasses the two-person
zero-sum discounted stochastic game of Shapley (1953) plus many dynamic program-
ming models. In this paper, we consider N-person nonzero-sum noncooperative
sequential games in the same framework. The motivating special case is the
noncooperative discounted stochastic game studied by Rogers (1969), Sobel (1971),
Parthasarathy (1973), Himmelberg, Parthasarathy, Raghavan and Van Vleck (1976)
and Federgruen (1978). As with Denardo (1967), the generality and abstraction here is
useful to identify the essential structure. The contraction operator framework is also
very natural because it emphasizes the reduction of the initial dynamic sequential game
to a static one-period game. The final payoff to all players associated with a specification
of all strategies is the unique fixed point of the contraction operator; the static game
involves the choice of the fixed point. However, the sequential game is not immediately
covered by the existing theory of static one-period noncooperative games because, as
will be developed, the payoff (fixed-point) is a function of the state.

The contraction assumption means that the criterion for evaluating a payoff stream
is discounted present value. However, it is well known that in many instances the
average cost criterion can be reduced to a discounting criterion, cf. p. 149 of Ross
(1970). Moreover, as in Section 5 of Denardo (1967), we use the N-stage contraction
assumption, which covers a larger class of models, including many finite-stage models,
cf. Whitt (1977).

A primary purpose of this paper is to apply to noncooperative sequential games
the approximation techniques developed for dynamic programs and two-person zero-
sum stochastic games in Whitt (1978). The idea is to replace the original state and action
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spaces with smaller sets and define a new transition and reward structure to approxi-
mate the original. In this way, we show that the extension of an el-equilibrium policy
vector in the smaller model is an e2-equilibrium policy vector in the original model,
where e2 is a function of e and an appropriate measure of oscillation, cf. Theorem 4.2.
The approximation results are in turn used to provide conditions under which a
noncooperative sequential game has an e-equilibrium point for each e >0, cf.
Theorem 5.1.

As special cases, we obtain new results for stochastic games. Of particular interest
is the application of the approximation procedure to provide conditions for the
existence of e-equilibrium points for all e >0 in the noncooperative discounted
stochastic game when the state space is uncountable, cf. Theorem 6.4. The only other
results for uncountable state space seem to be in Himmelberg, Parthasarathy,
Raghavan and Van Vleck (1976). We also suggest what appears to be a promising
procedure for finding e-equilibrium points in many large noncooperative stochastic
games, namely combining the approximation procedure here with an algorithm for
finding approximate fixed-points of a continuous function mapping a subset of R into
itself, cf. Remark (3) at the end of 6.

A good indication of possible economic applications can be obtained by looking at
the specific stochastic game in Kirman and Sobel (1974). As noted by Federgruen
(1978), earlier work by Sobel (1973) on discounted stochastic games with uncountable
state space, which is applied in Kirman and Sobel (1974), is not valid. Our results can be
applied to obtain conditions for the existence of e-equilibria in the game studied by
Kirman and Sobel (1974).

We now briefly indicate how this paper is organized. We begin in 2 by defining fi la
Denardo (1967), noncooperative monotone contraction operator games. Following
van Nunen (1976), Wessels (1977) and others, we allow for unbounded rewards. As in
5 of Denardo (1967), we use the N-stage contraction assumption. In 3 we apply the

Glicksberg (1952)-Fan (1952) generalization of the Kakutani fixed-point theorem to
obtain sufficient conditions for the existence of equilibrium points. In 4 we show how
two sequential games can be compared, which provides the basis for approximations. In
5 the approximation scheme is applied to provide conditions for the existence of

e-equilibrium points for each e >0. Finally, the special case of a noncooperative
stochastic game is investigated in 6.

2. Noncooperative monotone contraction operator games. Our model of a

noncooperative sequential game is a direct extension of Denardo (1967), with the
representation of a noncooperative discounted stochastic game being very similar to the
representation of Shapley’s (1953) two-person zero-sum stochastic game in Example 2
of 8 in Denardo (1967). Let the state space S and the player space I be nonempty sets.
For each player I and each state s S, let the action space Ai(s) be a nonempty set.
To allow for randomized strategies, Ai(s) is often (B(s)), i.e., the set of all probability
measures on an underlying action space Bi(s), but we do not stipulate this yet. Let the
space of all possible actions for all players in state s be the product space A(s)=
XA(s). For each I, let the policy spaceforplayeri be A XsAi(s). An element 6
in i is called a stationary policy for player because it represents the policy that takes
action 6i(s) every time the system is in state s. Let A =XgzA represent the space of
policies for all players. Throughout this paper, we consider only stationary policies, but
the symmetry argument in 7 of Denardo (1967) can be used to show that no one player
acting alone can do better by employing a more general history-remembering policy.
Hence, we show that there exist equilibrium points or e-equilibrium points consisting of
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stationary policies within the class of all history-remembering policies. Of course, we do
not exclude existence of other equilibrium points and e-equilibrium points consisting of
nonstationary policies. While h and Ai contain only stationary policies, more general
policies such as history-remembering policies can be included in this scheme by
enlarging the state space. For example, the stage should usually be included as part of
the state description in representations of finite-stage sequential games via monotone
contraction operator models, cf. Whitt (1977).

Let the space V of potential return functions be a subset of R st. In order to allow
for unbounded rewards, let a :S (0, oo) and fl :S -> R be two functions. (The common
choice of a and fl is a(s) 1 and fl(s) 0 for all s S, which yields bounded rewards.)
For any Vl, v2 R st, let

Ilvll =sup {]l(S, i)l:s s, I}

(1) and

d(Vl, v2) II(v,- v2)ll,

where we regard a(s) as a function of both s and which is independent of i. Let the
space of potential return functions be

(2) V {v e nstld(v, fl) < o}.

it is easy to see that (V, d) is a complete metric space.
The basic ingredient in the model specification is the local income function

h(s, i, a, v), which assigns a real number to each quadruple (s, i, a, v) with s e S, e/,
a A(s) and v V. The number h (s, i, a, v) represents the return to player beginning
in state s when player j uses action aj for all/" I and all future returns are described by
the function v in V. Foreach 6 h,let(Hv)(s, i) h(s, i, 3(s), v). Wemake the following
basic boundedness (B), monotonicity (M) and N-stage contraction (NC) assumptions
about the collection of operators {H, 6 e A}:

(B) There exist constants K1 andK2 such thatl]a(Hv -fl)ll<-K1 + Kzllce (v -/)ll
for all 6 A and v V.

(M) If Vx v2 in V, i.e., if Vl(S, i) <_- v2(s, i) for all s S and /, then Hvx <-_ Hv2
for all 6 e A.

(NC) There exists a positive integer N and nonnegative constants rn and c,
0 <_- c < 1, such that

d(Hv 1, 88/22) m d (v ,/92)

and

d (HNvl, HNv2) <:-- c d(vl, v2)

for all 6 6 A and 01, /)2 W where H is the N-fold iterate of Hs.
Obviously (B) implies that the range of H is contained in V. Property (NC) is the

N-stage contraction assumption, cf. 5 of Denardo (1967). The ordinary contraction
assumption occurs when N- 1. The contraction modulus c often arises as a discount
factor. Properties (M) and (NC) imply that each operatorH has a unique fixed point v
in V which we call the return function associated with policy vector 8. Note that the
monotone contraction operator model reduces a sequential game to a one-stage game;
the set of strategies available to player is Ai and the return to player/ from a
specification of strategies by all players, i.e., 6, is the fixed point v(., i). This differs
from the usual static noncooperative game, however, because the return to each player
is not a real number, but a function of the state.
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A slight modification of Theorem 4 in Denardo (1967) yields

(3) d(v,v)<-_(l+m+...+mU-1)(1-c)-Xd(Hv,v)

for all 6 A and v V. The N-stage contraction assumption covers many N-stage
sequential games with c- 0, cf. Whitt (1977).

It should be noted that it is often possible to transform an N-stage contraction into
a 1-stage contraction by modifying the bounding function a. A transformation for
Markov programs, which also applies to the stochastic games in 6 here, was con-
structed in 8 of van Nunen (1976). However, it appears that such a transformation is
not always possible for the more general monotone contraction operator models here.
Moreover, even when such a transformation is possible, the new distance d is different
from the old one and may be difficult to compute. Hence, we keep the N-stage
contraction assumption.

For any 6 A and Y A, let [6 -, y] represent the policy vector 6’ in A with 6 6i
for/" and 6 y. Let f represent the optimal return function given that the other
players are using 6-; for each i, defined by

f(s, i) sup {.)[--1,,i] (S, i): Yi Ai}.

Let F be the associated maximal return operator, defined by

(F,v)(s, i) sup {(H[,-l,vi]v)(s, i): yi Ai}

for each s S, iL 6A and v V.
Note that property (B) insures that the range of F, is in V for each 6 A. A slight

modification of Theorem 4 in Denardo (1967) shows that f, is the unique fixed point of
F,. It is natural to define a disequilibrium function rl A S I --> R as r/,(s, i)
f,(s, i)-v,(s, i). Call a policy 6 an e-equilibrium point(e-EP) if rl,(s, i)<-_ e/a(s) for all
and s, i.e., if d (f,, v)<_-e. Call a policy 6 an equilibrium point (EP) if it is an e-EP for
E--0o

3. Existence of equilibria. The existence of equilibrium points in noncooperative
sequential games can be established by applying classical fixed point theorems, follow-
ing the original line of reasoning used by Nash .(1951) to treat static games. This
approach has been applied to stochastic games by Rogers (1969), Sobel (1971),
Parthasarathy (1973), Himmelberg et al. (1976) and Federgruen (1978). In this paper,
we indicate how to apply the Kakutani fixed-point theorem for point-to-set functions
as generalized by Glicksberg (1952) and Fan (1952) to the monotone contraction
operator games. An alternate approach would be to apply the Brouwer fixed point
theorem as generalized by Schauder and Tychonoff, cf. Theorem 1 of Sobel (1971).

Let 2 v represent the set of all nonempty closed subsets of a Hausdorff topological
space Y. Let X be a Hausdorff topological space. A set-valued function X-> 2v is
called upper-semicontinuous (u.s.c.) if y (x) for each x X, net {x,/" J} in X and
net {yi, ] J} in Y such that xi x, yi y and yi d(xi) for each ]. (Since X and Y need
not be first countable, we use nets instead of sequences, cf. Chapter X of Dugundji
(1966).)

THEOREM 3.1 (Kakutani, Glicksberg and Fan). IfXis a convex compact subset ofa
Hausdorff locally convex topological vector space (LCTVS) and d X 2x is convex-
valued and u.s.c., then x (x) for some x X.

For our application, we want X A and 4’,, where , (6) X$(6) and

(4) $(6)i={yiAi:f(s,i)<--vt-,.v,(s,i)+e/a(s) for alls}.
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The rest of this section is devoted to providing conditions on the monotone contraction
operator game in order for (A, 0) to satisfy the conditions of Theorem 3.1. The obvious
modification (to account for the metric d in (2)) of Corollary 1 together with Theorem 4
of Denardo (1967) shows that (6) is nonempty for each e >0. Throughout this
paper, let A =XitAi and Ai =XssAi(s) be given the product topology, cf. p 98 of
Dugandji (1966).

THEOREM 3.2. There exists an EP i]
(i) Ai(s) is a convex compact subset o[ a LCTVS for each I and s S,
(ii) h (s, i, a, v) is a concave function o] ai for each s, i, a, v, and
(iii) v(s, i) and [(s, i) are continuous ]unctions o[ 6 or each s S and L
Pro@ Since the properties of convexity, Hausdorff, compactness, TVS and LCTVS

are preserved under arbitrary products, cf. pp. 138 and 224 of Dugundji (1966) and pp.
19 and 52 of Schaefer (1966), the product spaces A and A are convex compact subsets
of a LCTVS. Condition (ii) implies that 4’ is convex-valued. Conditions (i) and (ii) plus
Corollary 2 of Denardo (1967) show that (6)i is nonempty for e 0 as well as e >0.
To see that is u.s.c., suppose {/, ] J} and {6},/" J} are nets in A with 6/ 6, 6 6’
and 6 6 (8/) for each / J. Let t/i and 6 be the ith coordinate in A of /and 6 in A.
Apply the triangle inequality to obtain

]vta-’,il (s, i)-fa(s, i)[ <-- [vta-’.a.; (s, i)--1)[,57i,,5[i](S, i)l

+lvta7,./,l(s, i)-f,(s, i)l + [f,(s, i)-[a(s, i)l

for each s and i. The first and third term converge to zero by condition (iii) and the
second term is less than or equal to e for each / because 6} (6/) for each/’. Hence,
6’ (6), so is u.s.c, and the conditions of Theorem 3.1 are satisfied with e =0.

LEMMA 3.1. If
(i) Ai(s) is a compact metric space for each I and s S,
(ii) S is countable, and
(iii) v(s, i) is a continuous function of 6 for each s S and I, then f(s, i) is a

continuous function of 6 for each s and i.

Proof. Suppose {3/, ] J} is a net in A with 6/- 3. Let s and be given. For any
el, e2 > 0 there is a Yl G Ai and a ]0 such that

fa(s, i)<= vt-’, v, (s, i)+ el

_-< v7,.v, (s, i) + e + e2

--</, (s, i)+ el + e

for j jo

for j => jo.

Moreover, there is a net {y/i,/" J} in Ai such that

so that

f,(s, i)<= v[7’,v.](s, i)+el for all/,

lim sup [(s, i) =<lim sup vt7,.v;,l (s, i)+ e.
i’J

Choose a countable totally ordered subset J’ of the directed set J so that the
lim sup is attained on the left. Then, using the fact that A is compact metric space, by
virtue of conditions (i) and (ii), choose a convergent subsequence {y/} of {y/i,/ J’}
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with limit ")/i" Hence

lim sup f(s, i) _<-lim sup vt7,v,l (s, i)+ el
iJ

<-_ v-,. ,, (s, i) + e

<=fa(s,i)+el.

LZMMA 3.2. IfHv - Visa continuousfunction of8 for each v W, where Wis a
subset of Vcontaining vfor all 8 , then , A - Vis a continuousfunction of 8, so that
v (s, i) A -, R is a continuous function of 8 for each s S and L

Proof. By (3),

d(v, va)<= (1 + m +. + raN-l)(1 --C)-1 d(Hv, v),

where d(Hv, v d(Hv, Hv - 0 as 8 - 8.
The continuity condition in Lemma 3.2 is more likely to hold if W is a subset of V

with convenient properties. For example, if Hv is continuous (concave, monotone) for
each 8 and each continuous (concave, monotone) v in V, then H maps the closed
subset of all continuous (concave, monotone) functions in V into itself, so the fixed
point v is continuous (concave, monotone). However, even if W has convenient
properties, the continuity condition in Lemma 3.2 is quite strong because it requires

(5) d(H.v, Hv) sup la(s)(h(s, i, 6(s), v)- h(s, i, 6(s), v))l 0
sen
iI

whenever 6, 6. Since A has the product topology, the metric convergence in (5) is
difficult to achieve unless S and I are finite. More useful conditions are contained in

LFMMA 3.3. Suppose {6. f J} is a net in A converging to 6. If
(i) h(s, i, 6i(s), vi) h(s, i, 8(s), v) whenevervi(s, i) v(s, i) foralls 6S, 6Iandvi,

v V; and
(ii) supijd(Hvo, v)O as k oo for some Voe V; then v,(s, i) v(s, i).
Proof. By (i), (H,vo)(S, i) (HVo)(S, i) for all s, i.
By (i) again and mathematical induction,

(H H-1
a,v0)(s, i) [Ha,( a, Vo)](s, i)-[Ha(Ha-XVo)](s, i)=(Havo)(S, i)

as/’- oo for each k>=l. As a consequence of this and (ii), va(s, i) va(s, i).
The standard way to make convex and k (s, i, a, v) concave in a is to introduce

the mixed extension, i.e., let A(s) (B(s)), the set of all probability measures on an
underlying action space B(s), and let the local income function applied to probability
measures be defined via expectation"

(6) h (s, i, a, v)= I h (s, i, b, v) d/x,(b),

where , is the product probability measure on the product or-field of XizB(s) with
one-dimensional marginal probability distributions a and the integral is an upper
integral if h(s, i, b, v) is not measurable in b, cf. Example 3 in 8 of Denardo (1967).

It is well known that if Bi(s) is a topological space and (B(s)) is endowed with the
topology of weak convergence, then (B(s)) tends to inherit the topological properties
of B(s). For completely regular spaces, the weak convergence topology is naturally
characterized by the continuity of fdP in P for each bounded continuous real-valued f.
The basic inheritance properties here can be found in 11.6 of Parthasarathy (1967),
Varadarajan (1958) and footnote 10 in Fan (1952). Call a measure/x regular [Radon] if
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/z(A) =sup {/x(C) C
_
A} for all measurable subsets A, where the supremum is over

all closed [compact] subsets. Obviously regular and Radon are equivalent in compact
Hausdorff spaces. The LCTVS that appears below is the space of finite signed measures.

LEMMA 3.4. Let Ai(s)= (Bi(s)) with the topology of weak convergence.
(a) IfBi(s) is a separable [compact] metric space, then Ai(s) is a separable [compact]

metrizable convex subset of a LCTVS.
(b) If Bi(s) is a compact Hausdorff space, then the subset of regular probability

measures in (Bi(s)) is a compact convex subset of a LCTVS.
There is still a major stumbling block--the integral in (6). There is no problem if

the set I is countable and the set Bi(s) has a countable base (i.e., is second countable,
which is true if Bi(s) is a separable metric space); then the product r-field on XixB(s)
will coincide with the Borel o--field with respect to the product topology. However, if
either I is uncountable or if B(s) does not have a countable base, then there can be
complications. Henceforth, we make the assumptions to avoid the complications. We
can combine this observation with Theorem 3.2 and Lemmas 3.1-3.4 to obtain the
following result for the mixed extension.

THEOREM 3.3. 1]:
(i) S and I are countable,
(ii) Ai(s)= (Bi(S)) with the topology of weak convergence, where Bi(s) is a

compact metric space,
(iii) h(s, i, b,, vn) h(s, i, b, v) whenever b,i bi and v,(s, i) v(s, i) for each s S

and iL
(iv) h(s, i, a, v) h(s, i, b, v) d/xa(b), where [d,a is the product measure on XixBi(s)

with marginal measures ai Ai(s),
(v) sup, d(Hk-v8, 0, v.) 0 as k c for some Vo in Vand any convergent sequence

{6,} in A,
then there exists an ;UP, i.e., there exists 6" A such that 6" 0(6").

Proof. By conditions (i) and (ii) and Lemma 3.4(a), A is a convex compact
metrizable subset of a LCTVS. By (i) and (ii), the Borel o--field on X/zB(s) with the
product topology coincides with the product o--field. By (iii), the integral in (iv) is well
defined. By (iii) and the almost-surely convergent representation of weak convergence,
cf. Dudley (1968), h(s, i, 6,(s), v,) h(s, i, 6(s), v) whenever 6,(s) 6(s) and v,(s, i)
v(s, i) for each (s, i). This and (v) plus Lemma 3.3 imply that v(s, i) is continuous in 6
for each (s, i). Lemma 3.1 implies thatf (s, i) is continuous in 6 for each (s, i). By (iv), 6o
is convex-valued. Hence, all conditions of Theorem 3.2 are satisfied.

Remark. The difficult condition in Theorem 3.3 is (iii). Since the convergence
b, b and v, - v is pointwise in s and i, in order to satisfy (iii) it will often be convenient
to have I and/or $ finite.

4. Comparing sequ.en.tial, games. Following Whitt (1978), let (S, L {Ai(s), s S,
iI}, h, a, , c) and (S, I, {A(s), s , /’},/, c,/, ) be two sequential games as
defined in 2. In order to compare these games, we require that several comparison
functions be defined. These comparison functions arise naturally in deliberate approx-
imations, which can be constructed.by selecting partitions of subsets of the sets S, 1 and
Ai(s) for each I and s 6 S, with one point selected in each partition subset, cf. Section
4 of Whitt (1978). In that setting the mappings below correspond to projections and
extensions, which is the motivation for the notation. The comparison functions are:

(i) a mapping p of S onto S;
(ii) a one-to-one mapping p of I onto ;
(iii) a mapping p of Ai(s) onto Ap(i)(p(s)) for each e I and s e S;
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(iv) a mapping e of into S such that p(e[g])= g for each g ;
(v) a mapping es.i of p(i(p(s)) into Ai(s) such that p(es.i[ti])=ff for each

p(i)(p(s)), I and s S.
(vi) e" VRst with e()(s, i)=6(p(s),.p(i)) for each SS and iI;
(vii) p" V I7" with p(v)(g, i’)= v(e(g), e(i)) for each g g and ’/;
(viii) e’/I with p[e(i’)]= ?for all ’/;
(ix) e" o(i) A, with e(g()(s) es.(6"([p(s)]) for each s S and I, and
(x) p" A; z( with p(6i)(g) p(6i[e(g)]) for each g g and ’Let e and p also map product spaces onto product spa.ces in the obvious way, e.g.,

e"
, A with e(g), e(g,) and p’XzA,(s) X(iAp((p.(s)).with p({a,(.s)}).(

p(a(s)) for ai(s) A(s) for each I and s S. Note that e(8) A for each 8 A.
Assume that e() V for each V. Note that this is automatic if a(s)<--(p(s))

and (s)-fl(p(s)) 0 for all s S, but might fail in general.
We expect interest to be focused on approximating the action spaces Ai(s), because

these spaces--usually being sets of probability measures--are often large. Thus the
map p’ S S might often be one-to-one as is the map p’ ! L but we do not require it.
The "distance" between these models can be expressed in terms of the measure of
oscillation

K(zT) sup d(He(), e(H,())
(7)

sup la(s)[h(s, i, a(s), e())-(p(s), p(i), p[8(s)], tT)] I.
sS

iI

Obviously p" I I should usually be one-to-one, as already assumed, in order for K(7)
to have any chance of being small, but the following results hold even if p" ! 1 were
not required to be one-to-one.

THEOREM 4.1. For any g ,
d(e(6g), Ve( g) <--_ (1 + m +... + mN-)(1-- C)-aK(g).

Proof. Just as in Theorem 3.2 of Whitt (1978), substitute e(6) for 6 and tg for t7 in
(7) to obtain

d(He(ge(g), e(g)) <=K(g).

Finally, apply formula (3) r.ecalling that we have assumed that e(tT) V for each V.
THZORZM 4.2. If is an e-EP, then e(g) is an (l+m+... +m-1)

(1 -c)-(e + 2K())-EP.
Proof. As in the proof of Theorem 3.1 of Whitt (1978),

a(s)[H[e(g-’..,] e(g)](s, i) a(s)h(s, i, [e(g)-, /](s), e (tTg))

<-a(s)l(p(s), p(i), p([e(g)-g, ,](s)), g) + K(Tg)

<-a(s)(p(s), p(i), p([e(g)-’, r](s)),/rg)+ K(tg)
<-_a(s)fg(p(s), p(i))+K(g)

<-_a(s)e(g)(s, i)+(g(g)+ e)

for each s $, , and L As a consequence of properties (M) and (NC),
Na(s)[Hte(g-’.v,3 e(g)](s, i)

<-_a(s) e(g)(s, i)+(1 +m +... +m-)(K(g)+e)
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and, by induction,
Nk e(gg)](s, i)

<=a(s) e(gg)(s, i)+(1 +c +... + ck-1)(1 +m +... +mr-)(K(g)+e)
for all k -> 1. Since d(Hv, v) 0 as k o,

a(s)Vte(g)-’.v,](s, i)<-a(s) e(g)(s, i)+ (1-c)-(1 +m +... +mn-)(K(g)+e)
for all "Yi E Ai, SO that

a(S)fe)(s, i)<-a(s)e(g)(s, i) + (1-c)-(1 + m +.,. + rnn-1)(K(g)+ e).

Apply Theorem 4.1 to obtain

a(S)fe<g)(s, i)<-a(S)Ve<g)(s, i) + (1-c)-(1 + m +... + mZV-)(2K(g)+ e)

or

d(fe<g), Ve<g)) <---- (1--C)-(1 + m +.. + rnr-)(2K(g)+ e).

5. Existence of e-equilibria. We now combine Theorems 3.3 and 4.2 to obtain
sufficient conditions for the existence of e-EP’s in sequential games with uncountable
state spaces and noncompact action spaces. The e-EPs obtained are also mixtures of
only finitely many actions for each player in each state. Throughout this section, let m
represent several different metrics and let the set ! be countable. For any subset C in a
metric space (B, m), let

C {b B" re(b, b’) < e for some b’ C}.

THEOREM 5.1. If
(i) S is a separable metric space;
(ii) /3(s)= 0 and a(s) is bounded over any finite sphere {s} in S;

(iii) for each (i, s), Ai(s) (Bi(s)) with the topology of weak convergence, where
Bi(s) is a subset with compact closure in a metric space B;

(iv) for each i, the set-valuedfunction mapping s into B(s) is uniformly continuous:
for each e > 0 there is an ez > 0 such that Bi(s1) ni(s2)1 whenever m(s, s2) --<

(v) for each (i, s), h(s, i, a, v) h(s, i, b, v) d/x,(b), where Ixa is the product
measure on the product tr-field .on X1B(s) with marginal measures a A(s) and the
integral is an upper integral if h(s, i, b, v) is not measurable in b;

(vi) for any e > O, there is an e2 > 0 such that

sup I(s’)[h(s’, i, b’, v)-h(s", i, b", v)][
vV
iI

if m(s’ s") < E2 and m(bi, b’[) < E2 for all i"
(vii) h(s, i, b, v.)--> h(s, i, b, v) whenever b.i--> bi and v.(s, i)--> v(s, i) for all s, i;

H(viii) sup.d( .Vo, v. --> O for sorne Vo in Vand any convergentsequence {6.} in A;
then, for any e > O, them exists an e-EP 6" with ’ (s) being a probability measure on a

finite subset of Bi(s) for each s and i.

Proof. We construct a sequence of approximate models

according to the scheme in 4, each of which satisfies the conditions of Theorem 3.3.
Let I, I for each n _--> 1. Let {Sk} be a countable dense subset of S, which exists by virtue



42 WARD WHITT

of condition (i). For each n => 1, form a countable partition of subsets of S by setting

Sn {s S re(s, s) n -1}
and

k-1

S,, ={sS’m(s,s,)<=n s U Sni}, k >-_2.
/’=1

For each n >= 1, let gn be obtained by selecting one point Snk from each nonempty subset
in the partition {S,k }. (Henceforth, omit all empty partition subsets.) Select the point
so that o(Sn,)>=a(s)/2 for all s Sn,. This can be done by condition (ii).

For each n -> 1, k => 1 and s Snk, form finite partitions {Bnkq(S), 1 <=j <=Knk} of
nonempty measurable subsets of Bi(s) of common cardinality Knk such that m(b, b2) <=
u(n) if b Bnkil(S1) and b2 Bnkil(S2), where Sl, s2 Snk and u(n) 0 as n-. These
properties can be satisfied because of conditions (iii) and (iv).

For each eL n -> 1, k -> 1 and s Snk, let Bni(S) be a finite subset of Bi(s) obtained
by selecting one point from each partition subset Bnk/.(s), 1 <=f <----Knk. Let nk(S)
t(Bni(S)) for each 6/, s n and n _>- 1.

We now define the five basic comparison functions. Let pn" ! In be defined by
pn(i) i. Let p." S- S. be defined by pn(s) Snk if S, Sn Sn and sn Sn. This
obviously yields m(s,p.(s))<=n- for all s and n. Let p.’Ai(s)n...(g)(pn(s)) be
defined by

pn(ai(s))({b}) ai(s)(Bnkii(s)),

where bBn...(g)(p.(s)) and b.Bn..(/.(p.(s)), which requires that sSn. This
obviously means that pn(a(s)) is the probability measure in n...(o(Pn(S)) assigning
mass to each point in Bn,p,(i)(pn(s)) equal to the mass the probability measure ai(s)
assigns to the correspondin.g partition subset Bnkii(S) in B(s).

Let the mapping en" Sn $ be defined in the obvious way: en(gn)= gn. Let the
mappings ens" JXn,o,,(i)(pn(S)) Ai(s) be defined by setting

en(dn,p.(o(p,, (s)))({b}) dn...((pn (s))({b’})

for b E Bni(S), b G Bnkij(S) and b’ Bnkp,,(i)i(p,(S)). This.implies that en(tnp.(i))(S) is a
probability measure on a finite set for each i, s, n and 8hi s

Let the approximate local income functions be defined as

h,, (Yn, /*,, fin, tTn) h(n, i’,, fin, en(tTn))

for all n, gn n, i2 /, n. n.(n) and tn Qn, just as in (4.1) of Whitt (1978). Then,
b, condition (vi), the measure of oscillation K, (tT,) in (7) is

Kn(tTn) sup Ic(s)[h(s, i, 6(s), en(n))-h(pn(s), i, pn[6(s)],
sS
iI

_<-sup la(s’)[h(s’, i, b’, v)-h(s", i, b", v)][
where the second supremum is over all v V, all s’, e S with m ts,s )=n
biBi(s’) and b’i6Bi(s") with m(bi, b’)<=u(n)O as noo and all iI. Hence,
condition (vi) implies that supg..K(g.)O as n -oo.

The construction above plus conditions (vii) and (viii) imply that the conditions
in Theorem 3.2 are satisfied in each approximate model, so there exists an EP in each
approximate model. Theorem 4.2 then implies that, for each e >0, there is an no Such
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that the extension of each EP in the nth approximate model is an e-EP in the original
model for all n ->_ no.

Remarks. (1) Note that conditions (vii) and (viii) are only applied to establish the
existence of an EP in each approximate model. If the existence is already known, these
conditions can be omitted. The conditions could also be stated for each approximate
model. For example, if I is finite, then (vi) can be replaced with h(s, i, b, vn)-
h(s, i, b, v) whenever vn(s, i) v(s, i).

(2) If S is a subset with compact closure in a metric space, then n can be finite for
each n.

6. Stochastic games. We now consider the special case of a noncooperative
stochastic game. As before, let the set I of players be finite or countably infinite. Let the
sets S and Bi(s) be separable metric spaces endowed with their Borel o--fields. Let Ai(s)
be the space (Bi(s)) with the topology of weak convergence. A stochastic game is
obtained by letting the local income function be

(8) h(s, i, b, v)= r(s, i, b)+ Is v(x, i)q(dxls, b),

where r(s, i, b) is a measurable real-valued function of s S, I and bXiBi(s),
q(CIs, b) is a subprobability measure on S for each s eS and bXixBi(s) and a
measurable function of (s, b) for each measurable subset C, and the integral in (8) is an
abstract Lebesgue integral if v is measurable and an upper integral otherwise. (We
assume the integral is well defined, i.e., the integral of Iv] is finite.)

Also let

and
r(s, i) r(s, i, 6(s)) I r(s, i, b)

q(Cls) q(Cls, 8(s))= Jq(Cls, b)

where tx(s) is the probability measure on the product space XixBi(s) with marginal
measures 6i(s) for each i.

Let the associated return operator Ha be defined by

(Hav)(s, i)= h(s, i, 8(s), v)

I h (s, i, b, v) dtxa(s)(b)

r(s, i)+ Is v(x, i)q(dxls).

Let the space (V, d) of potential return functions be as in (1) and (2). Let (qw)(s)=
w(x)q(dxls) for any function w for which the integral is defined. Following van

Nunen (1976), with the obvious modification to include N-stage contractions, we make
the following assumptions"

(9) [la (r (1 c)3)[[ _-< M1,

(1 O) II (qfl cfl)[I .----< M2,

IIqa-’l,-suplc(s) I [1/(x)]q(dxls)l <--_m,
()

Ilaqa-l[[ C < 1
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for all 6 A, where qV is the N-step transition kernel associated with qa, defined as usual
by

q(CIs) Is q-’ (CIs’)qa(ds’[s)"

Conditions under which (11) hold with N 1 are discussed by van Hee and Wessels
(1977). If a(s)= 1 for all s, then (11) holds with N= 1 if qa(SIs)<=c, which arises
naturally if a discount factor c has been incorporated into the probability transition
function. As a straightforward extension of Lemma 3.2.2 of van Nunen (1976), we have

THEOREM 6.1. Under (9)-(11), the return operators Ha, 8 A, satisfy properties (B),
(M) and. (NC). Moreover, H maps Vo into itself, where

(12) Vo={V V’lla(v-fl)ll<=(l+m+ +mN-)(1-c)-(M+M2)}.

and

Proof. (B) Note that

(M) This is straightforward.
(NC) For any Vl, V2 V,

d(Hav,, Have) IIoa(v,- v)ll

II,a,-’ll" IIo (v- v)ll md(v, v:)

d(Hv1, Hv2) IIq(v, )11
][q-’ll" II (v v)ll cd(v, v).

(Vo) First note that

Ilcqwll <--Ilaqo-’ll. [[awII
-< II,q(q-’o-’)ll" II,wll
-< II,,q,-’ll" II,q-’,-’ll" IIowll<- m"ll,wll.

For any v e V,

a(HYv fl) a[r + qara + q2ra +"" + q-lra + qYv ]

a[r -(1 c)]+ aqa[ra -(1 c)/3]

+... +aq-[ra--(1--c)B]+aqN [v--fl]

+ a [qafl c + aqa[qafl cfl

+’’" + aqN -’ [qa C],
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so that

[la(Hv fl)ll =< (1 + m +... + mN-1)(M1 +M2)q-I}aqNc-lll. Ilc (v
(l+m +... + mN-1)(M1

which implies that

Ila(Hv -/3)ll <= (1 + m +... + mN-1)(1--C)-I(M1 +M2)

[[c (v- )[l (1 + m +... + mN-1)(1--c)-l(M1 +M2).
We now determine sufficient conditions for the existence of an EP by applying

Theorem 3.3.
THEOREM 6.2. The stochastic game defined above has an EP if

(i) S is countable;
(ii) Bg(s) is a compact metric space for each and s;
(iii) r(s, i, b) and q({s’}ls, b) are continuous functions of b in XiBi(s) ]’or each s, s’

and i; and
(iv) for any e > 0 and convergent sequence {b,}, there exists a finite subset C of S

such that

E ([fl(S’)[ +a-l(s’))q({s’}[S, b,) < e ]:or all n.
s’S-C

Remarks. (1) Condition (iv) follows from condition (iii) if/3(s) 0 and a(s)= 1
because the convergence q({s’}[s, bn) q({s’}[s, b) implies uniform tightness, cf. p. 47 of
Parthasarathy (1967).

(2) Conditions (iii) and (iv) are both satisfied automatically if I is finite and Bl(S) is
countable and discrete for each and s.

(3) Theorem 6.2 reduces to Theorem 1 of Federgruen (1976) when N= 1,
/3(s)=0, c(s)= 1 and I is finitemwhich in turn reduces to Theorem 1 of Sobel
(1971)uwhen, in addition, S and Bi(s) for each and s are finite.

Proof. We show that the five conditions of Theorem 3.3 are satisfied. By direct
assumption, conditions (i), (ii) and (iv) hold here. By condition (iii) and (iv) here

h(s, i, bn, Vn)-- r(s, i, bn)+ E v,(s’, i)q({s’}ls, b,)
s’S

r(s, i, b)+ Y. v(s’, i)q({s’}ls, b)= h(s, i, b, v),
s’S

which is condition (iii) of Theorem 3.3. Finally, condition (v) holds because, for any
A,

d(Hkvo, v,) d(Hkvo, HTkv,)
<- ckd(vo, v)

_--< 2ck(1 + m +.. + mN-)(1--C)-I(M1 +M2).
We now consider comparisons between the stochastic game model (S, I, {B(s),

e I, s e S}, h, a,/3, c) and a "smaller" stochastic game model (g,/{/g(s), e/ s e },/,, /, ?) which are both assumed to satisfy (8)-(11). Assume that the comparison
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functions in 4 have been defined. Let S’, /i(s) for each i/" and s S’, and/" be
countable sets. Assume that

Sn p-l(gn) = {S S p(s) n},

and

s.(s) p-(t;) S(s)

{b c B(s)’p(i) p(s) , p(b) }, F, c (),

are measurable subsets for each n, and s.
As in 4, assume that e(tT) V for each t V. In this setting, the comparison

results in 4 can be expressed in terms of the measures of oscillation

sup
sS
iI

beXBi (s)
iI

[a(s)[r(s, i, b)-Y(p(s), p(i), p(b))]l

Kq(v) sup
sS

bXBi(s)
iI

(s) 2 ([zT(s.)[) q(Sls, b)-4({s,,}[p(s), p(b))
n=l

and Kq Kq(tT*), where

(14) t*(s,,)=sup {fi(s.)+,;-’(s.)(1 + m +... + mN-1)(1--)-l(/l +/2)},
sSn

n>=l.

THEOREM 6.3. For any gc, K(g)<-__Kr+Kq(gg)<=Kr+Kq.
Proof. By (7) and the triangle inequality,

K(Sg) sup la(s)[h(s, i, 8(s), e(g))- l(p(s), p(i),p[6(s)], tTg)]l
sS
iI

_-<sup Io(s)[r(s, i, 6(s))-?(p(s), p(i), p[8(s)])]l
sS

iI

+sup a(s) (lg(sn)l)[q(S,,[s, 3(s))-4({s,,}[p(s), p[,(s)])[
sS n=l

<= gr + K. e, <= gr + I,:,,

where the last step follows because ItTg(sn)l--< tT*(sn) for all n by (12).
Remarks. When a(s)= c(p[s])= 1 and fl(s)= fl(p[s])=0 for all s, Theorem 6.3

reduces to Theorem 6.1(a) of Whitt (197.8). For further refinements, see 6 of Whitt
(1978).
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We now present sufficient conditions for the stochastic game to have an e-EP for
each e >0. For simplicity, we assume I is finite and a(s)= 1 and/3(s) 0 for all s.

THEOREM 6.4. The stochastic game has an e-EP for each e >0 if
(i) I is finite;

(ii) Bi(s) is a subset with compact closure in a separable metric space for each and
s;

(iii) the point-to-set]unction mapping s into Bi(s) is uniformly continuous ]or each i:

for each e >0, there exists an ez >0 such that Oi(s1)
_

Oi(s2)1 ifm (sl, sz) < 6.2;

(iv) a(s)= 1 and 3(s)=0 for all s;
(v) r(s, i, b) and q(CIs, b) are uniformly continuous in s and b, uniformly in C.
Proof. Construct a sequence of approximating models as in the proof of Theorem

5.1. Note that conditions (i)-(v) of Theorem 5.1 have been assumed again here and
condition (vi) of Theorem 5.1 holds because of conditions (iv) and (v) here. For this
purpose, it suffices to consider only those v with Iv(s, i)l <= (1 +. + raN-l)(1 c)-IM1.
Alternatively, it is easy to see that K,(g.)O by applying Theorem 6.3. Theorem 6.2
implies that each approximate game has an EP.

Remarks. (1) The transition kernel q satisfies condition (5) in Theorem 6.4 if
q(CIs, b) cf(xls, b)A (dx), for all measurable subsets C, where A is a finite measure on
S and f(xls, b) is uniformly continuous in s and b, uniformly in x.

(2) To see that it is not sufficient in Theorem 6.4 to have q(. Is, b) be uniformly
continuous in the space of probability measures on S with the topology of weak
convergence, let S be the unit circle, i.e., S=[0, 1) with the metric m(s1, s2)
min{sE-Sx, l-SE+S} for s<--s. Let T:S-S be defined by T(s)=s+h(modl)
where h is a fixed irrational number. Let q({T}ls, b)= c and q(S-{T}s, b)= 0 for all
s, b. Then q(. Is, b) is a uniformly continuous function of (s, b) into the space of
probability measures on S with the weak convergence topology. However, since the
transformation T is ergodic, it is impossible to have K, < c for Ko in (6.9) and any
countable partition of S.

(3) If, in addition to the assumptions of Theorem 6.4, S is a subset of a compact
metric space, then there is a natural algorithm to find an e-EP. Since each approximate
model then can have S as well as I and Bg(s) finite, the EP’s in each approximate model
can be found by applying Brouwer’s fixed point theorem, as shown in Theorem 1 of
Sobel (1971). Hence, it suffices to apply one of the algorithms for finding an approxi-
mate fixed point of a continuous function mapping a subset of R into itself, cf.
Karmardian (1976).

(4) We have yet to determine interesting sufficient conditions for the existence of
an EP (rather than an e-EP) when $ is uncountable. For example, suppose S --[0, 1],
I {1, 2}, B(s) {1, 2} and A(s) (B(s)) for each and s. For simplicity consider
either (1)N 1 or (2) N 2 and c 0.
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A STABILITY THEORY FOR THE LINEAR-QUADRATIC-GAUSSIAN
PROBLEM FOR SYSTEMS WITH DELAYS IN THE STATE, CONTROL,

AND OBSERVATIONS*

R. H. KWONGt

Abstract. The estimation and control of linear stochastic systems with delays in the state, control, and
observations are studied. First, the deterministic optimal control problem with quadratic cost over an infinite
time interval is examined. Using an extended notion of stabilizability, the existence and characterization of
the optimal control law is obtained. Using the additional assumption of detectability the optimal closed-loop
system is shown to be L2-stable. Next, the stochastic filtering problem is studied. A new version of the duality
relations between optimal control and filtering is developed. This combined with a suitable notion of
detectability, is exploited to show convergence of the filter gains. Under the additional assumption of
stabilizability, the optimal stationary filter is shown to be L2-stable. Finally, by putting together the optimal
control and filtering results, a stable constant stochastic control law is obtained for the linear-quadratic-
Gaussian problem.

1. Introduction. Recently, there have been many investigations on control and
filtering problems for linear systems with delays in the state 1 ]-[ 13]. Both finite as well
as infinite time problems have been treated, and various viewpoints and techniques
have been developed. In [11], [12], we have given a complete linear-quadratic-
Gaussian theory for linear systems with a single delay in the state, although the same
methods can be extended to cover linear systems with multiple and distributed state
delays. The situation is quite different when there are also delays in the control and
observations. Koivo and Lee [14] studied the quadratic control problem for linear
systems with delays in the state and control and derived the optimal feedback law.
Bagchi [10] and Kwong and Willsky [11], [12] obtained the optimal filter for linear
systems with delays in the state and observations. Lindquist, ina series of papers [8],
[15], [16] discussed the stochastic control problem and proved versions of the separa-
tion theorem. However, all the above papers are concerned only with finite time
problems (the infinite time problems treated in [11] and [12] were for systems with no
control or observation delays). Thus, qualitative properties such as stability of the
optimal control law or optimal filter have not been studied. In this paper, we shall
present a linear-quadratic-Gaussian theory for systems with delays in the state, control,
and observations, with particular emphasis on infinite time problems, stability of
control laws and filters, and relationship to the notions of stabilizability and detect-
ability. We shall first discuss the finite time quadratic control problem for linear systems
with del.ays in the state and control. Although this problem has been studied earlier by
Koivo and Lee [14], their results are incomplete as the expression for theoptimal cost
was not given. We complete the picture by presenting the expression, for the optimal
cost and deriving differential equations satisfied by the gains. Next, we study the infinite
time quadratic control problem. A stabilizability notion is formulated which enables us
to solve the infinite time problem and obtain the optimal control law. Under the
additional assumption of detectability, the optimal closed-loop system is shown to be
L2-stable. We then turn to the problem of optimal filtering of linear stochastic systems
with delays in the state and observations. Duality relations between optimal control and
filtering, and between the notions of stabilizability and detectability are proved. These
relations enable us to exploit the infinite time optimal control results to prove

* Received by the editors December 30, 1977, and in revised form May 29, 1979. This research was
supported by the National Research Council of Canada under Grants A4786 and A0875.

" Department of Electrical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 1A4.
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convergence of the filter gains. The resulting stationary optimal filter is shown to be the
"adjoint" system to the optimal stationary closed-loop system for the infinite time
control problem. Using this fact together with an additional assumption of stabilizabil-
ity, the optimal stationary filter is shown to be L2-stable. By combining the results for
deterministic optimal control and optimal filtering, we obtain a stochastic control law
for the linear-quadratic-Gaussian problem which is L2-stable. The approach used here
parallels the one used in [12]. Other approaches to the problem are certainly possible,
and in fact, Ichikawa [23] has independently studied the finite time problem using the
method of evolution equations. It would be interesting to see how his approach can be
used in the finite time problem and how it would compare with the results obtained
here. Numerical and implementation aspects of the theory have not been considered
here at all. These are important in their own right, but must be left for future
investigations. A summary of the results here was presented in [17].

2. Finite time quadratic optimal control for systems with delays in the state and
control. We begin our investigation with the deterministic optimal control problem for
linear systems with delays in the state and control. The system under consideration is
given by

A(t) = Aox(t) +A iX(t-- h)+ Bou(t) + nlu(t- h ),

(2.1) x(O) Xo(O), 0 I-h, 0],

u(O)=uo(O), 0el-h, 0).

The state vector x(t) takes value in R n, the control vector in R’. The constant matrices
Ao and A1 are n n, while B0 and B1 are n rn. The positive fixed number h is the
length of the delay interval. The initial trajectory piece x0 is taken to be an element in
the space R"LZ[-h, 0], denoted by M2[-h, 0] (or simply m2) as in [3]. That is,
Xo (x, Xo) when Xo is a vector in R", and x is an element of L2[-h, 0]. For any
=(o, Ca) and w =(w, w ) in m2, their inner product is defined by (, W)M=

(0, O0)R. +( 1, W 1)_h,0. The norm on M2 is the one induced by this inner product.
The initial control piece Uo is taken to be an element of the space L2[-h, 0]. The symbol

(possibly with subscripts) will be used for elements of the space mz[-h, 0]
L2[-h, 0], Define also the linear operator M mapping LZ[-h, 0]LZ[-h, 0] into
L2[-h, 0] by

M(, v)(O)=Al(O)+Blv(O), 0 e I-h, 0].

A moment’s reflection shows that in order to determine the future state trajectory x(t),
=> s, we need to know the values of x(s), the function M(xs, us), and the future inputs

u(o-), s _-< o"-< t. Here, xs and us are defined as usual by

x,(O)=x(s+O), Oe[-h, 0],

u(O)=u(s+O), 0 [-h, 0].

Thus, we might think of the pair (x (s), M(xs, us)) as the true state of the system. In this
paper, we shall be primarily interested in the infinite time control problem, particularly
stability properties of the optimal closed-loop system and their relation to the proper-
ties of stabilizability and detectability. However, we shall have to first discuss the finite
time problem as existing results are incomplete. We consider therefore the following
cost functional associated with (2.1)

T

JT(u) Io [x’(t)H’Hx(t) + u’(t)Su(t)] dt
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where T< eo, H a p x n constant matrix and S a positive definite m x m constant
matrix. The problem is to choose u in L2[0, T] such that JT is minimized. This problem
was studied by Koivo and Lee 14], who obtained the optimal control in feedback form
as follows:

u(t) S-1B; L(t, -, r)x(r)+ L(t, o. + h, r)A lX(o.) do"
-h

+ L(t, + h, r)Bu() d
-h

(2.2) S-BI[L(t + h, r, r)x(r)

+ L(t + h, + h, r)AlX() d
-h

+ L(t + h, + h, r)Bu() d
-h

where the function L(t, s, r) for r N s, N T, satisfies a Fredholm integral equation
T

L(t, s, r) M(t, s)- J, L(t, , r)F’(s, ) d

T

(2.3) M(t, s)- J, r(t, )L(, s, r) d

L(t,s,r)=O iftors>T.

Here the matrix-valued function M(t, s) is given by

(2.4) M(t, s)= ’(m t)H’H(m s) d
ax(t,s)

where (t, s) is the fundamental matrix associated with the homogeneous system

2(t) Aox(t) +Ax(t- h ).

The function F(s, ) is given by

F(s, ) M(s, )BoS-1B; +M(s, + h)BS-B;X,.T_h()
(.5)

+M(s, )BS-BIX,+h.r()+M(s,- h)BoS-1BIX,+h.r()
where

i1 f s _-< o" =< t,
X s.t(o’) / 0 otherwise.

In particular, if we take - to be in (2.2), we obtain the optimal control as feedback of
the pair (x(t), M(x,, u,))

(2.6)

0

u(t)=-S-1B’o[L(t,t,t)x(t)+ I_ L(t, + O + h, t)M(xt, Ut)(O) dO]
h

0

-S-1B’ [L(t + h, t, t)x(t) + f_ L(t + h, + O + h, t)M(xt, Ut)(O) dO]
h
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Of crucial importance for our later development is the expression for the optimal
cost associated with the optimal control law (2.6), which was not obtained in [14].
Motivated by an idea of Datko in [4], we introduce the following functions:

For any initial conditions $i (&i, vi) in M2L2[-h, 0], 1, 2, let
T

(2.7) p(t) It ’(r, t)H’HxT’(cr) dr

where x (.) and u ’ (.) are the optimal state and control trajectories associated with the
initial condition g,;. It was shown in [14] that the function pi(t) satisfies the equation

(2.8)
o

p,(t)=L(t, t, t)xT’(t)+ I_ L(t, t+O+h, t)[AlXT’(t+O)+BlUT’(t+O)]dO
h

and that the optimal control u T’ satisfies

T T

(2.9) uT’(t)= -S-1Bo f, cI)’(s, t)H’HxT’(s) ds-S-1B fit ()t(s’ t+ h)H’HxT’(s) ds.
+h

Introduce the bilinear form ((., )) on (M2 x L2[-h, 0]) (M2 L2[-h, 0]) defined by

(2.10) , (O)p(O) + I_ 4,’(s)Aip(s+h)ds+ v’(s)B’w(s+h)ds.
h h

We then have the following lemma.
LEMMA 2.1. The optimal cost J’ associated with the initial trajectory piece ck and

initial control piece v is given by (((O, v), (O, v))).
Proof. Using (2.7) and the variation of constants formula for the solution of (2.1),

we find

(0)pl(0)= IoT& (0)O’(s, O)H’Hx’(s) ds

(2.11)

T T 0

fo m’(s)H’Hx’(s) ds Io f- &’z(r)Ald’(s’ r+h)H’Hx(s) dcrds

T

Io Io u(cr- h)B’ ’(s’ r)H’Hx’(s) &r ds"

Using the fact that (t, s) 0, < s, and applying Fubini’s theorem, the first three terms
on the right hand side of (2.11) can be written as

(2.12)

0 T

XT’(s)HtHx? (s) ds I_hlo-+hCk (r)A *’(S’ o" + h)H’Hx’ (s) ds dcr

fofu (r)B ’(s, cr)H’Hx’ (s) ds &r.
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For the fourth term on the right hand side of (2.11), we obtain
T

fo fo U2m’(o" h)B’’(s, o-)H’Hx’(s) do-ds

o t" T

(2.13) | | v(cr)B*’(s, +h)H’Hx(s) dsd
h d+h

T T

+ u2 ()Bi ’(s, + h)H’Hx(s) dsd
+h

Combining (2.7), (2.9), (2.11)-(2.13), we get

;(0)p(0)= xr’(stH’Hxr(st ds- ;()Aip(+h) d
h

(2.14)

m’(s)Sur(s) ds v;()Bip( + h) dm+ 2
h

On substituting this into (2.10), we see that
T T

’(s)H’Hx(s) ds + u2(2.15) (((, v), (, v)))= x

This proves the lemma.
Using the above lemma and (2.8), we establish the following theorem.
TOM 2.1. For any r < T, and fixed initial trajectory and control [unctions ,

and v, defined on [r- h, r] and [r h, r) respectively, the optimal costJ [or the control
problem

T

Jr(r, ,, v,)= [ [x’(t)H’Hx(t) + u(t)(t)],dt

is given by
o

J7 (r, 49, v,) c’(r)L(r, r, r)4)(r) + I_ 4)’(r)L(r, r + 0 + h, r)M(c,, v,)(O) dO
h

0

(2.16) + f_ M(qb,, v,)’(O)L(z + 0 + h, r, z)4)(z) dO
h

0 0

+ f_ f_ M(qb,, v,)’(O)L(r + 0 + h, r + + h, ’)M(qb,, v,)() dO d.
h h

Proof. By Lemma 2.1, the optimal cost J7 (z, b,, v) is given by

(2.17) b’(z)p(r) + qb’(s)A’lp(S+h) ds+ v’(s)B’p(s+h) ds.
-h -h

Substituting the expression (2.8) for p into (2.17) yields (2.16) after some straightfor-
ward computations.

Remark 2.1. The expression (2.16) for the optimal cost is similar in form to the one
for systems with state delays only. The role of the "state" here is played by the pair
(x(t), M(xt, u)), and the optimal cost is a quadratic form on (x(t), M(xt, ut)).
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Remark 2.2. We can define the bounded linear operator "B’T(7-) mapping M2 into
M2 as follows:

rrr()(, ) (k, k ),
o

k L(r, r, r)& + I_ L(r, r + 0 + h, r)& X(O) dO,
h(2.18) o

kl(O)=L(r+O+h,r,r)+_ L(r+O+h,r++h,r)l()dCs.
h

Using the definition, the optimal cost J (r, &, v,) can also be written as

(2.19) J (7-,

We can also derive differential equations satisfied by the kernel L(t, s, z). The
following equations were given in [14].

O--L(t, s, r)= [L(t, " + h, r)B1S-1B’o + L(t, 7-, r)BoS-aB’o]L(7-, s, 7-)

(2.20)
+ [L(t, r+h, 7")BIS-1B1 +L(t, 7", 7")BoS-lB’]L(7"+h,s, r);

O---L(t, r, 7") -L(t, z, r)Ao L(t, 7" + h, r)Aa+ L(t, 7-, 7-)BoS-1B’oL(7-, 7", r)
07-

(2.21) +L(t, 7- + h, 7-)BIS-IB’oL(7", 7", 7")+ L(t, z, 7-)BoS-BL(7" + h, 7", 7")

+ L(t, r + h, 7")BaS-1B L(7" + h, 7", 7");

d
-:-L(7", r, 7")=-A’oL(7", 7", 7")-L(7", 7", 7")Ao-AIL(7"+ h, r, ’)
617-

(2.22)
-L(7-, 7- + h, 7")A 1-H’H + L("r, z, 7-)BoS-1BoL(7-, 7", 7")

+ L(7", 7" + h, z)BaS-IB’oL(r, 7-, 7-)+ L(7", 7", 7")BoS-1BIL(r + h, 7-, 7")

+ L(7", r + h, "r)BaS-1BL(7- + h, r, 7").

In fact, following the method given in [6], we can directly show that L(t, s, 7-) also
has partial derivatives with respect to and s. This involves simply differentiating the
integral equation (2.3) and using the fact that the function M(t, s) has the following
derivatives:

For s,

0
(2.23) --M(t, s)= -A’oM(t, s)-AIM(t + h, s)-H’Hrb(t, s),

Ot

(2.24) --M(t, s) -M(t, s)Ao-M(t, s + h)Aa-d’(s, t)H’H
Os

and

(2.25)
d
--vM(t, t)= -A’oM(t, t)-M(t, t)Ao-A’M(t + h, t)-M(t + h, t)A-H’H.
at

We find that

(2.26)
0
--L(t, s, 7-) -A’oL(t, s, 7-)-A’IL(t + h, s, z)-H’HS(t, s, z)
Ot
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and

(2.27)
3
--L(t, s, z) -L(t, s, ’)Ao-L(t, s + h, z)A1-S’(s, t, z)H’H
Os

where
rain(T, t)

S(t, s, r) (t, s)- I, (t, o’)BoS-1B’)L(o", s, "r) do"

in(T-h,t-h)

(2.28) (t, o" + h)BS-1BoL(o, s, "r) do"

min( T’t+2h

[(t, o’)BIS-B +(t + h, o" h)BoS-1B ]L(cr, s, z) dcr
+h

Define L,(O, ) L(t + 0, + , t), 0 <- 0, <_- h. Then using (2.20), (2.26) and (2.27), we
can derive the following set of differential equations for Lt(O, ).

dL,(O, O)=-[A-L,(O, h)BIS-aB’o]L,(O, O)
dt

(2.29) -Lt(0, O)[Ao-BoS-1BLt(h, O)]-AlLt(h, 0)-Lt(0, h)A1

+ L,(0, O)BoS-1B,Lt(O, O)+Lt(O, h)BIS-1B]Lt(h, O)-H’H

(2.30) - Lt(0, :)=-[A,’-Lt(O, O)BoS-1Bo ]Lt (0, )

+ Lt(O, h)BIS-1B’oLt(O, ) + Lt(O, O)BoS-1BLt(h, )
+Zt(0, h)BxS-lBZt(h, )-AZt(h, )

(2.31)
(,.)Lt(O, )--Lt(O, O)BoS-1B’oL,(O, )+Lt(O, h)BlS-IBoLt(O, )

+Lt(O, O)UoS-aUILt(h, ,)+Lt(O, h)US--aULt(h, s)

The optimal feedback control can now be written as

u(t) -S-I[B’oLt(O, O) + BILl(h, 0)]x(t)
(2.32) o

| [B;L,(0, O+h)+BIL,(h, O+h)]M(xt, ut)(O) dO
d_h

3. Infinite time quadratic optimal control, in this section, we study the infinite
time quadratic control problem for linear systems with delays in the state and control.
The system considered is again (2.1), and the cost functional to be optimized is given by

J(xo, Uo, u)= [x’(t)H’Hx(t) + u’(t)Su(t)] dt.

For the infinite time problem to be well-posed, we need some condition which
guarantees that for each initial condition (Xo, Uo), the cost J(Xo, Uo, u) can be made
finite by some choice of u L2[0, c). This involves the notion of stabilizability, which
we shall now discuss.

Stabilizability for linear system with delays in the state only has been studied by
Manitius and Triggiani (see [18] and references therein). In that situation, we have the
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system

(3.1) 2(t) Aox(t) +A1x(t- h) + Bu(t).

If a bounded linear operator K: M2 -R can be found such that on putting u (t) -Kxt
in (3.1), the resulting closed-loop system is L2-stable, then the control u itself will be an
element of L2[0, c3), and the system (3.1) is said to be stabilizable. The point to notice
here is that the feedback system

(3.2) (t) Aox(t) +A1x(t- h)- BKxt
is again a delay differential equation. In the case of systems with delays also in the
control, we have already seen in 2 that the optimal control law for the finite time
quadratic control problem has not only a feedback term on xt, but also a feedback term
on the past control ut. As such, the optimal closed-loop system under the law (2.2) is no
longer a single delay differential equation. The reasoning used in formulating the notion
of stabilizability for (3.1) cannot be used here directly, and we have to extend it
somewhat to accommodate this additional complication.

One possible formulation would be to say that (2.1) is stabilizable if there exist a
constant matrix Go, and measurable and essentially bounded functions Gl(’) and
G2(" ), both defined on I-h, 0] and taking values in R" and R"" respectively, such
that the control law

(3.3)
o o

u(t)=Gox(t)+I_ Gl(O)x(t+O)dO+I_ Gz(O)u(t+O)dO
h h

stabilizes (2.1) in the sense that the resulting solution x and control u are both elements
of L2[0, o). Indeed, this type of definition has been used by Olbrot [24] who also
derived algebraic conditions for stabilizability in this sense. However, it turns out that
for the study of duality between optimal control and filtering, this is not the most
convenient definition. We shall instead adopt the following definition essentially given
in [17].

DEFNIrION 3.1. The system (2.1) is said to be stabilizable if there exist a constant
matrix Ko, a matrix function KI(’) defined on I--h, 0] which is measurable and
essentially bounded, and a measurable matrix function K2(" defined on [0, o) which is
integrable on every compact subset of [0, o) and which generates a Volterra integral
operator mapping L2[0, c) into L2[0, c), such that the control law

0

(3.4) u(t)=-[Kox(t)+I_ Kl(O)x(t+O)dO+ f_ K2(t-s)x(s)ds]
h h

gives rise to a state trajectory x(. which is an element of L2[0, oo), i.e., the system
process x is LZ-stable. We then also say that (Ao, A a, B0, B1) is stabilizable.

It is easy to see that controls of the form (3.4) include controls of the form (3.3). In
fact, in the case that the initial control segment is zero, we can view (3.3) as a Volterra
integral equation in u. Solving it for u yields precisely a feedback law solely in terms of x
of the form (3.4). Notice that in contrast to systems with no control delays, we now
require feedback not only on xt, but also on the entire past history x(s), -h <- s <- t. Note
also that if the system is stabilizable in the sense of Definition 3.1, the resulting control is
an element of L2[0, co). Thus, if the system is stabilizable, there exists a control 7 in
L2[0, cx3) such that the corresponding cost J(xo, Uo, if) is finite.

We now return to the infinite time optimal control problem and give the following.
THEOREM 3.1. Assume that (2.1) is stabilizable. Then limT-_.oo ((&(z), M(4,,, v,)),

rT-(’)((z), M(&, v))) exists, is finite and independent of z. Furthermore the kernel
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L,(., has the following convergence behavior:
(i) L,(0, 0) --) Lo;
(ii) L(0, } strongly in L2[-h, 0];and L,(O, )B1 --) LI(" )B1

(3.5)(iii) AL(., )A --) AL2(’, )A strongly with respect to each
A’L( )B1--) A’L2(. )B1 1 variable with the other variable
B’L.( )B B’L2(., )B, fixed.

Proof. We shall follow closely the arguments of [4] and [5]. By the assumption
of stabilizability, there exist maps Ko, K(.) and K2(’) such that

+ ou(t) Kox(t) -h K(O)x(t + O) dO +-a K2(t- s)x(s) ds is a stabilizing control law
in the sense of Definition 3.1. This implies that Jo <o. Since ((4(r),M(c, v,)),
rr(’)(ck(r), M(c), v))) is monotone in T, it follows that its limit as T --) oo exists, is finite
and independent of r (see the arguments in [4] and [5]). To show the convergence
behavior of the kernel function, define the map Z" M2L2M by

Z((4, 4’ ), v) (b, M(b 1, v)).

By the above considerations, the operator Z*7/’T (T)Z converges strongly to an operator- on M2L2. Since for every ((b, b 1), v) in M2L2, we have

z*,r()Z((, ), v)= ((% ar), v)
where

o

L(O, 0) + [ L(O, + h)M(, v)() d,
h

0

(O)=AL(O+h, 0)+f_ AL(O+h,+h)M(
h

0

VT(O) BL,(O + h, 0) + [ BL,(O + h, + h)M(, v)() d
h

the strong convergence of Z*T(r)Z implies that converges, and that and VT
converge strongly in L[-h, 0] for every ((o, ), v) in MxL. This immediately
implies the convergence properties stated in the theorem.

Consider now a sequence T, as n . From Theorem 3.1, we can find a
subsequence T, such that as ,

Lr(0, ")BILI(’)tB1
B[L,(h, ")AIBLI(’)A pointwise a.e.

B[L(h, )B1 BLI( )B1

Define lim BL,(h, O)= BLol. We then have"
THEOREM 3.2. The optimal control law for the infinite time problem is given by

u(t) -S-I(BLo+ BLol)x(t)
(3.6) o

S I [BLI(O+h)+BLI(O+h)]M(xt, ut)(O) dO.
d_h

The optimal costJ is given by

(3.7) (((x(0), xo), uo), ((x(0), Xo), Uo)).
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Proof. Let x and ux denote the solution of the closed-loop system defined on [0, oo)
under the stationary law (3.6), and y and uy denote the solution of the closed-loop
equation defined on [0, Tn,] under the time-varying law (2.32).

Let

(t) y(t)-x(t) and t(t) uy(t)-ux(t)

Then

(3.8)

with initial conditions

;(0) =0, 0 f-h, 0],

a(0) 0, 0 f-h, 0].

Applying the variations of constants formula, we obtain

}(t) Ao(t) +A1.(t- h) + Boa(t) + B1 (t(t h ),

(3.9) (t)= [rb(t-s)Bo+(t-s-h)B]t(s) ds.

Let

and

t[0, Tn,],

[BoLt(0, : + h) +B Lt(h, + h)]= Pi(t, ,)

BoLI(O’ O) + BLI(h, O) W(t)

where we have added the superscript to indicate explicitly the dependence of
Lt(,, on T,,. Similarly, define P(j)A B’oL(j + h)Aa + B’LII( + h)A1, P(sC)B1
BoLI( + h)B +B’ oLo +B1Lol. Then1L(sc + h)B1 and W B’

(t)=-S-(t)2(t)-S-[(t)- W]x(t)-S- Pi(t,s-t)A12(s) ds
-h

it(3.10) -S-1 [Pi(t,s-t)-P(s-t)]AlX(S)ds-S-1 P(t,s-t)Baa(s)ds

tS- [P(t, s t)-P(s t)]Bu(s) ds.
-h

Let q(t)=-S-[(t) W]x(t)-S- I_h[P(t, s-t)-P(s-t)][Ax(s)+Bu(s)] ds.
We can then combine (3.9) and (3.10) into the equation

I 0 (t)

(3.)

_[o1 fo,[ 0

q(t)
+ -S-Pi(t, s t)A1

d(t- s)Bo +(t- s h)Ba] [ (s)]-S’-Pi(t, s t)Ba tT(s).l
ds,

t[0, T,,].

Equation (3.11) is, with obvious notation, of the form

Io(3.12) sc(t) a(t) + R(t, s),(s) ds.

Let ci(t) sup_<_ Ie(t, s)[. Then from the properties of (t) and P(t, j), we see that c(t)
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is uniformly integrable over any finite interval. Now

(3.13) I,f(t)l <- Ic(t)l + c(t) If(s)l ds.

By Gronwall’s inequality, we obtain

Ie(t)[--< Ic(t)l / [c(s)l exp c() d ds.

Furthermore, (t) is uniformly bounded in i, and for each < T,,, (t) 0 as . By
dominated convergence, we obtain that for each < T,, I/(t)[ 0 as .

Next, let

I y’(t)H’Hy(t) + u’y(t)Suy(t), [0, T,,]
g(t)

0 otherwise

and

g(t) x’(t)H’Hx(t) + U’x(t)Sux(t), [0, ).

The above development shows that gi(t) g(t) pointwise in [0, ) as . By Fatou’s
lemma

g(t) fdt <-lim inf dtg(t)

(3.14) lim inf ((x(O), M(xo, Uo)), 7r7-, (O)(x(O), M(xo, Uo)))

(((x(0), Xo), Uo), ((x(0), Xo), Uo))

from previous considerations. On the other hand, for all T => 0, optimality considera-
tions give

T

fo [X’(t)H’Hx(t) + u’(t)Sux(t)] dt
(3.)

_-> ((x(0), M(xo, Uo)), zrT-(0)(x (0), M(xo, u0))).

The two inequalities (3.14), (3.15) establish that the optimal cost is given by
(((x(0), Xo), Uo), -k((x(0), x0), u0)), and that this cost is attained with the law (3.6). The
proof is completed.

Theorems 3.1 and 3.2 are generalizations of the results of [4] and [5] to systems
with delays in the state and control. It gives the existence and characterization of the
optimal control for the infinite time quadratic cost problem, but as usual, does not
guarantee that the closed-loop system is stable. For that, we need the additional
assumption of detectability of (Ao, AI, H) (see [12] for the definition and further
discussions).

THEOREM 3.3. Let (Ao, A 1, Bo, B1) be stabilizable and (Ao, A 1, H) be detectable.
Then the closed-loop system generated by the control law (3.6) is L2-stable.

Proof. By detectability of (Ao, A1, H) (see the definition in [12]), there exist
matrices Fo and F1, and a measurable and essentially bounded matrix-valued function
F2(" ), such that the system

o

(3.16) (t)=Aoy(t)+Aly(t-h)-FoHy(t)-F1Hy(t-h)-| F2(O)Hy(t+O) dO
h
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is exponentially stable. Now the solution x satisfies the following equation
o

2(t) (Ao-FoH)x(t) + (Aa-FiH)x(t- h)- I_ F2(O)Hx(t + O) dO
h

(3.17) o

+ FoHx(t) +FiHx(t- h + I_ F(O)Hx(t + O) dO + Bou(t) +Bu(t- h ).
h

Letting F(" be the fundamental matrix associated with (3.16), we obtain, using the
variation of constants formula,

o

Ix(t)l -< ]*(t)xo(O)+ I_ *F(t-s-h)[(A1-F1n)xo(s)+BlUo(S)] ds
h

0 0

4;- I-h IO dpF(t- s + O)F2(O)Hx(s) ds dOI
(3o18 + I,(-s)l FoHx(s)+FHx(s-h)

o

Let kl max lFol, IFll, ess sup-h=<0_<_o IF=(0)l}. We obtain
o

Ix(t)[-< ]F(t)Xo(O)+ I_ dPF(t-s-h)[(A-fg)x(s)+Bau(s)] ds
h

0 0

-+" f-h fO bF(t- s + O)F2(O)Hx(s) ds dOI
(3.19t

Io+ k I(t-s)l Hx(s)+Hx(s-h)

0

+ I_ Hx(s +0)dO ds + fo ]bF(t-s)B+dOv(t-s-h)Ba] lu(s)[ ds.

Since for u corresponding to the optimal control, we have u L2[0, ) and Hx
L2[0, m), we have, by application of Young’s inequality,

Ix(t)l 2 d
o

=<k2{f [ItF(t, 0)X0(0)A-f-h dPF(t-s-h)((A1-F1H)x(s)

(3.20)

+BlUo(S)) ds + bF(t--s + O)Fz(O)Hxo(s) ds dO dt
h

+k3 [F(t)[ dt Hx(t)+Hx(t-h)+ Hx(t+O) dO d
h

+ k4 IdF(t--S)Bo+F(t--s--h)B[ dt lu(t)l2 d

for appropriate constants k2, k3 and k4. Since ItZIF(t)l <-- fle -’ for some/3 _-> 1, a > 0, we
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have that

Ix(t)[= d

and the theorem is proved.
Theorems 3.1, 3.2 and 3.3 together describe the structure of the optimal control

law for the infinite time quadratic control problem. Note that we have not shown that
the gains of the optimal stationary control law can be obtained from the unique solution
of a Riccati-like differential equation. Thus the justification of the existence and
uniqueness of solutions to the steady state version of equations (2.29)-(2.31) is still an
open question. This is in contrast to the case of linear systems with delays only in the
state where complete results on the infinite time quadratic control problem are
available [12].

4. Optimal filtering over a finite time interval tor linear systems with delays in the
state and observations. In this section, we shall discuss optimal filtering, in the minimum
mean square error sense, for the stochastic delay system

(4.1)

(4.2)

dx(t) [Aox(t) +AlX(t h )] dt +Fdw(t),

x(0) 0, 0 6 I-h, 0],

dz(t) [Cox(t) + ClX(t- h)] dt +Ndr(t).

Here w(t) and v(t) are independent standard Wiener processes in R and Rp

respectively. The matrix N is assumed to be nonsingular. We shall also denote NN’ by
R. The nonsingularity of N then implies that R > 0.

For any s >-t, we denote the conditional expectation E{x(t)lz(o), 0=<o-=<s} by
2(tls). Let the estimation error x(t)-.f(tls) be denoted by Y(tls), and let P(t, o-, s)
denote the error covariance function E[2(tls)2(crls)’ for =< s, o"-< s. The filter equa-
tions characterizing 2(tit) have been derived independently in [10] and [12], and are
stated below:

d(tlt)=[Ao(tlt)+Al(t-hlt)] dt+[P(t, t, t)C’o +P(t, t-h, t)C’x ]R -1

(4.3)
[dz(t)- CoY(tlt) dt- Cl(t- hlt) dt]

It2(t-hlt)=2(t-hlt-h)+ [P(t-h,s,s)C’o +P(t-h,s-h,s)Ci]R--h

(4.4)
[dz(s)- Co(SlS) ds Cl.(s his) ds].

A set of differential equations was also derived for P(t, o’, s) [10], [12]. The existence
and uniqueness of solutions to (4.3)-(4.4) can be obtained using standard techniques, an
outline of which is given in the Appendix.

It turns out that the equations for P(t, r, s) in [10], [12] are not quite convenient for
the development of duality results for linear control and filtering in our problem. Thus,
in the following, we will derive an integral equation for P(t, r, s) using the projection
theorem characterization of (tls) [20].

We know that the process (tls) is Gaussian [10]. By the projection theorem;we
can write

(4.5) (tls) Gs(t, r) dz(r)
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for some L2 kernel Gs(t, r). We now characterize the kernel Gs(t, r). For any 0-<_ r-<_ s,

O E[(tls)z’(r)}
(4.6) eo {E[2(t]s)x’(c)]C’o +E[(tls)x’(c -h)]Ci } dc -E{(tls)v’(r)}N’.

But, by the projection theorem again, E[(tls)x’(a)] EE(tls)’( Is)]- P(t, , s) and

io(4.7) E{(tls)v’(r)}g’=- Gs(t, r)R dr.

This yields

(4.8) Gs(t, a) [P(t, a, s)C’o + P(t, a h, s)C’l ]R-’.
Thus the error covariance function P(t, a, s) satisfies

P(t, , s)= E{(tls)x’()}

(4.9) =E[x(t)x’(c)]- [P(t,r,s)C’o +P(t, cr-h,s)C]R -1

E{[Cox(r) + Clx(r- h)]x’(c)} &r.

Let Y_,(tr, a)= E[x(cr)x’(a)]. Then (4.9) can be written as

P(t, ce, s)=Y_.(t,a)- P(t,o’,s)C,R-[CoE(O’,Cr)+ClY-.(o’-h, ce)]do

(4.10)
s-h--I, P(t’"s)C’R-I[cE(’+h’)+CE(")]d"

where we have used the assumption that x(0)=0, O[-h, 0]. Define the kernel
K(o-, c) by

K(o’, c C,’,R -1 CoN(O, a) + C[,R-1E(o h, )Xh,s(O’)
(4.11)

+ CR-1 Co.,(cr + h, o:)XO.s-h(O’) + CIR -1 C1,(o’, c)XO,s-h (o’).

Then we see that P(t, c, s) satisfies the integral equation

(4.12) P(t, c, s)- Z(t, c)- P(t, o’, s)K(o’, ) do’.

Furthermore, since by definition,

e(t, c, s) P’(c, t, s)
we get

P(t, c, s) Z’(a, t)- K’(cr, t)P’(a, (r, s) dcr

(4.13)

E(t, a)- K’(o’, t)P(r, ce, s) do’.

From the variation of constants formula for (4.1), it is easy to see that the matrix Y_,(t, a)
is given by

min(t,c)

(4.14) ,(t, a)= I (t, tr)FF’’(c, r) dtr.
o
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For each fixed s and t, (4.1 3) is a Fredholm integral equation satisfied by P(t, c, s). Since
the kernel K (r, c) is readily seen to be positive, we can apply standard Fredholm theory
to conclude that there exists a unique L2 solution P(t, c, s). Moreover, P(t, , s) is
continuous, as discussed previously in [12], so that P(t, c, s) is also defined pointwise.
Equations (4.3), (4.4) and (4.12)-(4.14) thus give an alternative characterization of the
optimal filter.

Notice that the form of the integral equation defined by (4.12)-(4.14) is very
similar to the one satisfied by L(t, s, ’), i.e. (2.3)-(2.4). In the next section, we will make
this precise by giving a duality theorem relating optimal linear filtering to quadratic
optimal control of a dual system.

5. A theorem on the duality between estimation and control. Let us consider the
following system

y(t)=-A;y(t)-Ay(t+h)-C’ou(t)-Cu(t+h), t[O, T],

(5.1) y(0) b (0), T -< 0 -< T + h,

u(O)=v(O), T<-O<=T+h.

The control problem is to optimize the functional
T

(5.2) ja | [y’(t)FF’y(t)+ u’(t)Ru(t)] dt

by some choice of u L2[0, T]. The advanced system (5.1) runs backwards in time. By a
change of variables, we can convert the problem into the standard control problem for
linear systems with delays in the state and control.

Define s T- t, 37(s) y(T- s) y(t), (s) u(T- s) u(t). Then we have

d
a(s h)ds(S)=A,(s)+A’(s-h)+C’oa(s)+C’

(5.3)
(O)=(T-O), 0 E-h, 0],

a(O)=v(T-O), 0 el-h, 0],
T

ja | [’(s)FF’f(s)+ a’(s)Ra(s)] ds.(5.4)
Jo

The results of 2 can then be applied directly to the problem defined by (5.3)-(5.4).
This gives rise to a kernel L(s, c, r) satisfying the integral equation

T

(s, , r) (s, )- I, (s, , )P’(, t) dt

where

(5.6)
F’(a,/3) C’oR -1Co1(, + CoR-1C1/r( + h, a)X,.r-h(/3)

+ CIR-aCo( h, O{)Xr+h,T()"Jc" C’R-aCII(, ce)X,+h,T().

Here M(s, c) is given by

(5.7) M(s, c)= 7,(, s)FF’(, ) d
ax(s,)
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where (s, a) satisfies - (s, r) A’o(S, r) +A (s h, o’),
(5.8)

(r, r) L
(s, o’) 0, s[o’-h,o’).

To transform the equations back to the original time variable, we let s T-t,
a T-3’, r T-o’, and define the function

(5.9) A(t, ,/, r)=L(T-t, T-% T-o’).

Then the function A(t, 3’, o-) satisfies the integral equation

A(t, y, o-)=M(T-t, T-y)- A(t, T-fl, o-)F’(T-y, fl) dfl
(5.10)

y0"=M(r-t, T-y)- A(t, &, o-)r’(T- y, T-b) db.

On the other hand,

M(T t, T y) Jm d’(, T t)FF’di’(, T ) d
ax( T-t, T-3,)

(5.11)

fmin(t’v) )’(T-10 T-t)FF’(T-fl, T-y)dfl.
a0

Now recall that the homogeneous equation

(5.12) 2(t) aox(t) +AlX(t- h)

has as its adjoint equation

(5.13) ))(t) -A’oy(t)-A’ y(t + h ).

The fundamental matrix Y(t, or) to (5.13) satisfies

d
d-- Y(t, r) -A’o Y(t, r)-A’l Y(t + h, ),

(5.14)
Y(cr, o’) I,

Y(t,o’)=0 ift>tr.

It is easily verified that Y(t, tr) and ,(T- t, T tr) satisfy the same differential equation
and boundary condition. By uniqueness, we conclude that

Y(t, or)= (T-t, -r).(5.15)

Hence

(5.16)

f
min(t,-/)

M(T-t, T-y)=
’0

f
min(t,/)

-0

Y fl, FF Y fl, 3’) dfl

d t, fl FF ’ T, fl dfl
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where (t,/3) is the fundamental matrix associated with (5.12). We have here used the
well-known result that (t,/3) Y’(fl, t) (see, for example, [19]).

We can now state the duality theorem.
THEOREM 5.1. The function A(t, y, or) in the dual control problem defined by (5.10)

is the same function as the error covariance ]:unction P(t, y, r) defined by (4.12).
Proofi From equations (4.14) and (5.16), we see that

M(T- t, T y) Z(t, y).

It is now readily verified that

F’(T-/, T-/)=K(fl, y)

where K(fl, y) is as defined in (4.11). Hence A(t, y, o-) satisfies the integral equation

A(t, , ;(t, ,/- A(t, , rlg(4,, ,/

which is the same integral equation as the one satisfied by P(t, y, r) (equation (4.12)).
By uniqueness of solutions to the Fredholm integral equation, we obtain the conclusion
of the theorem.

In addition to its theoretical interest, the above theorem enables us to apply the
infinite-time optimal control results to the filtering problem. Various versions of the
duality theorem have been given in the literature [15], [19], but Theorem 5.1 seems to
us to be the most convbnient for the purpose at hand.

6. Detectability and adjoint systems. In 3, we have obtained the infinite-time
control results under the hypotheses of stabilizability of (Ao, A1, Bo, B1) and detec-
tability of (Ao, A 1, H). In order to apply these results to the filtering problem, we study
the notion of detectability which is dual to the stabilizability of (Ao, A 1, Bo, B1). We
make the following.

DEFINITION 6.1. Consider the system

(6.1) .(t)=Aox(t)+Ax(t-h), x(O)=xo(O),

(6.2) z(t) Cox(t)+ Clx(t- h).

We say that the system (6.1)-(6.2) is detectable if its dual system

(6.3) y(t) -A’oy(t)-A’ly(t + h)-C’ou(t)-C’lU(t + h)

is stabilizable. We then also say that (Ao, A 1, Co, C1) is detectable.
Note that if we construct a stabilizing control law for (6.3), we will obtain for the

closed-loop system a linear Volterra integrodifferential equation running backwards in
time. For our study of filter stability, we need to use the fact that such a system is in a
certain sense adjoint to a linear Volterra integrodifferential system running forwards in
time. The precise notion of adjoint systems of linear Volterra integrodifferential
equations is given in the following proposition.

PROPOSITION 6.1. For K(.) a locally L matrix function, and - < T, the systems

(6.4) Yc(t)=Aox(t)+Alx(t-h)+ K(t-s)x(s) ds, ’<-t<,

and
T

(6.5) Y(t)=-A’oy(t)-Ay(t+h)-It K’(s-t)y(s)ds, -<t<-T,
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are adfoints of each other in the sense that if x(t) and y(t) are any solutions of (6.4) and
(6.5), then ]:or any [z, T], the form (yt, x t, t) defined by

t+h

(yt, X t, t)= y’(t)x(t)+ It y’(S)AlX(S-h) ds

It r ff.r I.tIT+ y’(s) K(s-o-)x(o-) do-ds + y’(s)K(s-o-) ds x(o-) do"

is constant in t. Furthermore, if V(s, t) is the fundamental matrix satisfying (6.5) in s with
V(t, t) I, V(s, t) 0 for s > t, and U(t, s) is the fundamental matrix satisfying (6.4) in
with U(s, s) I, U(t, s) 0 for < s, then V’(s, t) U(t, s).

Proof. We compute

d.{y , x , t} -A’oy(t)-Aiy(t + h)- g’(s t)y(s) ds x(t)

+ y’(t)[Aox(t)+AlX(t-h)+ K(t-s)x(s) ds

+ y’(t + h)Alx(t)- y’(t)Alx(t- h)
T

y’(t) f, K(t-o")x(o") do" + It y’(s)K(s -t) ds x(t)

Now for equations defined on (-, + h ], we have that

(WS, xS, s)=(Vt, xt, t)

where, for each fixed t, we are considering V(s, t) as a function of s. This yields

V’(s, t)x(s)+jf V’(o", t)Alx(o"-h) do"+ V’(o", t) g(o"-o)x(o) da do"

(6.7)

x(t)+ V’(a, t)K(a -o") da x(o") do".

After simplification, (6.7) becomes
s+h

V’(s, t)x(s)+ Js V’(s, t)Axx(o"-h) do".(6.8)

If we now take x (t) U(t, s) for fixed s, we get

(6.9) U(t, s)= V’(s, t)

as claimed.
Remark 6.1. From the constancy of (6.4) and (6.5), we see that U(t, s) is a function

of s and V(s, t) is a function of s t. Hence if U(t, 0) is an element of L2[0, c), V(0, t)
is an element of L2(-, 0]. Using (6.8) we see that this implies that if the solution y(t) to
(6.5) is an element of L2(-, 0], for each initial condition, the solution x(t) to (6.4) is an
element of L2[0, c), for each initial condition.

Remark 6.2. Using Proposition 6.1, we can show that (6.1)-(6.2) is detectable if
and only if there exist a constant matrix No, a measurable and essentially bounded
matrix function NI(" defined on I-h, 0], and a matrix function N2(" defined on [0, ),
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which are measurable and integrable on every compact subset of [0, oo), and which
generate a Volterra integral operator mapping L2[0, oo) into L2[0, oO), such that the
system

f(6.10) 2(t)=Aox(t)+Alx(t-h)-Noz(t)-j_ Nl(O)z(t+O) dO N.(t-s)z(s) ds
h -h

is L2-stable.
For the sake of completeness, we mention here that the dual notion of detectability

of (Ao, A 1, H) is the stabilizability of the dual control system defined by (A’o, A1,H’)’
Note that the absence of delays in the observations leads to a dual control system
without delays in the control. The reader is referred to [12] for additional discussions.

7. The existence and stability of the stationary filter. Our objective in this section is
to show that under suitable hypothesis, the filtering error covariance matrix converges
to a constant matrix. This is of great importance in the evaluation of filter performance,
for then we can assess the accuracy of the filter by examining the limiting value of the
error covariance. Moreover, we will show that the stationary filter thus obtained is
LZ-stable. The technique is to relate the filtering problem to a dual control problem, and
use the infinite-time optimal control results. First, we state what we mean by filter
stability.

DEFINITION 7.1. The optimal filter defined by (4.3) and (4.4) is said to be stable if
the following two conditions are satisfied"

(i) The estimation error covariance P(t, t, t) is bounded on [0, oo) and that
limt_,oo P(t, t, t) exists and is finite.

(ii) The estimation error e(tlt) x(t) 2(tlt) associated with the stationary version
of the optimal filter satisfies an equation whose homogeneous solution is
LZ-stable.

Remark 7.1. The boundedness condition for P(t, t, t) should certainly be required
in any definition of filter stability. Since the error process is Gaussian, the convergence
of P(t, t, t) implies that the distribution associated with e(tlt) converges to a constant
Gaussian distribution. If the second requirement is also satisfied, then in view of the
linearity of the system, any disturbance on the error process with trajectories in
L2[0, 0(3) will still generate an error process with trajectories in L2[0, oo).

THEOREM 7.1. Consider the stochastic delay system

(7.1)

(7.2)

dx(t) [Aox(t) +Aix(t- h)] dt + Fdw(t),

x(0) 0, 0 6 [-h, 0],

dz(t) [Cox(t) + ClX(t- h)] dt +Ndr(t).

Assume that the system (6.1)-(6.2) is detectable. Then the error covariance matrix
P(t + , + O, t), -h <= , 0 -<- O, has the following asymptotic behavior as

P(t, t, t)Po;

P(t, + O, t)A’ PI(O)A’I } strongly in L2[-h, 0];
P(t, + O, t)C’l PI(O)C

1We shall abuse notation and write P(t,t+O,t)A’I-PI(O)A’ in LZ[-h, 0], etc., to mean
P(t, t+., t)A’ PI(. )a’ in LZ[-h, 0], etc.
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AiP(t+O, t+, t)A’ AIP2(O, )A’I
strongly withrespectto

C1P(t + O, + , t)A’ CIP2(0, )A each variable with the other

CIP(t + O, + , t)C’ - C1P2(0, )C’ variable fixed.

Proof. Consider the dual control problem defined by (5.1)-(5.2). We know by
Theorem 5.1 that A(t, y, o-) P(t, y, ). Also bythe hypothesis of detectability, the dual
system (5.1) is stabilizable. Hence by Theorem 3.1, we have that as T ,

L(, ,)Lo
L(r, r++h, r)A L(+h)Aa

in
L(r, r + + h, r)C L ( + h)C

strongly LZ[-h, 0]

A1L( + r + h, + r + h, r)A AL( + h, + h)A
strongly in each

A( + r + h, + r + h, r)C A(+ h, +h)C variable with the other

C( + r + h, + r + h, r)C C(+ h, + h)Ci Ij variable fixed.

But since L(T-t, T-, T-)= A(t, , )= P(t, , ), a simple change of variables
shows that these convergences yield the asymptotic behavior for P(t + , + O, t) as
stated.

Henceforth, we shall denote P(-h) by P; and P(-h, O) by Pl(O).
We now examine the infinite-time dual control problem. We have the system

(t) -A;y(t)-Ay(t + h)-C;u(t)-C’u(t + h) (-, 0],

(7.3) y(0) 4(o), o<-_o<=h,

u(O)=v(O), O<O<-h,

with cost functional

(7.4)
o

J f_ [y’(t)FF’y(t) + u’(t)Ru(t)] dt.

Using Theorem 5.1 again, we obtain that the optimal control law is given by

(7.5)

h

h

-R-1CI[ely(t)+ Io Pll(a-h)(A’ly(t+ce)+ C’lU(t+a)) da].
On the other hand, the stationary filter is given by the equations

(7.6)
d(tlt) [Ao (tlt) +Al(t- hlt)] dt +[PoC,’ + P’olC’ ]R -1

[dz(t)- Co(tlt) dt- Ca(t- hit) dt]

(7.7)

Al(t-hlt)=Al(t-hlt-h)+ AI[P (t-s-h)C’o +PI (t-s-h)C’l
-h

g-l[dz(s)- Co.(sls) ds CI(S his) ds],
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(7.8)

C(t-hlt)=C(t-hlt-h)+ C[P(t-s-h)Co +Pl(t-s-h)C]
-h

R-a[dz(s)-Co(SlS)ds-C(s-h[s)ds].

We will now show that the stationary control system and the stationary filter are in
fact adjoint systems of each other in the sense of Proposition 6.1. Once this is
established, we can appeal to Theorem 3.2 to investigate the stability of the stationary
filter. To this end, we first express the control law (7.5) solely in terms of feedback on y.
Let

Coel(t)-+" C1ell(l),
Dl(t)

0

I-h, 0],
otherwise,

and let

F(t) -R-XDl(t- h)C’l, t6[0, h].

Also denote (CoPo + C1Pol) by Do. Then we can write

h

(7.9) u(t)=q(t)+ It F(t-cr)u(tr) do"

where

(7.10)
t+h

q(t)=-R-1Doy(t)-R- f Dx(r-t-h)A’ly(r) dtr.
"t

We can view (7.9) as a Volterra integral equation in u. Define H(t) to be the resolvent
kernel associated with F(t) [22], i.e.,

(7.11)
0

H(t) F(t) + It F(t- o’)H(tr) dr.

Then we can solve for u(t) in (7.9) to give

h

(7.12) u(t)=q(t)+ It H(t-r)q(tr) dr.

Substituting (7.10) into (7.12), we obtain

t+h h

u(t)=-R-lDoy(t)-R-l ft Dl(tr-t-h)A’ly(r) dr-lt H(t- tr)R-1Doy(tr) dtr

h tr+h

f, H(t-tr)R-l I Dl(&-tr-h)a’ly($) d$ dtr

(7.13)
+h

fit
h

=-R-1Doy(t)-R -1 f D(tr-t-h)A’ly(o’) dtr- H(t- tr)R-1Doy(tr) dtr

h

f
min(t+h,b)It H(t-cr)R-1Dl(qb-tr-h) do’A’ly(&) d&.

amax(t,d-h
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Substituting (7.13) into (7.5), we obtain the closed-loop system as

(t) -(A’o C’oR-Do)y (t) (A’ CR-1Do)y (t + h)
t+h h

+CoR -1 f D(o’-t-h)A’y(o’) do+C’o ft H(t-)g-DY() do-
"t

fthf min(t+h’rb)

H(t-cr)R-Dl(O-r-h) dtrAy(&) d&-+" Co
.max(t,tb-h)

(7.14) t+2h h

+C’IR- f D(tr-t-2h)A’y(cr)dr+C.’l It H(t+h-cr)R-Doy(o’)dtr
at+h +h

h

f
min(t+2h,b)

+C’1 H(t + h -cr)R-Dl(&-cr-h) do-Ay(&) d&.
+h "tmax( + h,ab-h

Next, we give the equation satisfied by the estimation error (tlt) associated with
the stationary filter. In particular, in our study of filter stability, we are concerned with
the homogeneous part of the equation satisfied by e(tlt). For ease of notation, we write
x(t) for e(tlt) and (t) for e(t-hit)in the homogeneous equation for e(tlt). We then
obtain the following integral equation from (7.8):

C:(t) Cx(t-h)- C1DI (t-s-h)R-Cox(s) ds
-h

(7.15)

f,-h C1D (t s h)R -1Cc(S) ds.

Let W(t)=-CD’ (t-h)R- and define N(t), the Volterra resolvent kernel of W(t),
by

ION(t) W(t) + W(t s)N(s) ds

(7.16)

W(t) + N(t- s) W(s) ds.

Then on solving (7.15), we get

Cl(t)=Cx(t-h)- CD(t-s-h)R-Cox(s)ds
-h

+ N(t-S)ClX(S-h) ds
h

Is(7.17) N(t-s) CD’ (s-tr-h)R-1Cox(cr) dtrds
h -h

Cx(t-h)+ N(t-s)Cx(s-h) ds
h

C1D(t-r-h)R-h

min(t,tr+h)

+ f N(t-s)CID (s-tr-h)R- ds Cox(or) dcr.
max(tr,t-- h)
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But by (7.16),
min(t,cr+h)

CD’ (t-o’-h)R- + f N(t-s)CD’I (s-o’-h)R -1 ds
amax(tr,t-h

f
min(t,cr+ h)

W(t r)- N(t s) W(s r) ds
amax(o-,t-h)

-N(t-tr).

Thus

(7.18) ClC(t)=ClX(t-h)+ N(t-s)[Cox(s)+Clx(s-h)]ds.
h

Combining (7.6), (7.7) and (7.18), we see that the error process e(tlt) satisfies the
equation

2(t) (Ao-D’oR -1Co)x(t) + (A1 D’oR-C1)x(t h)

-A1 D’(t-s-h)R-l[Cox(s)+Clx(s-h)]ds
-h

min(t,o-+ h)(7.19)
-A1 I_ f D’ (t-s-h)R-N(s-tr) ds[Cox(o’)+ClX(O’-h)] dtr

h amax(o’it-h)

-D’oR -1 N(t-s)[Cox(s)+ClX(S-h)]ds.
h

One can also readily see that the homogeneous part of (7.6)-(7.8) (i.e., with z(s)=-O)
gives rise to an equation in 2(tlt) identical to (7.19). Thus we shall call (7.19) the
homogeneous stationary filter.

We can now give"
THEOREM 7.2. The stationary closed-loop system (7.14) is the adfoint to the

homogeneous stationary filter (7.19) in the sense of Proposition 6.1.

Pro@ First notice that on comparing (7.11) and (7.16), we obtain

(7.20) N(t)=H’(-t).

Now the adjoint to (7.19) is given by

Yc(t) -(A’o C’oR-XDo)x(t) (A’I C’xR-1Do)x( + h)

(7.21)

t+h t+2h

+I C’R-1Dl(s-t-h)A’lX(S)ds+ fat+ h C’lR-1Dl(S-t-2h)A’lX(S)ds

h min(cr, +h)

+ ft f C’N’(s-t)R-aDl(Cr-s-h)dsA’lX(-)&r
amax(t, h)

h min(cr,t+2h)

+ I f C’N’(s-t)R-1DI(Cr-s-h)A’lX(r)
+h amax(t+h,tr-h)

h h

dr- It C’oN’(s -t)R-1Dox(s) ds + It+h C’IN(S -t- h)R-XDox(s) ds.
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Using (7.20), we immediately verify that (7.21) and (7.14) are identical. This completes
the proof of the theorem.

We have now all the ingredients to prove the central result of the paper, the
stability of the stationary filter.

THEOREM 7.3. Assume that (Ao, A, Co, C) is detectable and (Ao, AI, F) is
stabilizable. Then the stationary filter exists and is L2-stable.

Proof. By Theorem 7.1, we need only to prove the L-stability. The hypothesis
gives that (A, A, F’) is detectable. Thus by Theorem 3.2, the optimal stationary law
for the dual control problem gives rise to an L2-stable closed-loop system. Thus, the
solutions y of (7.14) are elements of Lz(-c, 0]. By Proposition 6.1 and Remark 6.1, the
solutions of the system adjoint to (7.14) are thus elements of Lz[0, c). By Theorem 7.2,
the system adjoint to (7.14) is precisely the homogeneous stationary filter (7.19). This
implies that the solutions x of (7.19) are elements of Lz[0, ) and the theorem is
proved.

8. Stochastic control oi linear systems with delays in the state, control, and
observations. In this section, we put together the theory we have developed for
quadratic optimal control and linear filtering to obtain a stable stochastic control
scheme. The system we are interested in is of the form

dx(t) [Aox(t) + Alx(t- h)] dt +[Bou(t) + BlU(t- h)] dt + Fdw(t)

(8.!) x(0) 0, 0 I-h, 0],

u(0) 0, 0 [-h, 0),

(8.2) dz(t) [Cox(t)+ Clx(t- h)] dt + Ndv(t).

The finite time stochastic control problem has been studied by Lindquist [8], who
proved a version of the Separation Theorem in the case where there are no delays in the
control, although his methods can be extended to cover that case also (see the remarks
in [16]). Here, we provide the final missing element in the linear-quadratic-Gaussian
theory for general delay systems" the asymptotic behavior of the stochastic control
law given by the cascade of the stationary filter with the stationary deterministic
feedback law.

THEOREM 8.1. Suppose (Ao, At, Bo, B1) is stabilizable, (Ao, A1, H) is detectable,
(A0, AI, Co, C1) is detectable, and (Ao, A I, F) is stabilizable. Then the control law
given by

(8.3)

u(t) -S-[B’oLo + B’lLo](tlt)

-S- [B’oLl(r+h)+B’Ll(o-+h)][A(t+crlt)+Bu(t+cr)]&r
h

where Lo, Lol, L(.) and Lll(’) are obtained as in Theorem 3.2, and (t+crlt),
o" [-h, 0] is generated by the stationary filter (7.6)-(7.8), gives rise to an LZ-stable
closed-loop system.

Proof. Let the estimation error x(s)-(slt), s <-t, be denoted by e(slt). Then the
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error process satisfies the following set of equations"

de(tit) [Aoe(tlt) +Ae(t- hlt)-D’oR-Coe(tlt)-DR-Ce(t- hlt)] dt
(8.4)

+Fdw(t) D’oR-1Ndr(t),

Ale(t-hlt)=Ale(t-h[t-h)+Ax Di(t-o’-h)R-ICoe(o"lo’)do
-h

(8.)

+A Di (t-o"-h)R-ICe(o"-hlo") do"
-h

+A Di (t-o-h)R-Ndv(o’),
-h

Ce(t-hlt)=Ce(t-hlt-h)+ C1Di(t-o"-h)R-ICoe(o"lo") do"
-h

(8.6) + CD’ (t-o’-h)R-Ce(o"-hlo") do"
-h

+ C D’I (t o" h)R-Ndv(o’).
-h

The homogeneous part of (8.4)-(8.6) is precisely the same as those of (7.6)-(7.8). By
Theorem 7.3, we find that the error process e(tlt) is L2-stable. Now the control law can
be rewritten as

u(t)=-S-(B’oLo+BILol)x(t)-S-1 [B’oL(o’+h)+B’lL(o"+h)]
h

[A ax(t + o") + BlU(t + o")] do"
(8.7)

+s-t(B’oLo+BILo)e.(tlt)+$- [B’oL(r+h)+BIL(r+h)]
h

Ale(t+o-[t) do".

Since the error process is decoupled from the x system, we find that the composite
system given by (8.1), (8.4)-(8.6) and (8.7) is L2-stable if the part involving only the x
and u processes (with e(slt) 0) is. As Theorem 3.2 guarantees the L2-stability of the x
and u processes, the theorem is proved.

Appendix. We give here an outline of the proof of existence and uniqueness of
solutions to equations (4.3)-(4.4).

Let

r/(t) (tlt), (t) (t- hit),
K(t) [P(t, t, t)C’o + P(t, t- h, t)Ci ]R-,
Kz(t, s) [e(t- h, s, s)C’o + P(t- h, s h, s)C’ ]R-

IO Itz(t) KI(S) dz(s), z2(t) Kz(t, s) dz(s).
-h

Note that the processes Z and zz have continuous sample paths almost surely.
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Consider the interval [0, T], and let b(t) 5(tit) Ex(t), -h <-_ <= O. Equations
(4.3)-(4.4) are equivalent to the following integral equations.

i i(A.1) r/(t)=b(0)+ [Ao- gl(s)Co]n(s) ds + [A gl(S)C](s) ds + z(t)

it
()

iok(t-h)- K2(t-s)Coc(s) ds- K2(t-s)Corl(S) ds
-h

K2(t, s)Cj(s) ds + z2(t) for 0 -<_ _-< h
-h

(A.2) (t)= t--h t-h

b(0) + I [Ao-Kl(S)Co]rl(s)ds+ I [A-KI(s)C1](s) ds

+ Za (t- h It-h K2(t, s)Corl(s) ds
-h

K2(t, S)Cl(S) ds + z2(t)

for h <_-t=< T.

Now assume the function 4 is continuous (in (4.3)-(4.4), b =0), and for each A >0,
define a norm on the Banach space C[0, T] x C[0, T] by

II(n,)ll=max {sup e-Xtlrt(t)l; sup e-tl(t)l}
O<_t<=T

Define .also the map F" C[0, T] C[0, T]- C[0, T] C[0, T] by

g(’0, ) (/1, 1)

where r/a(t) is the function on the right hand side of (A.1) and sea(t) is the function on the
right hand side of (A.2). Straightforward estimates show that for A sufficiently large, F is
a contraction mapping. We can therefore conclude the existence and uniqueness of
solutions to (4.3)-(4.4).

Acknowledgement. I wish to thank A. Manitius and the reviewers for many helpful
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EQUIVALENCE OF LINEAR COMPLEMENTARITY PROBLEMS AND
LINEAR PROGRAMS IN VECTOR LATTICE HILBERT SPACES*

C. W. CRYER? AND M. A. H. DEMPSTER$

Abstract. Let X be a vector lattice Hilbert space with dual X*. LetM be a continuous linear mapping of

X onto X*. Let p, q X* with p > 0. We consider the relationship between the linear complementarity

problem: Find x X such that x >= O, Mx + q >= O, (x, Mx + q) 0, and the linear programming problem: Find

x X which minimizes (x, p) subject to x >= O, Mx + q >= O. For the problem of a cavitating journal bearing,
which is used as an example, the linear program requires the minimization of a linear functional which is

proportional to the load borne by the bearing.

1. Introduction. The linear complementarity problem in real n-dimensional
Euclidean space R is: Find x R such that x >- O, Mx + q >= O, and x T(Mx + q) O,
where M is a given real n n-matrix and q is a given vector in R n. The linear
programming problem in R is: Find x 6 R which minimizes px subject to x _->0 and
Mx + q >-_ O, where M is a given real n n matrix and p and q are given vectors in R.

Mangasarian (1976) showed that, under certain conditions, each solution of the
linear programming problem in R" is a solution of the linear complementarity problem
in R ". Mangasarian (1977), (1979) has subsequently extended this work. Related work
is due to Cottle and Veinott (1972), Mot6 (1971), Tamir (1973), Cottle, Golub, and
Sachet (1978), Cottle and Pang (1976), (1978), Pang (1976), (1977), (1978), and Cottle
(1976).

Quite independently, and often not very explicitly, the relationship between
certain infinite-dimensional linear programming problems and linear complementarity
problems has been noted (Moreau (1971), Durand (1968), Lewy and Stampacchia
(1969), Stampacchia (1965), Lions and Stampacchia (1967)).

Here, we consider extensions of some of the results of Mangasarian to infinite-
dimensional spaces. Apart from their intrinsic value, our results provide useful ways of
interpreting, analyzing, and solving linear programming problems and linear comple-
mentarity problems arising in physical situations.

The following abbreviations are used" LP (linear program), LD (dual linear
program), LE (least element problem), LC (linear complementarity problem), VI
(variational inequality), and UM (unilateral minimization problem).

2. Preliminaries. X denotes a real Hilbert space with norm II" and dual Y X*.
The. evaluation of a continuous linear functional X* at a point x X is denoted by
(x, ).

It is assumed that X is partially ordered by a vector ordering =>. Let

P={xeX:x>=O}.

Then (Kelley and Namioka (1976, p. 224)) P is a convex cone in X with vertex at the
origin" that is, P +P c p and APc P for all nonnegative real A. We assume that P is
closed, x y iff x y => 0, that is, x y P.

* Received by the editors November 7, 1978, and in revised form May 7, 1979.
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was supported by the National Science Foundation under Grant MCS77-26732 and the University of
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The dual cone P* X* is defined by

(2.1) P* {x* X* (x, x*) _- 0 for all x P}.

We write x* >_-0 if x* P*. Since P is closed it follows from the Hahn-Banach theorem
that x _>-0 iff (x, x*)-> 0 for all x* P*.

It is also assumed that X is a vector lattice (Kelley and Namioka (1976, p. 229)).
That is, for all x, y X, there exists a unique element sup (x, y) X such that sup (x, y) ->
x and sup (x, y) y; furthermore, if z X satisfies z -> x and z _-> y then z _-> sup (x, y).
The assumption that X is a vector lattice has the following consequences. For all
x, y X there exists a unique element inf (x, y) such that x -> inf (x, y) and y _-> inf (x, y);
furthermore, if zX satisfies z<_-x and z-<_y then z<-inf(x, y). If x>_-y then
sup (x, y) x, and if y -_> x then sup (x, y) y; since sup (x, y) is unique, it follows that if
x -> y and y _-> x then x y. For every x X, x sup (x, 0) inf (x, 0) so thatX P-P. If
0 x + y where x, y P then x y 0; thus 0 is an extreme point of P, that is, P is a
pointed cone.

M:X-Y=X* denotes a continuous linear transformation with adjoint
M*: Y* -X* defined by

(2.2) (x, M’y*)= (Mx, y*).

Associated with M we have the continuous bilinear operator a: XX-R
defined by

(2.3) a(v, u) (u, My);

a is symmetric if a (u, v) a (v, u), and coercive if

(2.4) a (x, x) allxl[z,
for some real strictly positive constant a and all x e X.

We will sometimes impose the following conditions upon a and M:
Condition S. If r X* and u, v X are such that

a(u, O) >- (0, r) and a(v, 4’) >= (0, r) for all O P,

and if w inf (u, v), then

a(w, O) >---- (0, r) for all 0 P.

Condition Z. If u, v P satisfy inf (u, v)= O,

then a (u, v) -<_ 0.

p and q denote elements of X*. We assume frequently that p eP*. We will
sometime assume that p is strictly positive, that is, if x e P and (x, p)= 0 then x 0.

Since

(2.5) a(u, 4’)-(O, r) (O, Mu r),

Condition S may be rewritten as follows: if Mu >=r, My >-r, and w =inf (u, v), then
Mw >-r. If -M is the Laplacian operator V: and r 0 then Mu >-_0 means, in an
appropriate sense, that -u is subharmonic. In this case, Condition S reduces to the
well-known fact that the infimum of two superharmonic functions is superharmonic.
There is, therefore, a close connection between some of the present results and the
theory of subharmonic functions (Rado (1972), Brelot (1945), 1965), Stampacchia
(1965), Littman (1963), Moreau (1971)).
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Condition S is equivalent to the condition that the set

S={u X:a(u, 0)_-><O, r> for all OP}

is a meet semi-lattice for all r 6 X.
In the case when M is a square matrix, Condition Z is equivalent to the require-

ment that the off-diagonal elements ofM be nonpositive--that is, that M is a Z-matrix
(Fiedler and Ptak (1962)). There is, therefore, also a close connection between some of
the present results and the theory of M-matrices and Z-matrices (Poole and Boullion
(1974), Plemmons (1976)). Condition Z was implicitly used by Stampacchia (1965, p.
151) with the conclusion a (u, v) <- 0 replaced by a (u, v) 0.

Conditions S and Z are not equivalent because, as shown in 2.1, the necessary and
sufficient conditions for Conditions S and Z are not equivalent in the case of matrices.
However, we do have the following

THEOREM 2.1. Let a be coercive and satisfy Condition Z. Then a satisfies
Condition S.

Proof. Let u, v X and r X* satisfy a (u, ) _-> (, r) and a (v, ) _-> (p, r) for all
ff =>0. We wish to show that if w =inf (u, v) then a(w, 4)_-> (, r) for all ff =0. To do so,
we modify an argument of Stampacchia (1965, p. 205).

Introduce the set U X which consists of all ( X satisfying r __> w. U P + w is
closed and convex. From the fundamental theorem on variational inequalities (Stam-
pacchia (1964)) we know that there exists r/ U such that

(2.6) a(rl, z-rl)>-_(z-rl, r),

for all z U. In particular, choosing z r/+if, we see that a(r/, if)_-> (p, r) for all ff _->0.
The theorem will therefore be proved if we can show that r/= w.

Set r inf (rt, u) U. From (2.6) with z r,
(2.7) a(r/, r-r/)_> (r-r/, r).

On the other hand we know that r/- r => O, u r __> O, and inf (rt r, u r)
inf (r/, u)- r O. Invoking Condition Z we see that

a(sr, st-rt) a(u, -rt)+ a(-u,

=a(u, (-n)+a(u-(, n-()
(2.8)

<=a(u,-n)

<=(- q, r).

Combining (2.7) and (2.8) we find that

a(-n,-n)<-_o.

Since a is coercive it follows that sr inf (u, r/) rt, so that r/=< u. Similarly r/=< v. Hence
rt <=inf (u, v) w. But rt U so that rt >= w. We conclude that

In the case when M is a real square matrix, it is readily shown from Theorem 2.1.1
below that if a is coercive and satisfies Condition S then a satisfies Condition Z. We do
not know whether this is true in general.

We now give two examples of spaces and operators fitting into the above frame-
work.

2.1. Example 1. Let X Y X* Y* R"; M (mgi) an n n real matrix; and
p-(p), q =(q), n-vectors. Let P be the set of vectors in R" with nonnegative
components, so that P is closed and P* P.
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P has the additional important property that it has nonempty interior.
Clearly, p is strictly positive iff pi > 0 for all i.
It is readily seen that Condition Z is satisfied iff mi/.-<_ 0 for /" (that is, M is a

Z-matrix).
THEOREM 2.1.1. Condition S is satisfied iff every row ofMhas at most one strictly

positive coefficient, that is Mr is pre-Leontief (Cottle and Veinott (1972, p. 244)).
Proof. We first observe that Mr is pre-Leontief iff each row k of the inequality

Mu >= r can be written in the form

(,) c,u _-> + Z

where d/. -> 0 for all ]; cs -> O; and where the dependence upon k of cs and d/. has been
suppressed.

First let us assume that Mr is pre-Leontief and that Mu >-r, My >=r. Then
inequality (.) holds for u, and a similar inequality holds for v. Since d/. => 0 we have that if
w inf (u, v) then

csw inf (csus, csvs)

rk + Y’, d/. inf (u/., v/.)--rk + Z
j=l /’=1

so that Condition S is satisfied.
Now let us assume that Condition S holds but that Mr is not pre-Leontief. Then

there is a row k of M with at least two positive coefficients, mks and mkt say. Thus, the
kth row of the inequality Mu >-r takes the form

mksUs l’k mktUt mkjUh

js,t

and a similar inequality holds for v. Set us 1links, U =--1links, Vs 2Us, V 2U, and
u/. v/. 0 otherwise. Finally, set w inf (u, v) and

/=1 /=1

for all ]. Then Mu >-r, and My >-_ r. But,

/=1 /=1
js,t

so that the inequality Mw Nr does not hold. U
Remark. Cottle and Veinott (1972, Corollary 2,p. 245) show that Mr is pre-

Leontief iff the set

X+ ={u eR"’Mu >-r, u =>0}

has a least element for each r such thatX is nonempty. This leads to an alternate proof
of Theorem 2.1.1.

In conclusion, we note that if the problems in Example 2 below are discretized, the
resulting finite difference or finite element matrices usually satisfy Conditions S and Z.
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2.2. Example 2. Let X H (f), where D is a bounded domain (open connected
set) in R n, and Ho (f) is the Sobolev space of once-differentiable functions vanishing
on 0f (Adams (1975)). Then Y=X* =H-I(I)). Let M be the linear self-adjoint
operator,

(2.2.1) (Mu)(t) - ai(t) (t) n,

with coefficients ai(t) which are continuously differentiable, where the indices and j
are summed from 1 to n. It is assumed that -M is uniformly elliptic, so that

(2.2.2) aii(t)ii =, ,
for all : (:i) R n, and some constant a > 0.

Every x H01 has a representation as a measurable function x(t), and any two such
representations of x differ only on a set of measure zero. We write x -> 0 if x(t) >- 0 a.e.
(almost everywhere). P {x X: x -> 0} is clearly convex.

To show that P is closed, let {xn} be a sequence of points in P which converges tO
x e H. Then x,(t) converges to x(t) in L2(f), from which it follows that xn(t) x(t) a.e.
Hence, x(t)>-0 a.e. so that x P.

Let x H (lq). Then x >-0 in the sense ofHa(l)) if there exists a sequence {q,,} of
functions q, e Ca(l’) which satisfy q,(t)->0 in f and which converge to x in Ha(D,)
(Lewy and Stampacchia (1969, p. 155)). If x =>0 in the sense of Ha(D,) then it follows
immediately that x(t)>= 0 a.e. Conversely, .let x eH() satisfy x(t) >-_ 0 a.e. If 2 denotes
the extension of x to R" obtained by setting 2(t) 0 for t D., we know that 2 H (R ")
(Adams (1975, p. 57)). The averaged functions 2h are smooth and nonnegative, and
they converge to 2 in HI(R ’) (Adams (1975, p. 52)). If q9h )h I- then (0h -9, X in fl, and
we can conclude that x _->0 in the sense of Ha(O). We have thus shown that if x 6H (f)
then x->_0 in the sense of Ha(O) iff x(t)>-O a.e. This is of importance to us because
Stampacchia and his colleagues use _->0 in the sense of Hi(D).
H is a vector lattice" if x, y Ho then the functions

(2.2.3)
sup (x, y)(t) sup (x(t), y(t)),

inf (x, y)(t) inf (x(t), y(t)),
are representations of elements in H0. (Lewy and Stampacchia (1969, p. 169) prove
thatH1(12) is a vector lattice, and their proof can be readily adapted to the present case.)

Another very useful property of Ho is that if x H0 and F is a measurable subset
of lq on which x(t) is constant then (Lewy and Stampacchia (1969, p. 169)),

(2.2.4) IF Igrad x(t)l2 dt O.

As defined in (2.2.1), the operator M can only be applied to functions u which are
twice differentiable. Let a" H x H0 R be the symmetric coercive bilinear operator
defined by

(2.2.5) a(u, v)= Z fa ai(t)
Ou O_y_v dt.
Ot Ot

We extend the domain of definition ofM by regardingM as the mapping from X Ho
to its dual space X* H-a defined by

(2.2.6) (v, Mu)= a (u, v) for all u, v e H.
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The standard theory of elliptic operators allows us to assert that M is uniquely defined
by (2.2.6) and that M is a homeomorphism of X H0 onto X*=H-1 (Lions and
Magenes (1972, p. 207)).

THEOREM 2.2.1. M satisfies Conditions S and Z.
Proof. To prove Condition Z, let u, v 6 P and inf (u, v) 0. Let u vanish on F

and v vanish on G c fl. Then, using (2.2.4), we conclude that

Ou Ov
a u v)= 2 a -i -i dr,

= fvai(t) O O dt + I ai(t) O O dt=O
Ot Ot --F Ot

so that Condition Z is satisfied.
Stampacchia (1965, p. 205) proves that Condition S is satisfied.

3. The linear program, the dual linear program, and the least element
problem. With the notation of 2, the linear program (LP) is:

(3.1) (LP) Minimize (x,p) subject to Mx+q 0.
xP

The dual program (LDF) which is (formally) dual to LP is:

(3.2) (LDF) Maximize (-q, y*) subject to -M*y*+p 0,
y*p**

where

(3.3) P** {y* 6 Y*. y* >_- 0},

{y* Y*.(u*, y*) >- 0 for all u* P*}.

If x is a solution of LP and y* is a solution of LDF then,

(3.4) (x, p) -(-q, y*) (x, -M’y* +p) + (Mx + q, y*) _-> O,

so that the value of LP is always greater than or equal to the value of LDF. In particular,
if (x, p)+(q, y*)= 0 for some feasible x and y* then x and y* are optimal. It may,
however, occur that the two values are never equal, in which case there is a duality gap.

Since X isreflexive we know (Dunford and Schwartz (1966, p. 66)) that there is an
isometric isomorphism K which maps X onto X** Y* and which is defined by

(3.5) (x, x*)= (x*, Kx).

Let

(3.6) y* y,

where y X (not Y), so that

(3.7) (-q, y*) (-y, q).

We assert that y*=> 0 iff y P. First assume that y 6 P. Then, for any u*6 P*
(y, u*)=> 0, so that y* =>0. On the other hand, suppose that y* =>0 but that yP. Then,
since the singleton {y} is compact and the cone P {x X: x => 0} is closed and convex,
these two sets can be separated (Dunford and Schwartz (1966, p. 417)). That is, there
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exists a linear functional f Y and constants e > 0 and c such that

(x,f)>=c ifxP,

Using the properties of P we conclude that c O, so that f P* and (y, f)-<-e. But
(y, f)= (f, y*)>= O, and we have a contradiction.

Finally, for any u X,

(u, M’y*) (Mu, y*), (definition of M*)

(equation (3.6)),

(definition of K)

(Mu, Ky),
(3.8)

(y, Mu),

u, l’Iy ),

where we define the linear operator .hr: X-X* Y by

(3.9) a(u, v) (v, Mu)= (u, (’lv).
Thus, -M’y* + p P* iff -My + p 6 P*.

Summing up, we see that y* satisfies LDF iff y* y where y solves"

(LD) Maximize (-y, q) subject to -/y +p -> 0,
yx y-->0,

and we will take this to be the dual of LP in our further work.
Since X is partially ordered, we may also consider the least element problem (LE):

Find x P such that Mx + q >= 0 and x _-< u for every u P satisfying Mu + q >= O. LE has
at most one solution, for if xl and xz were two solutions we would have xl <=xz and
xz <- x which implies that xa x2.

In the special case X R n, there exists a very satisfactory theory for LP and LD,
and Mangasarian (1976) used this as the starting point for his study of the relationship
between LP and LC (the linear complementarity problem). LE has also been studied
in the finite dimensional case (Cottle and Veinott (1972)).

The case When X is infinite dimensional is much more difficult. It is usually
assumed, for example by Ekeland and Temam (1974, p. 66), that the Arrow-Hurwicz
constraint qualification is satisfied, namely that there exists u P such that Mu + q is an
interior point of P*. An example of Craven (1977, p. 331) illustrates the difficulties
which can arise when P* does not have any interior points and when M is not an open
map. Dempster (1975) develops a general framework for the analysis of LP and LD.

In the present paper we prove the existence of solutions to LP and LE by using the
theory of variational inequalities. We do not prove the existence of a solution to LD,
although in 6 we give an example in which LD does have a solution.

4. The linear complementarity problem, the variational inequality, and the uni-
lateral minimization problem. The linear complementarity problem (LC) is as follows:
Find x P such that

(4.1) (LC) Mx + q >= O, (x, Mx + q) O.

The variational inequality (VI) is: Find x P such that

(4.2) (VI) a(x, v-x)+(v-x, q)>-O,

for all v P.
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If a is symmetric then the unilateral minimization problem (or quadratic pro-
gramming problem) (UM) is: Find x P such that

(4.3) (UM) J(x) <=J(u) for all u 6 P

where

(4.4) J(u)=a(u, u)+2(q, u).

The basic result on variational inequalities is due to Stampacchia (1964): if a is
coercive then there exists a unique solution to VI.

The connection between VI and UMwas also observed by Stampacchia (1964): if a
is symmetric and coercive, then VI is equivalent to UM.

The relationship between VI and LC was noted independently by a number of
workers including Lions and Stampacchia (1967, p. 172), Karamardian (1971), Mor6
(1971). The basic result is (Cottle (1976, Prop. 1, p. 181)):

THEOREM 4.1. LC is equivalent to VI.

5. The relationship between the linear program, the least element problem, and
the linear complementarity problem.

THEOREM 5.1. If a is coercive and satisfies Condition Z, then LE has a solution,
namely the unique solution of VI.

Proof. The proof is a modification of proof of Stampacchia (1965, p. 151) who
implicitly used Condition Z in the special form: if u, v P and inf (u, v)=0 then
a(u,v)=O.

Let u be the unique solution of VI so that u P and

a(u,v-u)+(v-u,q)>=O

for all v P.
In particular, choosing v u + w for any w e P we conclude that Mu + q >= O.
Now let w be any element such that w P and Mw + q >= O. We assert that w => u.

To see this, let sr min (u, w) X, so that w " >- 0 and u sr => 0. Furthermore,
inf (w sr, u sr) inf (w, u)- " 0.

Then

a(u-, u-st) [a(", -u)+(-u, q)]-[a(u, -u)+(-u, q)],

<-[a((,(-u)+((-u,q)],

because u satisfies VI. But

a((, (-u)+((-u, q)=a(w-(, u-()+[a(w, (-u)+((-u, q)],

<=0,

because the first term on the right is nonpositive by Condition Z and the second term is
nonpositive since Mw + q >= 0 and sr- u =< 0.

Combining the above inequalities we see that a (u ’, u sr) -< 0. Remembering
that a is coercive we conclude that u ’. Thus, w => sr u so that u is a solution of LE.

THEOREM 5.2.
(i) If p is positive and x solves LE then x solves.LP.
(ii) If a satisfies Condition S and p is strictly positive, then LP has at most one

solution.
(iii) If a satisfies Condition S, p is strictly positive, and x solves LP then x solves LE.
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Proof. (i) is obvious. To prove (ii), let xl and x). be two solutions of LP. By
Condition S, (=inf(xl, x2)P satisfies M+q>=O and ((,p)<=(xl, p). Since x is
optimal, (sr, p)= (x l, p) and we conclude that " x l. Similarly, sr x2, so that x x.

To prove (iii), let u P satisfy Mu + q >-_ O. Set r inf (u, x). Then Msr + q _-> 0 and
(sr, p) (x, p) so that r x. Hence, u ->_ x and x solves LE.

Remembering that if a is coercive and a satisfies Condition Z then a satisfies
Condition S (Theorem 2.1) we find the following:

THZORZM 5.3. Ifa is coercive and satisfies Condition Z, and ifp is strictly positive,
then LP, LE, VI, and LC all have the same unique solution.

THZORZM 5.4. Assume that x solves VI, that y solves LD, that (x, p)+ (y, q)= 0,
that a is coercive and satisfies Condition Z, and that p + q >- O.

Then y >=x.
Proof. Set w inf (x, y). Then

a(x w, x w) a(x y, x w)+ a(y w, x w),

<-_a(x-y,x-w),

since y w ->_ 0, x w -> 0, and inf (y w, x w) 0. But,

a(x y, x w) a(x, x w)- a(y, x w)

a(x, x- w)-a(x- w, y)

=a(x,x-w)+(x-w,

[a(x, x- w)+(x- w, q>]- (x w, p+q}+(x- w,-My +p).

The first term on the right is negative because x solves VI. The second term is negative
because p + q P* and x w P. The third term is zero because the equality

O (x, p) + (y, q) (x, -2ry + p) + (y, Mx + q)

implies that (x,-2/y +p)= O and hence, since O =< w---x, that (w, _/ry +p)= O.
Combining the above, we conclude that a(x--w, x- w)_ 0 so that x w. Then

y = w inf (x, y) x.
It may be observed that if x solves LP, y solves LD, (x, p)+(y, q)=O, and y =x,

then we have that

0 _<- (x, Mx + q} <= (y, Mx + q) 0;

that is, x solves LC.

6. A one-dimensional problem. We consider a special case of Example 2 ( 2.2)’
X H(0, 2),

t’2

min (x, p) lx(t) dt subject to x(t) >=0 a.e., and

(6.1)
Mx + q =---(t)+(t- 1) _>-0,

with the corresponding dual problem

(6.2)

2

max (y, -q)= I0 (t- 1)y(t) dt

-lly + p =__ (t) + l >= O.

subject to y(t)-_>0 a.e.,
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The inequality - + (t- 1)- 0 is interpreted in the sense that
2

(6.3) (q, Mx + q) Jo [A(t)qS(t) + (t- 1)q(t)] dt >- 0,

for all nonnegative q H(0, 2), and the inequality + 1 =>0 is interpreted in the
same way.

This problem was chosen because it is a simple problem with the same general
structure as the problem for a cavitating journal bearing which is discussed in the next
section.

There is a straightforward procedure for obtaining possible solutions of such
one-dimensional problems; these solutions can then be varied a posteriori. We
assume that x(t) > 0 for 0 < < z and x(t) 0 for - <_- t-< 2, where z is an unknown
constant corresponding to the free boundary (the point z). If x also satisfies LC then
(x,- +(t- 1)) 0, so that -(t)+(t- 1)=0 for 0t<--. The general solution of the
equation - + (t- 1) 0 is

(6.4) x(t)=A +Bt+6(t 1)3.
Using the conditions x(0) x(z) 0 to determine the constants A and B we find

(6.5) x(t) t(t- z)[-3 + + -]/6.

To determine z we note that the condition - + (t--1)-> 0 implies that for all
smooth nonnegative o H0 (0, 2),

2

q, Mx +q)= Jo (o + -1)q d

2

=fo [A( +(t-1)q] dt + I (t-1)q dt

(6.6) =2q]+Io [-2q+(t-1)q]dt+I, (t-1)qgdt

2

.(7"-)q(7") + Jr (t- 1)q dt

=>0.

This is only possible if - 1 (so that t- 1 -> 0 for jr, 2]) and (- -> 0. But, x(t) -> 0
for <_- " and x(-) 0 so (-- ___- 0. We conclude that (- (- + (r) 0. The
condition A(-)= 0 leads to an algebraic equation for -, namely,

thus, r 2
3- and

(-)=-[-3+2z]/6=0;

0 <t <3"--2,
(6.7) x(t)

O, <- <-_ 2,

is our trial solution.
Using (6.6) and (6.7) we see that x is such that x->0, -,f+(t-1)->0, and

(x, Mx +q)= 0, so that x is a solution of LC. invoking Theorems 4.1 and 5.3, we
conclude that x is the unique solution of LP.

We now assume that 0 (x, p) + (y, q). Since (x, f + 1) 0, it follows that f(t) + 1
0 when x(t) > 0, that is, when 0< < r. On the other hand, since (y, -Y + (t- l)) 0, it



86 C. W. CRYER AND M. A. H. DEMPSTER

follows that y(t)=0 when -5/+(t-1)>0, that is, when r<t<2. We conclude that
;(t) + 1 =0 for 0-<t=< and y(t) 0 for -< t-<2. Solving this boundary value problem
we obtain

t[-2t+3]/4, O<-_t<-,
(6.8) y(t)=

0, _-<t_-<2.
The condition y _>-0 is seen to be satisfied.

Direct computation yields
2 2

(6.9) (x, p)= "Jo x(t)dt-l-8- -fo (t-1)y(t)dr= q).

The solutions x(t) and y(t) are plotted in Figure 6.1. We note that y >-x as proved
in Theorem 5.4.

FIG. 6.1. x(t) and y(t).

It is possible to give two justifications for the free boundary condition .f(z)= 0.
Firstly, if x Ho (0, 1), as is often the case, then (t) is continuous so that .f(z) (z+)
0. Secondly, a reasonable interpretation of the condition -f(z) + (z 1) 0 is that

A(z+At)-A(z-At)
lim + (z 1) _--> O.
-o 2At

Since A(z+At) 0 and (z O) _-< O, it follows that k(z-O) O.

7. Lubrication cavitation of, journal bearings. A large number of physical prob-
lems can be formulated as linear complementarity problems in which a differential
equation (ordinary or partial) must be solved subject to the inequality constraint that
the solution be nonnegative; roughly speaking, at any point the solution must either be
zero or satisfy the differential equation (Cryer (1977), (1979), Duvaut and Lions
(1972)). The reformulation of such linear complementarity problems as linear pro-
grams has two advantages: (i) it suggests alternative methods of solving the problems;
and (ii) it sometimes provides a physically meaningful interpretation. As an example of
such linear complementarity problems we consider here the problem of a cavitating
journal bearing.

A journal bearing consists of a circular cylinder (the journal) which is rotating
inside a support structure (the bearing). The narrow gap between the journal and the
bearing is filled with a thin film of lubricating fluid. Various geometries are possible. In
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Fig. 7.1 we show a partial journal bearing of finite length. The term ’partial’ refers to the
fact that the journal is not completely enclosed within the bearing, and is partially
exposed to the atmosphere.

W

FIG. 7.1. A partial journal bearing.

It is required to determine the pressure x of the lubricant, and the load W borne by
the bearing. Because the gap between the journal and the bearing is very narrow, the
simplifications of lubrication theory can be applied. In particular, it is assumed that the
pressure does not vary across the gap, so that the problem becomes a two-dimensional
problem in the rectangular domain l)= ABCDEF in the 0z-plane (Fig. 7.2).

D c

FIG. 7.2. The domain 1.



88 C. W. CRYER AND M. A. H. DEMPSTER

The-lubricant flows in from a reservoir along the entry edge AF and flows out
through the ends ABC andDEF as well as through the exit edge CD. At all these points
the lubricant is in contact with the atmosphere, and if the pressure is normalized so that
atmospheric pressure is zero, then the boundary conditions are that x 0 on 0D.. That is,

(7.1) x

The lubricant occurs in both liquid and gaseous phases. It is assumed that the
lubricant vaporizes when the pressure is zero, so that the inequality x 0 must be
satisfied everywhere. If the pressure is greater than zero then the lubricant is in the
liquid phase and satisfies the simplified form of the Navier-Stokes equations known as
Reynolds’ equation. After introducing dimensionless variables, the equation takes the
form (Pinkus and Sternlicht (1961)):

0 (h30_)_a:z 0 (30_) dh
(7.2) Mx + q - h += 0,

where a is a positive constant, and where h h(O) is a given function which is
proportional to the width of the gap.

On the free boundary F, the interface between the liquid and gaseous phases, the
boundary conditions are

(7.3) x 0, Ox/On 0, on F,

.where O/On denotes the normal derivative.
In the engineering literature (Pinkus and Sternlicht (1961)) the problem is

formulated mathematically as a classical free boundary problem" Find x and F such
that x satisfies (7.2) subject to the boundary conditions (7.1), and (7.3). However, in a
large number of papers in the engineering literature, beginning with the work of
Christopherson (1941), numerical approximations have been obtained in a completely
different way: equation (7.2) is replaced by finite differences, and the resulting system of
algebraic equations is solved as a finite-dimensional linear complementarity problem
(Cryer (1971)) which maybe considered as a discretization of the infinite-dimensional
linear complementarity problem

(7.4) x >- O, Mx + q >-_ O, (x, Mx + q) O.

We may thus take (7.4) as the starting point for a mathematical analysis of the problem.
The problem is a special case of Example 2 ( 2.2), and it follows from Theorem 5.1 that
there exists a unique solution x Ho (I) of LE, VI, and LC.

In the engineering literature, there has been some discussion of an appropriate
variational principle for the problem (Christopherson (1957)). The formulation as a
variational inequality leads to two useful variational principles’

(1) Since a is symmetric, the problem is equivalent to the unilateral minimization
problem

inf J(v)= a(v, v)+ 2(v, q).
v0

(2) For any strictly positive function p(O, z), the problem is equivalent to the linear
programming problem

min (x, p)----- Ia x(O, z)p(O, z) dO dz,
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subject to x => 0, Mx + q >-_ O. In particular, if -zr/2 < 0v < 0D < rr/2 (see Figs. 7.1 and
7.2), then p cos 0 >0 and (x, p) is the load W borne by the bearing in the vertical
direction (Fig. 7.1). That is, the solution x minimizes the vertical load.

After completing this paper, we became aware of the work of McAllister and
Rohde (1976) and Cimatti (1977)where the journal bearing problem is also considered
using variational inequalities.
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Note added in proof. Further references on variational inequalities include" H.
BREZIS (1972), Problkmes unilateraux, J. Math. Pures Appl., 51, pp. 1-168. U. Mosco
(1969), Convergence ofconvex sets and solutions of variational inequalities, Advances in
Math. 3, pp. 510-585.

REFERENCES

R. A. ADAMS (1975), Sobolev Spaces, Academic Press, New York.
J. C. BIERLEIN (1975), The journal bearing, Scientific American, July, pp. 50-64.
M. BRELOT (1945), Minorantes sous-harmoniques, extrgmales et capacitgs, J. Math. Pures Appl., 24, pp.

1-32.
(1965), Elements de la Thorie Classique du Potential, 3rd edition, Les Cours de Sorbonne, Centre de
Documentation Universitaire, Paris.

D. G. CHRISTOPHERSON (1941), A new mathematical method for the solution offilm lubrication problems,
Proc. Inst. Mech. Engrs., 6, pp. 126-135.

(1957), Boundary conditions in lubricating films, The Engineer, 203, p. 100.
G. CIMATT1 (1977), On a problem of the theory of lubrication governed by a variational inequality, Applied

Math. Optimization, 3, pp. 227-242.
R. W. COaTLE (1976), Complementarity and variational problems, Symposia Mathematica, 19, pp. 177-208.
R. W. COTTLE, G. H. GOLUB AND R. S. SACHER (1978), On the solution of large, structured linear

complementarity problems: the block partitioned case, Appl. Math. Optimization, 4, pp. 347-363.
R. W. Co’VrLE AND J. S. PANG (1976), A least element theory of solving linear complementarity problems as

linear programs, Technical Summary Report # 1702, Mathematics Research Center, University of
Wisconsin, Madison,

(1978), On solving linearcomplementary problems as linearprograms, Math. Programming Study 7, pp.
88-107.

R. W. COT’rLE AND A. F. VEINOTT, JR. (1972), Polyhedral sets having a least element, Math. Programming,
3, pp. 238-249.

B. D. CRAVEN (1977), Lagrangeanconditions and quasiduality, Bull. Australian Math. Soc., 16, pp.
325-339.

C. W. CRYER (1971), The method of Christopherson for solving free boundary problems for infinite journal
bearings by means offinite differences, Math. Comput., 25, pp. 435-443.

-----(1977), A bibliography offree boundary problems, Technical Summary Report # 1793, Mathematics
Research Center, University of Wisconsin, Madison.

(1979), A survey of variational inequalities, Technical Summary Report, Mathematics Research
Center, University of Wisconsin, Madison, in preparation.

M. A. H. DEMPSTER (1975), Abstract optimization and its applications, Lecture Notes, Dept. of Mathema-
tics, University of Melbourne.

N. DUNFORD AND J. SCHWARTZ (1966), Linear Operators, vol. I, Wiley-Interscience, New York.
J. F. DURAND (1968), Rsolution numrique de problkmes aux limites sous-harmoniques, thesis, Universit6 de

Montpellier.
G. DUVAUT AND J. L. LIONS (1972), Les In6quations en M6canique et en Physique, Dunod, Paris.
I. EKELAND AND R. TEMAM (1974), Analyse Convexe et Problmes Variationnels, Dunod, Paris.
M. FIEDLER AND V. PTAK (1962), On matrices with non-positive off-diagonal elements andpositive principal

minors, Czech. Math. J., 12, pp. 382-400.



90 C. W. CRYER AND M. A. H. DEMPSTER

S. KARAMARDIAN (1971), Generalized complementary problem, J. Optimization Theory Appl., 8, pp.
161-168.

J. L. KELLEY AND I. NAMIOKA (1976), Linear Topological Spaces, second corrected printing, Springer-
Verlag, New York.

H. LEW AND G. STAMr’ACCHIA (1969), On the regularity ofthe solution ofa variational inequality, Comm.
Pure Appl. Math., 22, pp. 153-188.

J. L. LIONS AND E. MAGENES (1972), Non-homogeneous Boundary Value Problems and Applications, L
Springer-Verlag, Berlin.

J. L. LIONS AND G. STAMPACCHIA (1967), Variational inequalities, Comm. Pure Appl. Math., 20, pp.
493-519.

W. LITTMAN (1963), Generalized subharmonic functions monotonic approximations and an improved
maximum principle, Ann. Scuola Norm. Superiore Pisa Sci. Fis. Mat., (3) 17, pp. 207-222.

O. L. MANGASARIAN (1976), Linear complementarity problems solvable by a single linear program, Math.
Programming, 10, pp. 263-270.
(1977), Characterization of linear complementarity problems as linear programs, Mathematical
Programming Study 9, pp. 74-87.

(1979), Simplified characterizations of linear complementarity problems solvable as linear programs,
Math. of Operations Res. 4, No. 3.

G. T. MCALLISTER AND S. M. ROHDE (1976), An optimization problem in hydrodynamic lubrication theory,
Appl. Math. and Optimization, 2, pp. 223-235.

J. J. MOR (1971), The application of variational inequalities to complementarity problems and existence
theorems, Tech. Rep. no. 71-110, Dept. of Computer Science, Cornell University, Ithaca, N.Y.

J. J. MOREAU (1971), Majorantes sur-harmoniques minimales d’ une fonction continue, Ann. Inst. Fourier
Grenoble, 21, pp. 129-156.

J. S. PANG (1976), Least-element complementarity theory, Ph.D. dissertation, Dept. of Operations Research,
Stanford University, CA, Sept.

(1977), A note on an open problem in linear complementarity, Math. Programming 13, pp. 360-363.
(1978), On cone orderings and the linear complementarity problem, Linear Algebra and Appl., 22, pp.
267-281.

O. PINKUS AND B. STERNLICHT (1961), Theory ofHydrodynamic Lubrication, McGraw-Hill, New York.
R. J. PLEMMONS (1976), A survey of M-matrix characterizations I: nonsingular M-matrices, Technical

Summary Report # 1651, Mathematics Research Center, University of Wisconsin, Madison.
G. POOLE AND T. BOULLION (1974), A survey ofM-matrices, SIAM Rev. 16, pp. 419-427.
T. RADO (1972), Subharmonic Functions and the Problem of Plateau, Chelsea, New York.
G. STAMPACCHIA (1964), Formes bilinaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris,

258, pp. 4413-4416.
(1965), Le problkme de Dirichletpour les quations lliptiques du second ordre & coefficients discontinus,
Ann. Inst. Fourier Grenoble, 15, pp. 189-258.

A. TAMIR (1973), The complementarity problem of mathematical programming, Ph.D. thesis, Dept. of
Operations Research, Case Western Reserve University.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 18, No. 1, January 1980

1980 Society for Industrial and Applied Mathematics
0363-0129/80/1801-0006501.00/0

NECESSARY CONDITIONS FOR OPTIMALITY OF ELLIPTIC SYSTEMS
WITH POSITIVITY CONSTRAINTS ON THE STATE*

P. MICHEL,

Abstract. Recently, necessary conditions for optimality were established in the case of nonlinear elliptic
multi-dimensional systems with integral constraints [P. Michel, Condition ndcessaire d’optimalitd pour des
systmes d’quations elliptiques non lindaires, Quatrimes journ6es de contr61e (Metz, 18-21 Mai 1976),
polycopi6 Universit6 de Metz, 1976]. Here this problem is solved in the case of additional constraints of
positivity of the state’s components on measurable sets.

Introduction. The study of necessary conditions for optimality of partial differen-
tial systems was a long time limited to the case without constraints on the state [3], [7],
1 ]. Recently, these limitations were partially removed: in [2] there is a statement in the
case of integral constraints (and it seems correct only for inequality constraints); in [5]
and [6], there are necessary conditions, respectively for elliptic and parabolic systems,
in the case of nonlinear equations, finite-dimensional state and integral constraints.

The present study sets the necessary conditions in the case of additional positivity
constraints, like y(x)-> 0 on a given measurable set; such constraints are useful in the
applications.

1. Problem statement. Let us consider the following optimal control problem.
Problem (P): minimize the cost functional

), dx(x X

for y V and u an admissible control such that:

(1) for l<-l<-_mo:At(u) y(x)+ft(y(x),u(x),x)=Oa.e, inf,
for l<-_k<-_m:yg(x)=O a.e. in

(2) u(x) U(x) a.e. in f,

(3) for 1 _-< -< io: g(y (x), x) dx <-_ O,
for i0 + 1 =< _--< ix :f gi(y(x), X) dx O;

(4) for l<--k<=m:yk(x)>--O a.e. in fk,

where f is an open bounded subset of ; Of denotes the boundary of f; U is a
topological space and for each x f, U(x) is a subset of U; for 1 <= k <- tn, fl(1 <- <- mo)
and g(O <_- <- il) are real-valued functions respectively defined on " U f and on
l"* lq, which are of class C with respect to the first variable, i.e., such that for each
v U and almost every x f, the functions

Z --> fl(Z, V, X) and z -’> gi(z, X)

are of class C in ".
For 1 -< k _-< rn, fl is a measurable subset of 12.
For 1 _<- _<- rno, the elliptic operator A(u) is defined by:

OY---’3k(x) + E bk(X, U(x))yk(X)(5) Al(U) y(X):- E X/ aiikl(X, U(X))
tgXik=l i=1 k
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with realvalued functions aijkt and bkt defined on fx U. The state y (y 1,"" ", y,)
belongs to the space V Ho(12) H(12) denoting the Sobolev space

E() (1NiNn) andz=OonO

y e V is a solution of (1) iff it satisfies" for 1 N N mo and for H ()

Z ait(x, u(x)) dx +Z bt(x, u (x))y dx
,,i 3x 3x

(6)

+ Ja d(y(x), u(x), x)(x) x O.

Let ; V be fixed, and q, r and s be positive integers such that

1 1 1 q q
(7) q>2; ----; r= s=.

q-2 n q-l’ q-2

An admissible control u is a measurable function from fl into U which verifies (2).
A regular control is an admissible control which verifies: there exist C(x) L() and
d 0 such that

u(x) U(x) a.e. in fl,

a,(x, u(x)) L(fl) Vi, y, k, l,

(8) b(x, u(x))LS(fl) Vk, l,

d(y(x), u(x), x)L’() V/,

S denotes the set of regular controls.

2. Assumptions. Let be a regular control and ; be a function in V which satisfy
conditions (1), (2), (3), (4).

Assumption 1. There exist C(x)L’() and d0 such that, for 0 i1, z ,
and 1 km

(9) Og(z,oz x)] C(x) + d[z-.
Assumption 2. For every measurable function (z(x), v(x)) from fl into x U, all

the functions:

are measurable.

f(z(x), v(x), x) and (z(x), v(x), x),

gi(z(x), x) and Og--z(z(x), v(x), x),
C3Zk

aiit(x, v(x)) and bkl(X, V(X))

Notation 1. For x6f, v U(x) and Y= (yo, yl,""", yn) (R")n+l, let h(x, v, Y)
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be the point Z (z0, , z,) (,,,,),+1 whose components are, for 1 <- <= mo

ZOl "-’f/(Yo, 13, X)-[- 2 bkl(X, V)Yok,
k=l

Zil 2 aiikl(X, l))yil V1 <- <-- n.
k=lj=l

Assumption 3. For almost all xl and for every y(N,,),+l, the set
h(x, U(x), Y) is a closed convex set; for any measurable functions Y(x) and Z(x)
verifying Z(x) h(x, U(x), Y(x)) a.e., there exists a measurable function v(x) U(x)
such that Z(x)= h(x, v(x), Y(x)) a.e.

l-I1/0moNotation 2 Vo denotes the space 1,0
Assumption 4. For each y’ belonging to the dual space V) of Vo, there exists at

least one solution y V of the linear system"

for 1 <_-- --<_ mo’A(t) y(x) + Y Ofl(;(x), f(x), X)yk(X)-- y; 0.
k= OZk

Notation 3. For x , v U and p (pl, ,p) V0, one sets

(10) H(p, v, x)= Zfl(;(x), v, x)pl(x)+ bkl(X,
k,l

+ ’. aiikl(X, V) O’-’k(x) Opt
i,j,k,l OXj Xi (x )"

Assumption 5. For each p H (D)",

inf H(p, v, x)= inf H(p, u(x), x) a.e. in D;
vU(x) uS

the infimum on S is taken according to the order on L(f).
Remarks. The usual assumptions (see for example [2], [7]) involve these

assumptions. The convexity assumption 3 is the only nonstandard assumption"
generally U(x) is a fixed finite-dimensional convex set, all the functions are assumed to
be differentiable with respect to the control, and the conclusion is the maximum of
(OH/Ov)(p, gt(x), x) v; to obtain the maximum of the Hamiltonian H, one needs then
additional convexity assumptions which are quite stronger than Assumption 3. The
existence of a solution of the linearized system of (1) (Assumption 4) is satisfied in the
usual case mo m with the coercevity conditions.

3. Necessary conditions of optimality.
Notation 4. The adjoint operators of A(u) and (Of/Oz)((x), u(x), x) are respec-

tively defined by their components, for 1 =< k _<-m:

(11)

(12)

Op(A(u)* P)k 2 0_ aqkl(X, U(X)) Xi] +2 bkl(X, U(x))pt(x),
i,i,l OXj

Of p) c3fl (;(X), U(X), X)pl(X)

THEOREM. Let (, a) be an optimal solution ofproblem (P) with a a regular control,
and Assumptions 1 to 5 be satisfied. Then there exist real numbers Ol (0 <-_i<= il) and
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p Vo such that:
(1) p and ai (0 <- <- il) are not all zero
(2) for 0 <- <-_ io, ai is nonnegative
(3) for 1 <-_ <- io, ai a gi(y(x), x) dx 0;
(4) the function 3’ V’ whose components are

(13) (Of p) illlw, (A(a)* p), + (;(x), a(x), x)* + Oli(;(X), X)
k i= OZk

satisfies the properties for 1 <- k <- m

(14) 3,k Tk 0,

(15) y Ho (12) and y(x)->_0 on lqk 3,k y >=0.

(5) the Hamiltonian H(p, v, x) defined by (10) attains, ]’or almost every x in 12, its
minimum on the set U(x) at a (x).

Remark. For fk ; (1 --<_ k =< m), one obtains the result of [5]: 3,k 0 and p is a
solution of the adjoint of the linearized system of (1). To illustrate the fourth conclusion,
let us consider the regular case where the functions ’k may be identified with elements
of L2(’) (that is if p e H20(12)’); then one gets

Y Y Ja r(x)y(x) dx,

and with the denseness of H(12) in L2(12), one obtains"

3,k(x)->O a.e. in f,

3,k (x) 0 a.e. in-lqk,

3"k (x) 0 a.e. in {x e fk; 37k (x) > 0}.

The first part of the proof of the theorem. This is identical with the proof in the case
without permanent constraints [5]. One sets, for a family A (Au)us of scalar measur-
able functions hu(x) in ,

Ilall--E 2 ([IAu(X)al(X, u(x))lk+llA.(x)b,(x,
i,],k,l

In the space E of the families h which satisfy: lib < o, [1. is a norm, and with this
norm, E is a Banach space. M denotes the closed convex subset of the h which verify:
Vu e $, hu(x)_->0 a.e., and Y.uh,(x)= 1 a.e.; S becomes a subset of M by the cor-
respondence which associates to Uoe S the family (ho(X) 1 a.e., and Vu Uo, h(x)
0 a.e.); ] denotes the family associated to

The same arguments as in [6] show that (37, ,) is an optimal solution on V xM for
the problem obtained by substituting in problem (p) the system {for l<=l<
too, Fl(y, h) 0} to the system (1), where Fl(y, h) is defined by

(16) Fl(y, A X a,(x)[At(u) y(x)+ft(y(x), u(x), x)].

LEMMA 1. The functions Fl are defined in V x E, with value in the dual of Hlo(fD;
they are strongly differentiable at (, ) with differential

(17) F ()7, ,). (y, A) F/()7, A) + A,(a). y + E of(y(x), a(x), X)yk.
k 10Zk
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Proof. The proof is in [5, Lemma 3.4].
LEMMA 2. For 0 <-- <-- il, the functions n g;(y(x), x) dx are strongly differentiable at

with differential

(18) li(y) I k= Zk
qg--’/((X), X)yk(X) dX.

Proof. The proof is in [5, Lemma 3.5].
Second part of the proof of the theorem. For 1 k =< m, the function

[-1, if ’k is negligible,
(19) hk(y)

ess sup (-y(x)), if not,

is defined from L2() into R LI {+oo}; it is convex and lower semicontinuous" the set
{(a, y) R x L2(D,); hk(y)--< a} is a closed convex set. And the condition (4) of problem
(P) is equivalent to

(20) for 1 <= k <= m" hk (Yk) <- O.

All the results of [4] remain valid in the case of functions which are sums of strongly
differentiable functions and of lower semicontinuous convex functions, if some of the
one-dimensional components of the convex functions are valued in I LI {+c}: there is
no modification of the notations, the statements and the proofs, which are all indepen-
dent of the possible infinite value.

The arguments of [6] show that (A, 37) is an optimal solution of the problem
obtained by substitution in problem (p) of (1) by {for 1 N <= mo’Fl(y, A) 0} and of (4)
by (20).

It follows from Assumption 4 that the differential of (F1,’.’, F,,o) at ()7, X) is a
surjection from V xM onto V;, and the regularity assumption (3.4 of [4]) is satisfied:
the proof is the same as that in [6, Prop. 5.1 ]. According to [4, Theorem 3.5] there exist
real numbers ai(O<-_i<-_il) and k(l <-- k <-- m), and Pl belonging to the bidual of
Hol(f)(1 -<l -< mo), which are not all zero, such that:

(21)

(22)

(23)

for 0_-< _<- io" ai >-- 0; and for 1 =< k =< m" k 0,

for 1 =< --< io: ai fc gi(f(x), x) dx 0; and for 1 <= k <= m" khk(fk) O,

and for each (y, A) V M verifying IlY 3711 =< 1 and IIA 11 <- 1"

aili(y--f)+.,k[hk(Yk)--hk(fk)]+Y’.pl" F’l(f,.)" (y 37, A --)--> 0.
k

The Pl are identical to elements of H(I)). Conclusions 2 and 3 of the theorem
result from (21) and (22). The a and pl are not all zero: otherwise the/3k would be also
zero (from (22) and (23)), which is impossible. For A , IlYk 37kll -< 1 and Yr )Tr(r # k),
one obtains, with nequality (23) and notation (13).

(24) Yk (Yk fk + k[h, (Yk) hk (fk)] ----> 0.
If hk(Yk)O, then /3k =0 (from (22)) and consequently Yk =0. If hk(k)=O,

relation (24) give,, Yk’]k <--0 and yk" 37k-->_0 for Yk t]k, < 1 and > l:yk verifies
relation (14); and for yk(X) =>0 a.e. in fk, hk(Yk) <=0 and Yk Yk -->0: this is obtained with
tyk + (1 t))Tk, 0<t < 1 such that tlly-11 -< 1.
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To obtain the last conclusion, let us consider u S and any measurable subset P of
for y )7 and the family A M:

Au(x)=t, ifxP, and A,(x)=0 ifxeP,

Aa(x)=l-t ifxP, and Aa(x)=l ifxeP,

Av=0 forvu and vff

inequality (23) is

Jp (H(p, u(x), x)-H(p, (x), x)) dx ->0;

this inequality holds for any measurable subset P of f and consequently

H(p, u(x), x) >=H(p, (x), x) a.e. in fL

The last conclusion results from Assumption 5. The proof of the theorem is
complete.

Assumption 6. For each y’ V’, there exists at least one solution p V0 of the
linear system

A(a)* p +zz (37(x), a(x), x)* p y’.

COROLLARY. Let (, a) be an optimal solution of problem (p), with a regular
control, and assumptions 1 to 6 be satisfied. Then there exist oi (0 <= <= il), Vo and

Vo such that
(1) /, and ci(O<=i =<il) are not all zero;
(2) for 0 <-- <= io, is nonnegative
(3) for 1 <= <= io, a n gi((x), x) dx 0;
(4) / is a solution of

Of c3gi
A(ti)* /5 +zz (7(x), ti(x), x)*./ +. ai--z (17(x), x) 0;

(5) satisfies the relations

A(tT)* +z-z (;(x), tT(x), x)*. )7 0;

and for each y V such that Yk (X) >-- 0 a.e. on fk (1 <= k <= m)

A(tT)* c +--Z-z (37(x), t2(x), x y => 0.

(6) The Hamiltonian H(fi + , v, x) attains its minimum on U(x) at t2(x), a.e. in fL
Proof. For /= (yl," , y,,), there exists e V0 such that

of ),A(a)* +(;(x), a(x), x v.

Setting/5 p , we see that the corollary is the transcription of the theorem’s results.

4. Extensions. The method which has been used, works in more general cases.
With additional terms in the operator A(u) like

(gyk
-F

(9
E C,(x, u(x)) (d,,,(x, u(x))y,,(x))
i,k OXi
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the single difference is the corresponding Assumptions 6 and 3. If the control appears in
the integrals (cost function and constraints):

one need conditions

In gi(y(x), u(x), x) dx

0g---- (z, u(x),x)] (x)+/lz[OZk

with au Lr(f), in the definition (8) of regular controls, and convexity conditions
(Assumption 3) for the modified function h(x, v, Y)= (Z, ), where Z is defined by
Notation 1 and " Ri1+1 is defined by its components

for 0 _--< <_- i1: i gi(Yo, V, X).

For parabolic systems and measurable subsets Ek of ]0, T[ f, constraints like

yk(t, x)_->0 a.e. in Ek
are equivalent to

ess sup (-yk(t, x))-_< 0;

the same method applies and one obtains the corresponding modified results of [6].
One important and easy generalization is possible to the case of constraints like:

(x),.. (x), (x),...,0Y__.51 0Y_.__L Oy__2
q3 X, yl(X),""", ym(X),

OXl "’ OXn OXl

Oy, (x)] _-< 0 a.e. on "i
Oxn /

where q is measurable with respect to x and lower semi-continuous and convex with
respect to the other variables.
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ADDENDUM: A NOTE ON THE LACK OF EXACT CONTROLLABILITY
FOR MILD SOLUTIONS IN BANACH SPACES*

ROBERTO TRIGGIANI"

The main resultwTheorem 1.2--of 1 ], concerning the lack of exact controllability
in finite time for the system

$(t)Xo+ $(t-r)Bu(r) dr,

holds true within the class of locally L-controls for all p > 1, but not for p 1 as claimed
in 1]. Actually, lack of exact controllability over the finite interval [0, T] is guaranteed
even within the class of controls which are locally L,, p > 1, just near T.

As pointed out in [2], a slip has occurred in the inequality at the bottom of page 408
of [1] and, for p > 1, we remedy it by the H61der inequality as follows (we use the
notation of 1])"

T T

where X is the characteristic function of T- e, T] and
T

}
lip

11711 =/t Ilu(/)llodt lip + 1/q 1, p 1.

Hence Q, being the uniform limit of compact operators, is indeed compact as an
operator from Lp[[0, T], U], p > 1, into X.

However, for p 1 and B onto X, the operator Q is not compact. In fact, we shall
show that, in this case, the image under Q of a finite sphere in L1[[0, T], U] is dense in
the unit sphere of X. Let v be a unit vector in X. By strong continuity of S(t), given 6 > 0,
there is e > 0 such that

sup IIS(T t)v v < .
O-<-t<= T-e

There exists u in U such that Bu v. By a version of the open mapping theorem, [3,
Lemma 9, p. 194] as v runs over the unit sphere of X, the corresponding vectors u can
be taken in a finite sphere of U of radius, say, r. Define a control u(t) by" u(t)=-O for
O<-t<-_T-e and u(t)---u/e for T-e<t<-_T. Then

T

Ilallx- | Ilu(/)ll dt-Ilull<-r
Jo

and

S(T-t)Bu(t)dt-v <=- IIS(T-t)v-vl[dt<8. Q.E.D.

We finally remark that, as pointed out in [4, top paragraph, p. 481], when B is onto
X and S(t) is a group, exact controllability on any [0, T] does hold. In fact a controller

* This Journal, 15 (1977), pp. 407-411. Received by the editors March 16, 1979.
t Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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u(t) defined by Bu(t) $(t- T)xl/T (which is continuous in t) steers the origin to the
desired final state X over [0, T].
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THE "BANG-BANG" PRINCIPLE FOR THE TIME-OPTIMAL PROBLEM
IN BOUNDARY CONTROL OF THE HEAT EQUATION*

E. J. P. GEORG SCHMIDTf

Abstract. Following previous work by H. O. Fattorini, J. Henry and the present author it is proved that
the time-optimal controls associated with arbitrary reachable target temperature distributions in boundary
control for the heat equation (with bounds on the admissible controls) are "bang-bang".

1. Introduction. In this paper the "bang-bang" property of time optimal controls is
proved in the boundary control problem for the heat equation with arbitrary reachable
target, under a mild assumption on the bound to which the controls are subjected
(satisfied, for example, if that bound is not the smallest one under which the target is
reachable). This property was first proved by Fattorini [3], for target functions satisfying
a deep (and not in general easily verifiable) sufficient condition due, in its general form,
to Russell [9]. Subsequently Schmidt in a paper [10] submitted to this journal in 1977,
and currently under revision, proved it for stationary (or steady state) targets. Recently
Henry [7], working in the context of distributed controls, presented an argument,
containing essentially new ideas, to prove the general result; unfortunately the proof
appears to contain a serious gap. This paper draws on ideas occurring in all the work
cited above; in particular we follow Henry in defining a norm on the (invariant)
reachable set to obtain a Banach space. Instead of applying the separation argument
which yields the "bang-bang" principle in that space, as Henry tries to do, we work in a
certain subspace, using an idea which we had applied previously to stationary targets.
We could have used a subspace employed by Fattorini, but instead work with the
subspace generated by states reachable from arbitrary initial states with 0 control, thus
bypassing the use of deep results from the theory of moments.

2. The heat equation and its solution. Let 12 be a bounded domain in R n, whose
boundary is a C manifold. Let A denote the Laplacian in R , /u denote
differentiation in the direction of the outward pointing normal u to 01, a be a
nonnegative constant and B "=" a(ig/Ou)+l. We consider the following initial
boundary value problem, which describes the evolution of the temperature u(x, t) at
point x and time t when the ambient temperature at the boundary is f(x, t) and the
initial temperature distribution is Uo(X),

Llv.. (x, t) Au (x, t) for x 6 fl, > 0,
at

Bu (x, t)= f(x, t)

u (x, O) Uo(X)

Let H denote the state space L2(f) (with inner product (.,.) and norm II" II), and Loo
denote the space of controls L(Olqx(O, c)) (with norm II’IL). In [3] Fattorini
introduced a notion of weak solution for the case a 0 which can easily be generalized
to the case a > 0. Combining his methods with those of Glashoff and Weck [6] who
studied the latter case, one can show that for each u0 H and f L, (1) has a unique

* Received by the editors September 13, 1978.
Department of Mathematics, McGill University, Montreal, Quebec, Canada H3C 3G1. This work was

supported by the National Research Council of Canada under Grant A7271.
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weak solution with a lot of relevant properties which will be summarized in Theorem 1
below.

We recall first that the self-adjoint operator obtained when the Laplacian is defined
on a suitable domain of functions satisfying the boundary condition Bu(x)= 0 has a
complete orthonormal system {k}k__l Of eigenfunctions corresponding to negative
eigenvalues {--Ak}k=l arranged in decreasing order"

(2) A(4k -"--Ak(Ok in ’, Bqgk 0 on Oil.

Moreover, asymptotically,

(3) k Ck2/n

where C is a certain positive constant, and the eigenfunctions belong to C(fi), and
satisfy estimates

(4) sup
xe

where D is any partial derivative of order r and Cr and mr are suitable positive
constants. For more details and proofs see Agmon [1].

Finally, before stating the theorem, we define a family of translation operators Js in
Lo by

[Js[](t) [(s + t) if s => 0,

(5) {0 for 0_<-t_-< [s[,
[Jsf](t)

_f(s + t) for > Is[, ifs<O.

THEOREM 1. For each Uo Handf Loo there exists a unique weak solution u (x, t) to
(1); this ]’unction belongs to L2(II (0, T)) ]’or each finite T>O, and also to C(II
(0, oo)). For each > O, u(. t) H and moreover can be represented as

where

(a)
(b)

(c)

(d)

(e)

(f)

(g)

u(" t) Vtuo +

{ Vt}t_o is a strongly continuous semi-group of linear contractions on H;
St: Loo--> H is continuous from the weak*-topology ofLoo to the norm topology
on H;
]:or each h, tz >= 0 one has

(6)

if Uo(X) and f(x, t) are essentially bounded below by m (or above by M) the
same is true ]:or u(x, t);

(7) V,c + S,c c

(where c is to be interpreted as the constant function);

(8) ]lsdll Vt(llflloo)-Ilfllooll,

where II/ 11 is to be interpreted as a constant function on f;

(9) V,uo
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(h) (10) Stf k=l fl
e-Xk(t-s)q(Y)f(Y’ s) dSy ds qk,

where q(y) is equal to rk(y)/a ira >0, and -Oqk/O, ira =0, and where dSy
denotes an element of area of

We comment only on the proof of (f). From the maximum principle (d) it follows
from

that also

and hence using also the obvious property (e) (which like the maximum principle (d)
depends on the fact that the constant a in B appears where it does) implies that

I[S,f](x)[ <__- [S, fll](x) Ilfll V,llfll](x),
from which the estimate (8) follows at once.

3. Properties o[ the reachable set. We define, for each Uo H, > 0 and L cL

(11) R,(uo;L)={v H: there exists fL with v Vtuo+S,f}.

It is well known that Rt(uo, Loo) is always dense in H (a nice proof is given in MacCamy,
Mizel and Seidman [8]). It is also known that the function 0 always belongs to
Rt(uo, L). This property, known as null controllability, was proved for general
domains by Russell in [9], but can also be deduced from null controllability for balls
(established by more elementary means in Fattorini and Russell [5]) using an extension
argument suggested by Seidman in [12]. An immediate consequence, in fact a refor-
mulation of the property of null controllability, is

(12) Vt(H) c St(Loo), for each > 0.

From this fact one obtains a simple proof of the invariance of the reachable set which
was proved by Henry in [7] using a previous result of Fattorini [2], and which is also
proved in Seidman 13].

THEOREM 2. Rt(u0; Loo) is the same set ]:or all Uo H and > O.
Proof. Note first that an immediate consequence of (12) is the fact that

Rt(uo; L)= Rt(0; Loo), so we only have to prove that Rs(0; Loo)= R,(0; L) where
s < t. Given Stf R,(0; Loo) it follows from (6) and (12) that

s,f v,s,_,f+ &(y,_f)

&Ill+ (,_,f)]

for some fl Loo, so that Stf Rs(0; Loo) and R,(0; Loo) Rs(0; Loo). Conversely, given
SffRs(O; Loo) one can deduce from (6) that Ssf St(J-tf)eR,(O; Lo); hence also
R(O;Loo)Rt(O;Loo).

Now let R denote the set Rt(0; Loo). Since R is the range of St for each t > 0, one
can define on R norms

(13) Ilvll,- inf {11/11 f L, St/= v}.

In this way one obtains a Banach space (R, [[. [[t) isometrically isomorphic to the quotient
space Lo/N(St) (where N(S,) is the null space of St). These norms are in fact equivalent
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since, if s < t, the identity Ss[ S,(Js-tf) implies that

(14) Ilvll,<-Ilvll,

so that the closed graph theorem implies the equivalence of the two norms. For the sake
of definiteness we define Ilvll Ilvll. The injection 1" R H is continuous; for each
[ L such that v $1[ one has

Ilvll IIs/ll <--
where B(L, H) denotes the bounded, linear operators fromL toH and II" is
the operator norm. Hence Ilvll-<-IIs ll ,. ,, )llvll . Since R is dense in H, the adjoint map
I*" HR* is 1-1.

4. The "bang-bang" property of time optimal controls. Let L=
L" I1 11 <-- M}. Given u0, ul e H such that Ul Rt(uo, LM) for some > 0, the

time-optimal control problem is to find f. LM such that

Ul Vt.uo + St.f., where t. inf{t > 0: Ul e Rt(u0; LM)}.

The existence of such a control f. is standard (and follows easily from the properties of
Nt and St described in Theorem 1). The "bang-bang" property of f. is that/, is an
extreme point of LM in L; in other words that f.(x, t)= +M almost everywhere on
01! x (0, t.). The precise statement of the theorem, and its proof, involves the subspace
X of R which is obtained as the closure in R of 1.3 t>o Vt(H).

THEOREM 3. Given uoeH and UleR. Suppose UleRt(uo, LM) for some t>0,
where

(15) M> distR (u,X)--inf{Ilu--VlIR’vX}.

Then there exists a nontrivial solution w(x, t) to the adfoint heat equation

O_.__w (x, t) + Aw (x, t) 0 for x , (0, t.),
Ot(16)

Bw (x, t) 0 for x , (0, t.)

such that the function wO(x, t), defined on the boundary by wO(x, t)= (w(x, t))/a ira > 0
and by wO(x, t) -(Ow/O,)(x, t) i a O, does not vanish on any set ofpositive measure,
and such that the time optimal control ]. is given by

(17) f.(x, t) M sgn w(x, t) ]’or x , (0, t.).

We precede the proof of this theorem by three lemmas.
LEMMA 1. Let u R, and supposeM> distR (u 1, x). Thenfor each t > 0 there exists

vx x and g Loo such that u vx + Stgl and Ilgll < M.
Prool From the hypothesis and the definition ofX it follows that there exists v X

with Ilux- < M. By the definition of I1" I1" IIx, there exists g L such that
Ul-V=Sxg with Ilglloo<M. Now, if t->l, Slg=St(Jl_tg) and so u=v+St(J-tg);
while, if < 1, Slg Vt(Sa-tg)-t- St(Jx-tg) and so in this case u
[v + Vt(Sx-tg)]+ S,(Jl-g). In both cases the assertion holds.

LEMMA 2. Let Vt,x H X denote the operator Vt regarded as a map o] H into X.
(a) Vt,x is a bounded, linear operator.

0(b) Suppose X* and 0; there exists e > 0 such that
oV,x*l O for each e < e
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Proof. The boundedness of Vt.x follows from the closed graph theorem, using the
continuity of the operator Vt" H H and of the immersion 1" R --> H.

Suppose now that (b) does not hold. Then there exists a sequence en 0 such that

Ve..x*l =0. For each t>0 one then has, with en <t, Vt,x Ve.,xVt-e. and hence
taking adjoints, Vt,x* Vt_. * Ve..x* 0 so that Vt,x* 0 for each > 0. Thus for
any u H

(V,.x*/, u) (/, V,.xu)=O,

and by definition ofX it follows that 0, a contradiction. (Note: here (l, v) denotes the
action of X* on v X.)

The final lemma is of interest in itself.
LEMMA 3. Suppose U R and that there exists f Loo with Ilfll <M such that

u Vtuo + St]’. Then ]’or e > 0 sufficiently small one can find fe Loo with Ilfllo <Msuch
that u Vt-eUo + St-ere.

Proof. Using the semi-group property of {Vt}t>__0 and (6) one has

u vt_,uo + S,_, (Ll) + v,_, Vuo uo) +

Let 0 < 8 < 1/2(M -I1[1[). We show that for e sufficiently small, one can find [1,e and ]’z,e in
L such that

and

Vt-e Veuo- Uo) S,-efl,e,

v,_, (s,f) st_f_.,.

Then, letting fe Jef+f,e +f.,e one has the desired result. Note first that, setting
we Veuo- Uo or Sef it follows from the strong continuity of the semi group { Vt}t0 and
from (8) that Ilwe[l 0 as e 0. Now since Vt,x Vs,xVt-s when s<t one has

Hence by the equivalence of the norms I1" II, and in particular by (14) it follows that for
e <t/2

-<- cll v,_.,xw. 11.

thus for e sufficiently small [IVt-e.xWellt-e <& Applying this estimate to the two
alternatives for we, and using the definition of I1" II,- one obtains ]’a.e and

We now come to the
Proof o]’ Theorem 3. By Lemma 1 we can write u Va + St.gl with IIglloo <M and

vl X. Then

(18) C {v X" there exists f LM with v S,. (f- gl)}

is a closed convex set in X. Since 0 S,. (g ga) and gl LM one has 0 C. Moreover 0
lies in the interior of C; for the norm equivalence Ilvll,.-< CIIvll implies that if
Ilvll,, < C-X[M-Ilgllloo3 one can find hL such that v St.h, in which case v
S,, (f- g) with f gx + h LM, so that v C.

Since Ul Vt,uo + St.f, vx + St.gl one has that vx- Vt.uo S,. (f.- ga); since

f. eLM and Vl- Vt.uoX it follows that Vl- Vt.uo C. For the separation argument
which proves the "bang-bang" property of f., it remains to prove that v- Vt.uo is a
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boundary point of C. Suppose vl Vt.uo is not a boundary point; then, since 0 lies in the
interior of C, there exists r with 0<r<l such that r-l(vx V,.uo) C. Thus, by the
definition of C, there exists ]" in LM with Vl-V,.uo=rSt.(f-g). Letting f=
rf+(1-r)gl one has va- Vt.u0 St. (/1- gl) where now, since Ilglll <M also
M. Thus Ul Vl + S,.gl Vt.uo + St.fa with 11111 < M. By Lemma 3 this implies that
t. inf {t: Ul R,(u0; Lt)}, a contradiction which implies that vl Vt.uo is indeed a
boundary point.

Since C is a convex set with nonempty interior in X, and since Vl-Vt.u0
$ t. (f.- gl) is a boundary point there exists X* with 0 such that for each v C

(l, St.(f.-gl)-V)>-O.
We choose elements v of C having a particular form. Let X denote the characteristic
function of Of (0, t,-e), with e >0. Then for each fLM, f
and

St. (f gl) St. (f. gl) + St.[X (f-f.)]

belongs toX since both St. (f.- gx) and St.[x(f-f,)] VS,.-[x(f-f.)] do. Hence
v St. (f gl) C, and thus

(19) (l, St.[X,.:(f.-f)])=(l, St.(f.-gl)-St.(f-gx))>=O,
for each f sL and e > 0. We need to transform this inequality. Fix e > 0 and consider
(l, St.h) for any h sLo with essential support in Off(O,t.-e). Since St.h
Ve/E,xSt.-e/Eh one has

(l, St.h (St.-/2* V,x/2* l, h ).

If e/2 < e0, the critical constant corresponding to in Lemma 2, v V/z,x*l O. It is
then easy to verify, using the representation (10), and the estimates (3) and (4) which
justify the application of Fubini’s theorem, that

(l, St.h)= w(y, s)h(y, s) dS, ds,

where

w(x, s)= Y e-;’*-/z-)(v, Ok)Ok(X)
k=l

is a nonvanishing solution of the adjoint heat equation on f (0, t,-e) and the
boundary function w (x, s) is obtained from we (x, s) as in the statement of Theorem 3.
Easy estimates also guarantee that w (y, s) Ll(0f x (0, t, e)). Using the arbitrari-
ness of h it follows that, if e <e2, w,l(y, s)= w2(y, s) for s < t,-e2. Thus finally, we
obtain a nonzero solution of (16) such that, for any h Loo with support in 0f
(0, t, e) for some e > 0,

Hence (18) yields

(l, St.h) w(y, s)h(y, s) dSy ds.

(20) w(y, s)x (y, s)[]’,(y, s)-[(y, s)] dSy ds >= O,

for each f L and for each e > 0. It was proved by Fattorini [3] in the case that 0f is
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analytic and by Schmidt and Weck [11] in the case that 01) is C, that when w is a
nontrivial solution of (16) the boundary function wO(y, s) cannot vanish on a set of
positive measure. Thus (17) is an immediate consequence of (20). This completes the
proof of Theorem 3.

Remarks. 1. The condition M> distg (ul, X) is difficult to verify in general. It is
however, automatically satisfied ifM > inf {M (0, c). ul Rt(uo, LM) for some > 0}.

2. The time optimal problem can also be posed for controls restricted to L,,M
{f Lo" m <- f(x, t) <-M a.e.}. In this case one can use identity (7) to replace u 1, uo and
f, by u (M + m )/2, u0 (M+ m)/2, f, (M+ m)/2 respectively, thus concluding
that f,(x, t) (M + m)/2 +sgn [w(x, t)](M- m)/2.

3. Henry [7] considered the case of distributed controls (in which the control is by
means of an inhomogeneity in the equation rather than in the boundary condition); the
argument used in this paper carries over with only slight modifications.
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FEEDBACK STABILIZATION OF DISTRIBUTED PARAMETER
SYSTEMS BY A FUNCTIONAL OBSERVER*

NOBUO FUJID

Abstract. Feedback stabilization of unstable parabolic equations is of great interest. The fact that it is not
necessarily possible to stabilize the equations by means of static feedback schemes when both observation
and control can be realized only through the boundary is illustratively shown by a simple example. In view of
this, a functional observer of Luenberger type is derived and then utilized in order to stabilize unstable
parabolic equations for which observation of the state and control can be carried out only through the
boundary.

1. Introduction. The investigation of feedback stabilization of distributed
parameter systems has received attention in these years. For parabolic equations there
are investigations by Y. Sakawa and T. Matsushita [1], [2] and T. Nambu [3]. For
hyperbolic equations Y. Sakawa [4] and M. Slemrod [5] considered feedback stabiliza-
tion using the invariance principle of J. K. Hale [6] and J. P. LaSalle [7].

As for parabolic equations, stabilization of the systems by means of interior
output-interior input scheme are treated in [1], of interior output-boundary input
scheme in [2]; T. Nambu, instead, considered stabilization by boundary output-interior
input. Apparently, stabilization by boundary output-boundary input can be treated in
the same manner as that in [1] if the eigenfunctions of the eigenvalue problem
associated with the parabolic equation form an orthogonal system in the space of
functions square integrable over the boundary. But unfortunately this is in general not
the case.

To clarify the situation, now examine a simple example.
Example 1. Consider one dimensional heat equation:

c3u 02u
(1.1) 2+au, O<x <1, t>O,

Ot Ox

(1.2)

On
g(x)f(t), x {0, 1}, > O,

On

g(O) =-1, g(1) O,

(1.3) u(x, 0)= Uo(X), 0<x < 1,

where a is some constant and O/On denotes outer normal differentiation on the
boundary. Let the boundary observation law be

h(t)=(u(x, t), w(x))s rllU(O, t)+ r/2u(1, t), (1, ’?’2" real).

A closed loop system is composed by setting

(1.4) /(t)= h(t)= TlU(0 t)+ r/2U(1, t).

* Received by the editors November 3, 1978, and in revised form February 28, 1979.
t Department of Control Engineering, Faculty of Engineering Science, Osaka University, Toyonaka,

Osaka, Japan.
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Eigenvalues and the corresponding eigenfunctions of the eigenvalue problem

h4 024+a4, 0<x <1
OX2

(.5)
--0’= O, x e{O, 1}
On

are given by

h,=a-(m-1)2.n.2,
(1.6)

b, cos (m 1)7rx, m 1, 2,.

The multiplicity of each eigenvalue is clearly equal to one. Open loop system 1.1)-(1.3)
is unstable provided a > 0.

It is obvious that the eigenfunctions do not form an orthogonal system over S;
clearly, for any nontrivial w(x) (i.e., for nontrivial pair of r/l, r/z), there cannot exist an
integer N such that

(1.7) (w(x), Cm(X))s r/ + (-1)m-It/2-- 0, m >_-N.

Since the stabilization method of 1] tacitly requires that (1.7) hold for some integer N, it
does not work for the system. In addition to this fact, it is possible to prove: if a > 4rr2,
the closed loop system defined by (1.1)-(1.4) is unstable whatever "11 and r12 may be. The
proof is obtained with an easy but tedious examination of the roots of a transcendental
equation with the help of diagrams; hence, it is omitted.

Thus alternative methods are required to be developed in order to stabilize
parabolic equations for which only boundary observations and boundary controls are
available.

In this paper, we shall present the feedback stabilization scheme with a functional
observer of Luenberger type for parabolic systems. In 2, the functional observer will
be constructed. In 3, the feedback stabilization problem will be solved

Throughout this paper, A denotes, as usual, Laplacian operator in Euclidean
n-space and O/0n stands for outer normal differentiation on the boundary. Also we shall
often designate different constants by the same letter K if we are not interested in their
magnitudes. If there is no confusion column or row vector (g,..., gk) will often be
abbreviated as g without any suffix etc. Similarly, the scalar product of two vectors, say g
and f, will simply be denoted by gf if its meaning is obvious from the context.

2. Functional observer. In actual systems, it is often the case that information of
the system can be obtained only through the boundary. Hence, it is required to estimate
system’s behavior, based on the information, by means of an appropriate machine.

In this section, we shall construct a functional observer for parabolic equations
making use of the information obtained through sensors on the boundary.

Let D be a bounded domain in n-dimensional Euclidean space and S be its
sufficiently smooth boundary. Consider a parabolic initial boundary value problem"

Ou
(2.1) =Au+q(x)u, xeD, t>0,

Ot

(2.2)
Ou
+r(x)u Y gi(x)fg(t) (abbreviated as g(x)f(t)), x e 6’, > O,
On i=1

(2.3) u(x, O)= Uo(X), x D.
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Here u is called a state variable and [i(t) are control inputs; thus, inputs are exerted on
the system through the boundary. Suppose that the real valued q(x) is H61der
continuous with exponent a in D (=D LI S), real valued tr(x), g(x) are continuous on S
and f(t) is continuous for => 0. Assume, furthermore, that the function Uo(X) is defined
and continuously differentiable in an open set which contains D.

Let observation laws be defined by

(2.4) hk(t) (u(x, t), Wk(X))s, k 1, 2,’’’, l,

where Wk(X) are continuous on $ and (.,.)s denotes, as usual, the inner product in
L2(S) the space of functions square integrable over S. Using observations hk(t), let us
construct a functional observer whose outputs asymptotically approach to the values of
functionals defined by

(2.5) yk(t) (U(X, t), pk(X)), k 1,’’’, r,

where pk(X) belong to L2(D) and (., .) denotes the inner product in Lz(D). In view of
the linearity of (2.1)-(2.3), we can decompose a solution of them as

(2.6) u(x, t)= Ul(X, t)+ Uz(X, t).

Here ul(x, t) stands for the solution for f(t)=-O and u2(x, t) for Uo(X)=-O. As is well
known, U can be expressed by

(2.7) u l(X, t) 2 Z aii eX’tOii.
i=i=

Here A are eigenvalues of the eigenvalue problem"

X A +q, x D,
(2.8)

+(x) O, x S,
On

ii are corresponding eigenfunctions, mi, the multiplicity of hi and ai are defined by

(2.9) aii=(Uo, ii), i=1,2,..., j=l,...,mi.

Hence, outputs hk(t) can be written as

hk(t)=(Ul(X, t), Wk(X))s+(U2(X, t), Wk(X))s

(2.10) ai] e xit(&ij, Wk)S + E aii e x’t(&ij, Wk)S
i=1 j=l i=M+I

+(u(x, t), w(x))s, k 1,... l.

Let us consider the second term of the right hand side of (2.10) which will be denoted by
d(t). Using Schwarz inequality we can easily obtain

]2Uaij e(Xi-x+Ot 2 1/2

i=M+I

E I(ih Wk)Sl2 1/2

i=+1 k 1,..., l,

where u(> 0) is some constaint. If u > 1/2 and t0> 0, the series expansion of the
right hand side converges and bounded, where t0 is some fixed time. Thus, it follows that

(2.11) Id(t)lKe+’, i.e., IId(t)llKe+’.
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As for the third term of the right hand side of (2.10), we can obtain the following:
LEMMA. On the above assumptions, there exists functions Tk (t), which are continu-

ous in > O, such that

(2.12) (u2(x, t), wk(x))s T(t-s)f(s) ds, k 1,..., l,

hold.
In view of this lemma, h(t) can be represented as

Mr Ill(2.13) h(t)= 2 Y’, aijeX’t()ij, W)s+dk(t)+ T(t-s)f(s) ds.
i=1i=1

Now let us introduce N-dimensional vector X by

X col (Xll, Xlm1, XMmM),

Xij=(u(x, t), ij), l, ,M, ]= l, mi,

where N E/M_-I mi. From (2.1)-(2.3) and with the help of Green’s formula it follows
that

dXi d
(u(x, t) 49i) (Au + qu,

dt dt

(2.14) hi(u, cbii)+E (gk, ij)Sfk(t),
k

Xij(O)-- aii, 1,. , M, j 1," ,mi,

or

dX
(2.15) =AX+Gf(t),

dt
X(O) col (all,’’’, a,,,),

where N Nmatrix A and N m matrix G are defined by

G= (G1,’’’, a,. ., Gm)Nxm
Gk CO1 ((gk, 4)ii)S,’’’, (gk, &M.,)S),

From (2.14) we can obtain

eX, ehi(t-s)(2.16) aii =Xii(t)- , (g, &ii)sfk(S) ds.
k

Substituting (2.16) into (2.13) we can obtain

hg(t) i (ti], Wk)sXq--()i], Wk)S eX’(t-s) Z (gh, dPij)Sfh(S) ds
i=1 j=l h

+dk(t)+ Tk(t--s)f(s) ds.
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If we define x N matrix W by

Wk =row ((b11, Wg)s," ", (CkM,,,, Wk)S),

and m matrix H(t) by

--I11 Him1H(t)
HI HI,.d

Then, we obtain

(2.17)

M

Ugh(t) Tkh(t)-- Z (qbii, Wk)S eX’t(gh, qbii)s,
i=1j=1

h(t)= WX+d(t)+ H(t-s)f(s) ds

WX+d(t)+H * fi

,l,

Here, of course, d(t)= col (dl(t),..., d(t)) and .. denotes the convolution.
Now we are in place to construct a functional observer according to D. G.

Luenberger [10]. Assume that Ph (X) in (2.5) are expressed by

P

(2.18) ph(X) E E (Oh, 6,j)(ij, h 1,..., r,
i=1 /’=1

with some integer p(>0). For any given /x >0 choose M such that M>=p and
AM/I <--/x hold. Define x mi matrices /by

W1)S ((irni, W1)S1
L(6il, Wl)s (imi, WI)S]

Furthermore, consider an N-dimensional lumped parameter system defined by

dz
--=Fz(t)+Bh(t)+Cf(t)+DH * f(t), z(0)= z0,
dt

(2.19)
(t)=Pz,

where F, B, C, D and P are constant matrices of appropriate sizes. Our aim is to
choose F, B, C, D and P in order that output 37(t) asymptotically approaches y(t)
given by (2.5). In this connection, we can easily obtain the following proposition.

PROPOSITION 1. Assume that the conditions _>--max,=iMmi and

(2.20) rank v7 mi, 1,. , M
hold. Then, we can find matrices F, B, C, D and P such that the output (t) of (2.19)
satisfies
(2.21) 1137 (t)- y (t)ll--< g e

with some constant K, which may depend on X(O) and Zo, and the system (2.19) is
asymptotically stable.



STABILIZATION OF DISTRIBUTED SYSTEMS 113

Proof. From (2.15), (2.17) and (2.19), it follows readily

d
(2.22) -(X-z)=(A-BW)X-Fz +(G-C)f(t)-(B +D)H , f-Bd(t).

In view of (2.20), (W, A) is an observable pair [1]; hence, we can design matrix B such
that matrix A-/3W has eigenvalues whose real parts are smaller than -tz. Fix such/3.

Define F, C and D by

(2.23) F A -/3W, C G, D -/3,

then we can reduce (2.22) to

d
-t(X- z) F(X- z) + Bd(t).

From (2.11) and the choice of F, it follows readily

(2.24) IIX-zll<-_Ke -‘,
where constant K may depend on X(0) and Zo. Define r N matrix P by

p= [(Pl’ &11) (Pl’ &Mmu)1."
[_ (o. 61) (p, 6,.,,)_1

then, in view of (2.18), y(t) can be rewritten as

y(t) PX.

From this and (2.24) it follows readily that (2.21) holds. This completes the proof.
Remark 1. The functional observer constructed contains the convolutional opera-

tion; hence, strictly speaking, it is not a finite dimensional system. The author believes
that it is impossible to construct a purely finite dimensional observer if the inputs to the
system are present and are exerted through the boundary. Our observer is, however,
not so meaningless in that the convolution term can be calculated with the aid of an
analog or a digital computer. Thus, in practice, the observation of functionals will result
in discrete time manner.

Note that the observer reduces to a very finite dimensional system if the inputs are
absent.

Now the proof of the lemma is left.
ProofofLemma. As was shown in [11], for arbitrary T( > 0), u2(x, t) in (2.6) can be

represented as

Iotls(2.25) u U(x, y; s)(y, s) dSy ds, 0 < < T,

where U(x, y; t-s) is a fundamental solution of the parabolic operator and

(2.26) O(x, t)=-2g(x)(t)-2 F M(x, y; t-s)g(y)f(s) d$,ds,

MI(X, y; t-s)--20----U(x, y; t-s),
On

(2.27)
M+(x, y; t-s)= M(x, ; t-o’)M(, y; o’-s) dSedo’.
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For the moment fix T. Let v be a constant which satisfies 1/2 < v < 1 and 1 oe/2 < v < 1.
Then we can obtain the following estimate [11]:

1 1
y;

lx y
Os<tT, x, y ,

1 1
]Mk+I(X, y;

IMo(X, y; t- s)l K,

k-0, 1," ", ko-2,

IMo+(x, y; t-s)[<-Ko IKl(t--s)l-lk
r((1- u)k + 1)’

k=l,2,...,

O<=s<t<=T, x,yS,

where K, Ko and K1 are some constants and ko is the smallest integer which satisfies

n+l-2v-a+ko(2-2v-a)<=O, v +ko(v- 1)-<_0.

Using these estimates we can easily obtain the following"

Io’Is { KTl-’’-k(’-l)<O’ k<k-I
(2.28) IMk(X, y; t-s)g(y)f(t)l dSyds <

KT<oo, k=ko,

(2.29) IMo+ (x, y; t- s)g(y)f(t)l dSy ds <-KKo
1 (K1 T) (1-’)k+l

K1 r((- )k +2)
k=1,2,....

Here we used [11, Lemma 1, 2, Chap. 5]. Thus the series expansion in (2.26) is
absolutely convergent. Furthermore, in view of [11, Lemma 1, 3, Chap. 1], it
follows that the each term in the expansion is continuous with respect to x S and

[0, T]; hence, O(x, t) is continuous on S x [0, T].
Next let us consider functionals (Uz(X, t), Wk(X))s which can be expressed by

(2.30) (b/2(X t), Wk(X))s Vk(X) dS U(x, y; t-s)O(y,s) dSyds,

where # denotes the complex conjugate of w. Estimate (2.28) and expression (2.26)
enable us to rewrite (2.30) into the form:

fOt fSIS(u2(x, t), w(x))s =-2 ds #(x)U(x, y; t-s)g(y)f(s) dSydSx

(2.31)
-2 ds dSydSgeg(x)U(x, y; t-s)

Mi(y, ; s-r)g()f(r) dSe d]=1
The first term on the right hand side can be rewritten as

Tk,l(t-- S)f(S) ds,
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where

(2.32) Tk,l(t-s)=-2 Js Js k(x)U(x, y; t-s)g(y)dSydSx, k 1,..., l,

are continuous with respect to t, s, 0 =< s < =< T. As for second term, we can obtain the
following estimates for k 1, 2,. ., l"

Is IoS Isds dS, dSy dr dS](x)U(x, y; t-s)M/(y, :;
(2.33)

f <= ko,
h+l 1 T(1-v)(h+l)+l

-KKoKI F((1-v)(h+l)+l)(1-v)(h+l)+l’ ]=k+h’h=l’2’’’"

Here we used estimates (2.28), (2.29) and [11, Lemma 1, 2, Chap. 5]. The series
expansion in (2.31), hence, is absolutely convergent and the second term of the right
hand side of (2.31) can be expressed by

T.2(t-s)f(s) ds,

with

(2.3)

where

(2.36)

(2.34) T.2(t-s)= Z dr dSdSydS(x)U(x,y;t-r)Mi(y,;’-s)g(),

k=l,2,... ,l.

Again, Tk.2(t s) are concluded to be continuous with respect to t, s, 0 -< s < =< T with
the help of the same argument as that for (x, t).

Since T is arbitrary in the above discussion we can, finally, obtain for >= 0

(u2(x, t), Wk(X))s Tk(t--s)f(s) ds, k 1, 2,"’, l,

Tk(t) Tk,(t)+ Tk,2(t)

are continuous with respect to > 0. The proof is thereby completed.

3. Stabilization. In this section we shall consider a stabilization problem of
parabolic equations for which only boundary input and boundary output can be utilized.
To solve the problem, use is made of the functional observer derived in the previous
section. Finally, we shall apply the theory to the system considered in Example 1.

Consider again the parabolic initial boundary value problem described by (2.1)-
(2.3) and the observer given by (2.19), where input h (t) of it is given by (2.4). In order to
construct a closed loop system, let the boundary input f(t), which is the same as that in
(2.19), be the output 37(t) of the observer, i.e.,

(3.1) f(t)=(t).

Thus we obtain a closed loop system described by

Ou
Au + q(x)u, x D, t>0,

Ot
(3.2)

u (x, O) Uo(X), x D,
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OU
(3.3) --+0n (r(x)u g(x)(t), x S, > O,

(3.4) hk(t) (u(x, t), Wk(X))s, k 1,’’’, l,

(3.5) dZ=Fz(t)+Bh(t)+C(t)+DH*(t), z(0) z0,
dt

(3.6) (t)=ez.

Let us seek a set of sufficient conditions which ensures the exponentially asymp-
totic stability of the parabolic equation and, in this context, determine matrices F, B, C,
D and P.

Let Ix be an arbitrary positive constant and, in what follows, fix it. Define matrices
i by

(gl, il)S (gin, i1)S
Oi i=1,2,....

(gx, imi)S (g, &i,,)s.

Now, for controllers gi(x) and observers Wk(X), let the following assumptions hold.
Assumption 1. The conditions

(3.7) rank (i mi, i= 1,..., M,

hold where M is an integer such that AM+I
Assumption 2. The conditions

(3.8) rank mi, 1,. M,

hold where, of course, are defined in the previous section.
Based on Assumption 1, it is possible to choose functions/91, ,Pm L2(D) such

that all the eigenvalue of the eigenvalue problem

hu Au + q(x)u, x D,

OU
--+ O’(X)U E gi(x)(u(x), Oi(X)), X S,
On i=1

satisfy Re h <-/z[1], [4]. Further pi(x) can be chosen in the form

M

(3.9) pi(x) E E (Pi, Ck])kj, i= 1,..., m.
k=11=1

For such a set of functions, define m n matrix P by

p__ I(P1,(11) (PI,MmM)].(3.10)
m(p,,,,’11) (P-,, M)_J

On the other hand, in view of Assumption 2 and the discussion in the previous section,
we can find matrix B such that the real parts of the eigenvalues si of matrix F, which is
defined by

(3.11) F=A-BW,

satisfy

(3.12) Re s <-/z, 1,. , N.
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Let matrices C and D be such that

(3.13) C=G, D=-B;

thus, matrices F, B, C, D and P are all determined. From the choice of the matrices, it is
obvious that equation (3.5) is exponentially stable and the system defined by (3.5) and
(3.6) is a functional observer for functionals yi(t) given by

(3.14) yi(t) (u(x, t), [gi(X)) 1,..., m.

Let 8i(t) denote the difference of y(t) and 17(t), i.e.,

(3.15) i(t) y(t) + 6(t), 1,..., m.

Then it follows, in view of the proof of Proposition 1, that

for > 0. From the above consideration, finally, it follows that the closed loop system
described by (3.2)-(3.6) is equivalent to the parabolic initial boundary value problem

On
(3.17) --=Au+q(x)u, xD, t>0,

Ot

(3.18)
Ou
--+t(x) E gi(x)(u(x, t), pi(x)) + E gi(x)Si(t), x S, > O,
On i=1 i=1

(3.19) u(x, O)= Uo(X), x D,

and the system (3.5), (3.6).
Now we can easily establish the following proposition.
PROPOSITION 2. Suppose that gi(x)(i 1,. , m) and or(x) are twice continuously

differentiable on S. Then, with Assumptions 1 and 2, the solution of the initial boundary
value problem (3.17)-(3.19) satisfies

(3.20) Ilu(’, t)[[--< K

]:or some constant K.
Proof. The proof is straightforward. Let ,k(X)(k 1,"" ", m) be arbitrary twice

continuously differentiable functions on S. Introduce m functions kk by the relation

(3.21) 0k Y’. gi(gk, Pi)S+gk--k,
i=1

which, obviously, are twice continuously differentiable on S. Then, as is well known,
there exist m functions k(X), which are defined and twice continuously differentiable
on D, such that

(3.22) 0b____ 0k, bk gk, x S, k 1,- ", m.
On

Consider function (x, t) defined by

P(x, t)= E bk(X)Sk(t).
k=l
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In view of this and (3.22), it follows readily

(3.23) +o-(x)(I) E gi(d(X, t), p,(x))s+ Y gi(x)6i(t),
On

Let us seek the solution of (3.17)-(3.19) in the form

(3.24) u(x, t)= v(x, t)+rb(x, t).

Using (3.23), we can reduce the initial boundary value problem to
Ov O

(3.25) =Av+q(x)v-+A+q, xD, t>0,
at at

-[- O’(X)V E gi(x)(v, i)S, X S, > 0,(3.26)
0n

(3.27) v(x, O)= Uo(X)-(x, 0), x D.

The forcing term on the right-hand side of (3.25) clearly satisfies

-+AgP + qp[[ <Ke
Ot

because of the definition of and (3.16). From these and the choice of pg the assertion of
the proposition follows. This completes the proof.

Let us apply the theory developed to the system given in Example 1.
Example 2. Consider again the control system (1.1)-(1.3) with a 57r2. Thus

unstable eigenvalues 57r2, 4zr2 and 7r
2 appear. Let observation h(t) be given by

h(t) (u(x, t), w(x))s u(O, t).

For the sake of simplicity, let/x in Proposition 2 be 37r2; hence, number M above
can be taken to be three (An=-47r2<-/x). From the choice of the control and
observation laws and the fact that mi 1 (i 1, 2,. .), it follows that Og and ff’g above
are scalars and given by

(, =-1, if//= 1, i=1,2,....

Thus Assumptions 1 and 2 are automatically satisfied; moreover, the system is
controllable and observable [8], [9]. Note also that

A =diag (5r2, 4r, ’), W=row (1, 1, 1),

G col (-1, -1, -1).

The functional observer can easily be constructed as follows:
(i) Determine matrix B such that the eigenvalues of A-BW are

{-4-, -5ra, -6-}. This is accomplished by setting

/495 35 2B col -Tr,-240r2, --r ,].

(ii) According to the procedure given in [1], we can design an interior sensor O(x)
such that the eigenvalues Ag of closed loop system (1.1), (1.2) together with f(t) (u, p)
satisfy Re A --477" (i 1, 2," "). As such a p(x), we can take, for example,

495
p(x) ---r2- 2407r2 cos (Trx)+r2 cos (27rx).
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(iii) The solution u2(t X) for (1.1)-(1.3) with Uo(X)= 0 is expressed by

u2(x,t) fot eXp(5r2(t--s))( + ((x+2--n-sl2))f(s) ds;
4r(t-s) n=- exp

4(t

i.e., T(t) in (2.12) is given by

T(t)=
exp (57r2t) , exp( -)-

Thus H(t) (a scalar in this case) is derived as

H(t)=
exp (5rr2t) + ( n_)Y’, exp +exp (5"rrzt)+exp (47r2t)+exp (Trzt).

(iv) Finally, set

F=A-BW, C=G, D=-B,

P row (4--557r2, -2407r2, 7r2).
Thus the functional observer is constructed and the resulting closed loop system is

represented by

Ou 02u
+au, O<x <1 t>O,

Ot Ox2

u (x, 0) Uo(X), 0 < x < 1,

Ou
g(x)y(t), x {0, 1}, > 0,

On

dz
--=Fz(t)+Bh(t)+Cy(t)+DH * y(t), z(0) Zo,
dt

h(t) u(O, t),

y(t)=Pz(t).

In view of Proposition 2, the solution u(x, t) of this system satisfies (3.20); i.e., the
stabilization of the heat equation is accomplished.

4. Concluding remarks. The example given in 1 shows, when the observation and
the control are possible only through the boundary, that the controllability or the
observability of the parabolic equation does not necessarily enable us to design a static
feedback scheme for stabilization in contrast with the case where either the observation
or the control can be carried out in the interior. To overcome this difficulty, a functional
observer of Luenberger type is constructed ( 2) and utilized ( 3) in order to stabilize
the parabolic equation. Our observer, however, contains convolutional operations;
hence, our stabilization scheme is not purely finite dimensional.

The possibility of the stabilization by means of a dynamic compensator in the
feedback path is left for future investigations.
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ON THE ESTIMATION OF THE PARAMETER
OF AN OPTIMAL INTERPOLATOR WHEN THE CLASS OF

INTERPOLATORS IS RESTRICTED*

PAUL V. KABAILAS AND GRAHAM C. GOODWINt

Abstract. It is usual in time series analysis and control theory to assume that there is a close connection
between the structure of the system and the structure of the class of interpolators or control laws under study.
Moreover, in practice, restrictive assumptions are often made about the system since this leads ab initio to a
simple structure for the optimal interpolator or optimal control law. This paper is concerned with an
alternative viewpoint in which attention is focused on the determination of optimal interpolators and control
laws from a restricted class when broad assumptions are made about the system. In particular, consistency and
asymptotic normality results are developed for estimates of the parameter of an optimal interpolator when the
class of interpolators is restricted. Results relevant to the choice of interpolator structure are also established.

1. Introduction. In this paper we will be concerned with the problem of estimating
certain specific properties of a system by analyzing data collected from that system. We
shall be particularly concerned with sets of properties that we term "noncomprehen-
sive". By this we mean that exact knowledge of these properties is, in general,
insufficient to specify all those properties that are usually considered to be of possible
interest. For example, consider a weakly stationary stochastic process {xt}. The proper-
ties that are usually considered to be of possible interest are the covariances
{’’" "]/--1, Y0, "Y1,"" "}. A specific property is the value of/3 (denoted/3*) which mini-
mizes the mean-square prediction error for predictors of the form t flxt-1. In fact
/3*=-T1/’Yo. Note, however, that this property is "noncomprehensive" since it gives
insufficient information to specify all those properties of the system that are usually
considered to be of possible interest i.e. the covariances {... 7-1, y0, yl,’" "}. A
principal advantage in considering non-comprehensive properties is that statistics
relating to such properties may usually be analyzed under very weak assumptions on the
system generating the data.

Clearly, the philosophy of considering noncomprehensive properties can be
applied to such problems as the estimation of the parameters of an optimal control law.
The problem then considered is the choice of the best control law from within a
restricted class of control laws. However, we confine our considerations to the
examination of the limiting properties of certain estimators of the parameters of an
optimal interpolator from within a restricted class. Our reasons for considering inter-
polation are twofold. First, prediction, which is a special form of interpolation, is
germane to stochastic control. For example, consider an economic system when the
effect of control actions of an individual are negligible. Then an individual’s choice of
the best control law from a restricted class of control laws can be based on the choice of
the best predictor from an appropriate restricted class of predictors. When the control
actions affect the properties of the system then the situation becomes more complicated
and recursive analysis is required. Second, we shall avoid the additional problems
associated with recursive algorithms by concentrating on interpolation. Furthermore,
the considerations of linear, time-invariant interpolators allows us to apply the power-
ful techniques of harmonic analysis.

* Received by the editors November 22, 1977, and in revised form January 21, 1979. This work was
supported in part by the Australian Research Grants Committee.

" Division of Mathematics and Statistics, CSIRO, Melbourne, Australia.
$ Department of Electrical Engineering, University of Newcastle, New South Wales, Australia.
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The basic philosophy of analyzing estimation of the parameters of an optimal
predictor from within a restricted class has appeared in a number of recent reports e.g.
1] to [6]. This work should be contrasted with the work of Mann and Wald [7], Whittle
[9] to 11], Walker [12] and Hannan [13] on "finite parameter" models for purely
nondeterministic time-series in which the spectral density is considered to be the system
property of interest. These latter papers analyze the performances of certain estimates
of the spectral density under a variety of assumptions. Our concern is to determine some
of the limiting properties of estimators of optimal interpolators from a restricted class
under weaker assumptions on the system generating the data.

2. A class of interpolators and predictors. Interpolation is the estimation of the
value of some sequence {xt} at n, i.e. x,, by a function of {xlt n}, Prediction is a
special case of interpolation in which x. is estimated by a function of

Here we consider a class of linear time-invariant interpolators of the form

(2.) E (O)x_
u#0

where 0 denotes a parameter vector belonging to some compact subset (R) of a metric
space dd with distance measure d(. ,. ). The sequence {h(0)} has the value 1 at u 0
for all 0 (R). The interpolation error is W(O) x,- Y h,(O)x,_.

We consider three types of processes:
Process Type 1. Consider the sequence {x(): n ’,osome set f}

and let x,(o)=0 for t<0 independently of o. Assume that ,,
lim_.o(1/n) Y,=I x,(co)x,+() exists for each m 77 and for each o f’ c f where
fL-f’ is considered to be an unimportant set. It can be readily shown that

%, lim
1

xt+()x,++(o) for z 7/, w D,;
ncx3 F/ t=l

For process type 1, the mean square interpolation error is defined to be:

2 1 4 )2O" (0)= lim- Z. W,(e
nO /,/ t=l

Process Type 2. Suppose {xt(o) s : s 7/, o s f} is a stochastic process defined on a

probability space (fLS, P) for which E{x(o)}<o, for each ts7/ and that
lim_. (l/n), E{xx,+,} exists for each m Z.

It is also supposed that

XtXt+m Tm
Ftt=l

i.e. for all o ’ where P(O-f’)= 0.
It can be readily shown that

/, lim-1 E{xt+zXt+z+m} for z Z.
F/ t=l

For process type 2, the mean square interpolation error is defined to be:

2 1 2
r (0)= lim- E E{w (0)}.

n-’ n t=l

Process Type 3. Suppose {xt(o) : 7/, o f} is a weakly stationary stochastic
process defined on a probability space (f, $, P).
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Let

Further suppose that

y,,, E{xtxt+,,} for each m 7/.

XtXt+m "-+ Tm
nt=l

i.e. for all o e fl’ where P(II- I1’) 0.
For process Type 3, the mean square interpolation error is defined to be

2 2(o)= E{w, (0)}.

Note, by Herglotz Theorem [22, p. 281], that for each of the above three processes,
there exists a bounded nondecreasing function F(A) such that

(2.2) y. e ’"a dF(A).

A frequency domain expression for rz(0) based on F(a) is given below:
LEMMA 2.1.

(2.3) O" 0)= h(a,O) dF(a)

where

Provided

12h(a, O)= hu(O) e ixu

(a) ]or process 1, 2, 3

h, (0) 0 ]:or all u such that [u[ >M e 7/;

or

and

(b) for process 1

h,(O)=O foru<M7/

Xt-- ((.0)X,-- ((,0) < k
n

independently of u, v for oo f’, n N;

or

(c) for process 3

h(a, O) dF(a < oo or

Proof. (a) The proof is by calculation.

(b)
1 Y’. [h,x,_,[ Y. Ihvx,-[ <

1 h2 y’. < oo.
n t=l n t=l
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Hence for each fixed n, the series (1/n) Y’.t 2u h,x,-u Y hxt- is absolutely
convergent. Hence the order of summation may be rearranged to

Y’.u h Y h(1/n) Y’.’=I Xt-uXt-. Next definef h(1/n) Yt"=I Xt-uXt-. Now
and k Y Ih=l < oo by hypothesis. Hence by the dominated convergence theorem for a
counting measure [17, p. 273] lim, Y.ufnu Y., h3,,-o. Consequently

0. (0)= li
1
F/ t=l

i(u--v)h dF(a

h(a, O) dF(A) [16, p. 64].

(c) For the proof see Doob [14, p. 500].
An alternative expression for 0-2(0) is given below:

2LZMMA 2.2. Suppose 0- (0) =_=h(A, 0) dF(h) <oo. Then

(2.4) 0-2(0)--20gs(0)]/s

where

(2.5)

provided

(a)

or

(b)

1 I iAsas(O)= h(a, O) e da

F(A) is absolutely continuous with f(A) the Radon-Nikodym derivative of
F(A and f(h ), h (h, 0) L2.

Proof. (a) For the proof see [15, Prop. 4.3.7].
(b) The proof follows from Parseval’s Theorem for L2 functions.
THZORZM 2.1. (a) If (R) is a compact subset of the metric space /I with distance

measure d(. .) and if h(A, O) is continuous in (A, O)Z [-7r, 7r]X(R), then 0-2(0) is
continuous in 0 (R).

(b) Ys ]as(O)] < oo is a sufficientcondition forh(A, O) to be continuous in A [-Tr, re].
Proof. (a) Since h(A, O)is continuous in (A, O)Z and since Z is compact, h(A, O)

is uniformly continuous on Z. In other words, for any e > 0 there exists an r/> 0 such
that d(O, 0’)< r/implies that ]h(A, 0)-h(A, 0’)1 < e. Hence

Io-2(o’)- o- (o)1 Ih(a, O’)-h(a, 0)1 dF(A)

<- e dF(A for d (0, 0’) < n

ey0.

Consequently, 0-2(0) is continuous in O.
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(b) The proof follows from the Weierstrass M test and uniform convergence. 71
Remark 2.1. To emphasize the fact that we are dealing with interpolators from

within a restricted class we discuss one point of departure from the "classical" case in
which the property of prime interest is the spectral density. It is well known [8, p. 33]
that in the case of systems described by pth order autoregressive models, that the best
k-step-ahead linear predictor of order p can be obtained by concatenating k of the best
1-step-ahead linear predictors of order p. This is not, in general, true in the situation we
consider. An example illustrating the distinction is given in Appendix A.

3. An estimator for tr2(0). Suppose that we wish to estimate 0"2(0) on the basis of a
finite sample Xl, xn. A possible estimate is

(3.1) Sn(O) h(A, 0)In (h) dA

where In (A) is the periodogram and is given by

In(A) A 1
2 Xt eiAt

(3.2)

E Cs e ixs.
277" s=-n+l

C is the sample covariance, i.e.

C,, I XtXt+s, 0 S < n
?/ t=l

C_s -Cs, O<=s <n.

Substituting (3.2) into (3.1) we obtain

n--1

(3.3) S,(O) E as(O)C.
s=--n+l

A comparison of (3.3) and (2.4) motivates $n(0) as an estimator of 0"2(0) for it is
supposed that Cs converges to ys and that as(0)--> 0 as Is]--> .

We denote by fin any value of 0 minimizing 0-2(0). [Note we do not, for the
moment, necessarily assume that $n(0) is minimized at a single value].

Remark 3.1. The theory described in this paper goes through, essentially
unaltered, for other estimators of 0-2(0). For example, we could consider

S(O) a__ 2____, h(A, 0)In(A.)
r/

where Ai=-zr+(2zr/n)L j=0,... (n-l) or

Sn(O) &- Z h(Ai, O)In(Ai)

where A/=-r+(r/n)L/=0,... (2n- 1).
Also, it is possible to broaden the class of processes somewhat, e.g. to include cases

where y,, depends upon the realization or where the sample covariances are replaced by
sample correlations as in [24].

For simplicity of exposition we will not consider these extensions. Details are given
in [19].
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4. The limiting behaviour of 0,. We consider the class of interpolators and the
processes introduced in 2. The key assumptions are"

($1) 0 (R) a nonempty compact subset of a metric space;
($2) h(A, 0) is continuous in (A, 0) [-rr, rr](R)=Z;
($3) Equations (2.3) and (2.4) are valid, i.e.

0"2(0) h(A, 0) dF(A) E as(0)ys < c.

LEMMA 4.1. For processes 1, 2, 3 and subfect to assumptions ($1), ($2), ($3),
limn S,(O) 0"2(0) uniformly in 0 (R) for each w f’. Thus, ]:or example if Z, &
sup0o IS,(O)-r2(O)l then lim, Z,(o) 0 ]:or each o f’.

Proof. Fix w f’. Let q,,(A, 0) be the Cesaro sum of the Fourier series of h(A, 0)
taken to M terms i.e.

qrn(A, 0) & E on(O) 1-- e inx.
n=-M

Also let

Jl(O) =lSn(O)- qM(A, O)In(A

J2(O) qv(a, 0)I,, (A) da qv(a, O) dF(a ),

J3(0) qm(a, 0) dF(a)-2(O)

Our interest in these quantities is motivated by the fact that

IS, (0)- (0)1 Jl(0)+(0)+Y,(0).

Now given e > 0, we may fix M so large that Ih (a, 0) qv(a, 0)l < e uniformly in
(a, 0) Z since the Cesaro sum converges uniformly in (a, 0)e Z.

Now

J(O) ]h(A, O)-q(A, O)I/(A) da

Ne I(I) dl elCo.

Similarly

Also

J3(O) <= elTO.

M

J(O) Z

Since Z is a compact set and h(A, 0) is continuous on that set, we may define
g-maxoz ]h(A, 0)l. This implies that independently of 0(R),

MHence JE(O) <-K =_]C-y
Now suppose that we are given e > 0. Fix M so large that eayo < e/6. Hence for

no6N+ sufficiently large Jl(O)+Ja(O)<3elyo<e/2 for all n _->no independently of
0(R). Hence Jl(O)+JE(O)+Ja(O)<e for n _->max (no, Hi) uniformly in 0(R). [-]
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THEOREM 4.1. For processes type 1, 2, 3 and subjectto assumptions (S1), ($2), ($3),

if 6)o denotes the set ofO’s minimizing r2(0) (the minimum is denoted cr2(0o)) and dn is
any minimizing value of S,(O), then

lim d(n, 19o) 0 for o l’’,

lim S, (,) o-2(0o) for w fl’.

Proof. Fix w D,’. First note that 19o is nonempty, since (R) is compact and o-2(0) is
continuous (Theorem 2.1).

Then from Lemma 4.1, given e > 0 there exists an no such that for all n->_ no
ISn(O)--o’Z(o)I<F_, for all 0(R). Hence

O’2(n) Sn(n)Sn(Oo)<O’2(OO)nt-8
which implies that o’2(,,) < cr2(0o) + 2e. Consequently lim, rZ(ff,) cr2(0o). Now

Is. (&)- Is.   ta.)l +
The first term tends to zero by Lemma 4.1 and we have just shown the second tends to
zero also. Hence lim. S.(t)= o-2(00) and the second part of the theorem is proved.

For convenience denote d (ft., 00) by y.. We now claim lim. y. 0. This is proved
by contradiction.

Suppose y. does not converge to zero, then there exists an e > 0 such that there is a
subsequence of {n} denoted {hi} for which y., > e for all 6 1+. Consider the closed set
C c O of O’s for which d(O, 00) => e. Clearly C is compact. Hence {hi} has a subsequence
denoted {nj} for which {tni} converges to O*C. Obviously, 0"O0. Hence
limj o-2(tni) cr2(O *) > cr2(Oo). But limi r2(n,) o’2(00). This contradiction establishes
the first part of the theorem. 71

5. Limiting behaviour of ,, under weaker assumptions. For processes 2, 3 it has

been assumed that (l/n) ,=1 xtxt+, ym leading to the almost sure "consistency"

results obtained in 4. Here we consider,
Process Type 2’, 3" As for processes type 2, 3 respectively excepting that

1 Prob

E XtXt+n l/m

The following theorem allows us to convert the almost sure convergence results
obtained in 4 to in probability convergence results for processes type 2’, 3’.

THEOREM 5.1. Suppose that under a certain set ofconditions (call these condition C).

a a for i= 1,2,... implies b- b.

Then under conditions C

Prob Prob

a., a tor l, 2 implies bn b.

Prob
Proof[19]. The theorem follows from the well known fact that x, x if and only

if every subsequence of the xi’s contains a further subsequence which converges to x
almost surely. [3
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Theorems 4.1 and 5.1 can be combined to yield:
THEOREM 5.2. Forprocesses type 2’, 3’ and subfectw assumptions (S1), (S2), ($3), if

Oo denotes the set of O’s minimizing 0-2(0) and On denotes any minimizing value ofSn(O),
then

mind(tn, Prob Prob
0-2o)--- o, s()--- (Oo).

00o

6. Limiting distributions relevant to /. To obtain more detailed information
about the way in which converges we specialise to a consideration of a process (xt}
which satisfies the following assumptions.

AI: xt , l,et-, where lo 1 and lu 0 for u < 0.
A2:E(e,l_l}=0 a.s. for all n where is the 0--field generated by

A3" E{e 1-_1} 0-2 > 0 a.s.
A4: Suppose there exists a random variable X with E{X4} < cx3 such that P{len[ >

u} <-cP{Ixl > u} for some 0 < c < c and all n, all u -> 0.
BI" El
B2: Z. ul <
It is obvious that Assumptions A2 and A3 imply that E{e,e,,} =0-26,,,. Since

B2 ::> B 1, Assumptions A1, A2, A3 and B2 imply that {x,} has an absolutely continuous
spectral distribution (see, for example, [14, p. 499]). We denote the spectral density by
f(A). Note that yn 0-2 u l,l+,. Under Assumptions A1, A2, A3 and B 1, Hannan and

Prob
Heyde [18] have proved that (l/n) Y.,=I xtx,+,, y,,. Consequently a process satis-

fying A1, A2, A3 and B2 is necessarily a Type 3’ process.
Consider the class of interpolators introduced in 2. The mean-square inter-

polation error is given by 0-2(0) _= h(A, 0)f(A) dA. Let us now introduce the following
assumptions on the class of interpolators:

CI: Suppose is P and 19 is a compact subset of P. Hence 0 [01, , Op] T. It
is also supposed that the 19o defined in 4 consists of a single element 00 19- bd 19.
Here bd 19 denotes the boundary of the set 19.

C2: h(A, 0) is continuous in (A, 0) Z. There exists a neighborhood of 0o denoted
No in which h(A, 0) is a twice difterentiable function of the 0i whose second derivatives
w.r.t. 0r are continuous in (A, 0) for 0 No.

Let h(i)(A, 0) denote Oh(A, O)/OOi and h(ii)(h, 0) denote 02h(A, O)/OOi OOj. Clearly
assumptions C1 and C2 imply that 0-2(0) may be differentiated under the integral sign so
that

(6.1) h(’)(h, 00)f(A) dh 0.

Now Theorem 5.2 implies that under Assumptions A1, A2, A3, B1, C1 and C2,
Prob Prob)d(O, 0o) O, () ,(Oo).

THEOREM 6.1. Suppose Assumptions A1, A2, A3, A4, B2, C1 and C2 hold. Let
(Oii), (ii) where

Oii - 47r h (i)(h, 0o) h(i) (h, Oo)f:(h dh,

, & h (i])(l, O0)f(t dA.
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Now provided is nonsingular t/1/2(/ --00)" N(0, -1-1).
Prob

Proofi Since 0. 0o, the limiting distribution can be obtained on the assumption
that , No. Now by the mean value theorem

p

0-- S(d)(O0)" 2 (n,i--O0,i (0")
i=1

where 0* =An +(1-A)0o and 0<A <1. Hence
p

(6.2) Z {--s(ii)(o*)}{rla/2( --O0,i)}--nl/2(i)(O0).vn,
i=1

The proof is divided into two parts"
Prob

Part a. The proof that S(/i) (0*) i] is given in Appendix B.

Part b. We prove that the limiting distribution of nl/2S (00) (1 <_-i <_-p) is N(0, )
as follows

(6.3) nl/2S(,i)(Oo)=n 1/2 h(i)(h, 0o)In(h) dh.

Now let us define I(A, e)A(1/2rn)l,=l EteiXt] 2. As proved by Hannan [13] we may
replace consideration of the expression (6.3) by

(6.4) n /2 I(h, e)f(h)h(i)(h, 0o) dh.

But (6.1) implies that expression (6.4) may be replaced by

n I(X, e)- e /(X)h (X, 0o)dA.
t=l

As shown in 13] this type of expression can be reduced to the consideration of an
expression which is asymptotically normal by a result of Hannan and Heyde [18].

dist

Finally, n/2( --0o) N(O, -) from (6.2) and [16, pp. 254-255].

COROLLARY 6.1. Under the conditions that make Theorem 6.1 valid n [z(O,)
2(0o)] is in the limit distributed as yTy where y is distributed as N(O, --). Let it
be remarked that E{y Ty} tr{ $-a}.

Proof. By the mean value theorem

2

i,j=

where 0 A0o + (1 A)d, 0 < A < 1. Hence

(6.5)
=1/2 rtl/2(n,i_Oo,i)n/2(On,]_Oo,i h(ii)(A, Omn)f(A)dA"

i,]=l

The result now follows from Theorem 6.1. 71
COROLLARY 6.2. Under the conditions for the validity of Theorem 6.1 n[S,(Oo)-

S, (t,)] is in the limit distributed as 1/2yT-dOy where y is distributed as N(0, -+-1). Let it
be remarked that E{1/2y 7"y} 1/2 tr {-}.
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Pro@ By the mean value theorem

P

&(Oo) s.(.)+1/2 E (Oo., ,)(Oo,-o,) (o*.)
i,j=

where 0 =A0o+(1-A), 0<A <1. Consequently

1/2[ ni)l/2[dn[Sn(Oo)--Sn(n)] E ku0,i ku0,/ (0).
i,i=l

Prob
The result now follows from Theorem 6.1 and the fact that

7. Additional limiting distributions relevant o .. In 6 the limiting distributions
relevant to 0n were developed under fairly weak assumptions on {x,}. To obtain more
results ,assumptions additional to those of 6 need to be introduced. Here we assume
A1, A2, A3 as in the last section plus we introduce

A5" E{e 3nero}= E{e,}E{e} for n > m.
4A6" E{e} 4< m. Define 4 4-3

B3" , u[l] < (note that B3 B2, see Theorem C.1 of Appendix C).
Let it be remarked firstly that the above set of assumptions on the process is more

stringent than the set of assumptions A1, A2, A3, A4 and B2 of the previous section.
Clearly, Assumptions A1, A2, A3, A5 and A6 are satisfied by {e,} a sequence of

independent random variables with E{e,} 0, E{e]}= 2>0 and E{e}=4<
However, Assumptions A1, A2, A3, A5 and A6 are weaker.

Assumptions A2 and A3 have been chosen because they imply that powerful
convergence and central limit results hold. Assumptions A2, A3, A5 and A6, together,
have been chosen because expressions of the form E{e}, E{egei} and E{eieiee} have
the values that would have been ascribed to them had the et’s been a sequence of
independent random variables with E{e,} O, E{e 2 4,}= > 0 andE{e, } 4<. (See
Lemma C.1 of Appendix C.)

Assumption B3 implies that [tyrO< , see Theorem C.1 of Appendix C. The
condition [tyt[ < implies that not only is f(. continuous but it is also differentiable
everhere with a bounded derivative for e [-, ]. (See, again, Theorem C.1 of
Appendix C.)

In addition to Assumptions C1 and C2 on the class of interpolators introduced in
the previous section we also require"

C3" h(g)(h, 0) is such that 2 [a)(0)[ < for each 0 e No.
In Appendix C are proved a number of results pertaining to quantities related to

&(o).
It will be supposed throughout this section that Assumptions A1, A2, A3, A5, A6,

B3, C1, C2 and C3 hold. The results developed in Appendix C will now be used to prove
several theorems.

dist
THeOreM 7.1. For nonsingular n 1/2 (Sn(n)--2(O0)) N(O, ) where

6 a-4r [h(A, 00)f(/.)]2 d/. -+----(0"2(00))2.

Also 6 >--_ (2 +/(4/0"4)(0"2(00))2.
Proof. By the mean value theorem

Sn(O0)-- Sn(On)’ar-1/2 E (O0,i--dn,i)(Oo,]--n,])S(ini)(On)
i,i=l
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where 0* =A00+(1-A)ffn, 0<A <1.
Consequently

n/[&(O.)-s.(oo)]=
-1/2n P

2 /(00,,-&,)/(0o.-0\,)s’(0*,).
2 i,/’=

dist
By Theorem 6.1 nl/2(n-Oo) N(O, dO-lq-l). Also, the proof of Theorem 6.1

Prob
includes a proof of the fact that s(i,i) (0") ckii.

Prob
Hence nl/2sn(On)= nl/2Sn(OO)+ tn where K,- 0. Also by Result C3.

n /2E{Sn(O0)} n/2cr2(Oo)+ho where lim h, =0.

Hence

Prob

n /2[Sn(On)--O’2(O0)]-" n /2[S,(Oo)-E{Sn(Oo)}]+m, where m, ; 0.

Hence by a result of Cramer [16, 20.6] the limiting distribution of
2( /2ES"cr 0o)] is the same as that of n (Oo)-E{$,(Oo)}] Now by Theorem C.4 of

dist

Appendix C nl/Z[s,(Oo)-E{S,(Oo)}]------ N(O, 6).
If o’2(0o) is constrained to equal _=h(A, Oo)f(A)dA then a calculus of variations

argument proves that the constrained minimum value of 8 is (2 + K4/o’4)(o’2(00))2o
COROLLARY 7.1. nl/Z[Sn(On)-O’2(dn)] dist. N(0, 6) where (3 is defined as in the

statement of Theorem 7.1.
Prob

Proof. na/2(S,(n)-o’2(,))-nl/2(S,(n)-o’2(Oo))= nl/2(o’2(Oo)-o-2(n)) 0

by Corollary 6.1. The result now follows from Theorem 7.1. 71
THEOREM 7.2. For nonsingular

nl/2[Sn(On)--o-2(O0)] dist
N(O,B)

On Oo

where

B__a v

where u (u.) and u 47r I2 h(x, Oo)h;(x, 0o)/() da.
Proof. As in the proof of Theorem 7.1

nl/2[S,(,)-o’2(0o)] na/Z[s(Oo)-EIS,(Oo)}]+ mn
Prob

where m, 0. Thus, when finding the limiting distribution we need only consider

n /2[S, (0o) E{S, (0o)}].
Also, by Result C.3, nl/ZE{S(ni)(0o)} kn where lim, k, 0. Hence, when finding

the limiting distribution of nl/ZS(ni)(Oo) we may instead consider nl/Z[S(i)(Oo)-.
E{S(Oo)}]..
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As a preliminary we will consider the limiting distribution of

(7.1) 1/2

Sn(Oo)-E{Sn(Oo)} [s (Oo)-.{s (Oo)}

Ls(: (Oo)-

By Theorem C.4 the vector (7.1) has a limiting distribution N(0, A) where

Now recall equation (6.2) viz.

p

E {-.’(i])(0)}{F/1/2(/ 1/2S(2),.,,- 0o,,)} n (0o).
i=1

Hence the limiting distribution of

,(Oo)-E{S,(Oo)}
/,/1/2 n, -. 00,1 [

is N(0, B) where

p
T)-

B - [(i). P (I)_11_1].
8. Limit results for two different interpolator classes on the basis of the same data.

The methodology of 6 and 7 can be used to examine the following kind of situation
which has no analogue in the classical case (i.e. when the property of interest is the
spectral density.)

From the outset we restrict our attention to processes of the type 3’. Suppose we are
concerned with two classes of interpolators"

(1) t -’, h,(O)xt-, where {h,(0)} is a sequence of reals for which ho(O) 1 for
all 0 19 a subset of gt p.

(2) .f, -2’u m,(,b)x,-, where {m,()}; is a sequence of reals for which too(C) 1
for all a subset of q. In other words, & [1," , Cq].

The mean-square interpolation error for the first class of interpolators has already
been defined by

o’2(0) h(a, 0)/(a) dA.

The mean-square interpolation error for the second class of interpolators is
denoted g2(&) and is defined by

62() m(A, &)f(h dh 12m(h, &)----a mu e iua

2(The estimator of o- 0) we will consider is S,(0) which has already been defined.
The estimator of 2() we will consider is Vn (&) defined by

Vn() I,,(A)m(A,)dh
n--1

r=--n+l
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where

/r(()A
1 I iAr=-- re(A, &) e dA.

Also, let n denote a value of O which minimizes Vn (&). The following assump-
tions concerning m (A, &) will be referred to in this section. They are clearly analogous
to Assumptions C1, C2 and C3 for h(A, 0).

CI’: is a compact subset of q. It is also supposed that 82(&) is minimized at a
single value of &, denoted &o, and that Oo s -bd .

C2’: re(A, 0) is continuous in (A, &) [-r, r]. There exists a neighborhood of

O0 denotedM in which m (A, &) is a twice differentiable function of the Oi whose second
derivatives w.r.t. O. are continuous in (A, &) for & . M0.

Let m"(A, O) denote Ore(A, ()/O)i and m(ii)(A, q) denote 02m(A, ))/O)i (j.
C3" mi)(A, 4’)is such that Y Ifl<si)(&)l <, &sMo.
Clearly, Assumptions C1’ and C2’ imply that 62(&) may be differentiated under the

integral sign at &0 i.e.

_
m<i)(A, &o)[(A) dA ---0.

Our motivation for considering two classes of interpolators is that we wish to
develop results pertaining to measurement of the relative performance of two different
interpolation classes based on the one set of data. Of course, $(0) gives a measure of
the relative performance of different interpolators from the one class for different
values of 0. The theorems in previous sections are therefore concerned with the
question "What can be said about the best member of a particular class of inter-
polators?" Here we are concerned with the comparison of members of two (or more)
interpolator classes and our theory relates to the question "What can be said about the
best interpolator from several classes of interpolators?".

THEOREM 8.1. UnderAssumptions A1, A2, A3, A4, B2, C1, C2, C1’ and C2’, and
supposing dp, , introduced below, are nonsingular then the limiting distribution of

n I-q, 0] is
A B

where A &p-lOdp-1, B A---(I)-I",.-1 and C a--AE-IFE-1 and =(&ii), = (0ii), E=
(Eli), F (F/i) and fl (fii) where &ii a=

_
h/i)(A, 0o)[(A) dA as before

-i] m ii)(A, 0o)f(A) dA,

4’, & 4r h (i)(/, Oo)h) (A, 00)f2(/ d/.,

Fii & 47r m (i)(/, Oo)m (i) (A, 00)f2(A dA,

[’ij A 47r h (i)(/, Oo)m <i) (A, 0o)/C2(A dA.

Pro@ By Theorem 5.2 , Prob Prob

00,, ,&o. Hence we are able to obtain the

limiting distribution on the assumption that , 6 No, , 6 Mo.
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where

Now by the mean value theorem:
p

E {-s (0’)}{n/ /S(j.,.’n,i- 00,i)} /"/ (00),
i=1

q

g (- v"; (’)}(n/ /v(j,.,- o,)} n (4,0)
i=:1

0tn A10o+(1-hl)dn,

’ o+(1-),,
We now proceed in a manner similar to the proof of Theorem 6.1 to prove this

result. I-1
THEORZM 8.2. UnderAssumptions A1, A2, A3, A5, A6, B3, C1, C2, C3, CI’, C2’,

C3’ the limiting distribution of
hi(&(&)- v())- ((Oo)- (o))3

is N(O, 1) where

r/=47r [h(a, Oo)-m(A, bo)]2f2(a) da

+--z [h(a, Oo)-m(A, Co)If(a) da

Also, rl >- (2 +/4/0"4)A2 where A & rZ(0o) 32(4)0).
Proof. By arguments similar to those presented in the proof of Theorem 7.1 we may

consider rtl/Z[(sn(Oo)--gn(qo))-E{Sn(Oo)-gn(bo)}]. Theorem C.4 now implies the
first part of the theorem.

For the second part we note that when A is constrained to equal

_
(h(a, 0o)-

re(a, o))f(a)da a calculus of variations argument shows that the smallest possible
value of rt is (2 + ff4/o’4)A2. [

Remark 8.1. Note that even when 0-2(00)= 0-2(o) (i.e., A 0) it may still be true
that rt > 0.

We next investigate the special case h (, 0o) m (A, &) for all e [-rr, rr]. This may
be considered to be a suitable form of null hypothesis in structure choice problems (see
[19] for a detailed discussion).

THZORZM 8.3. Suppose Assumptions A1, A2, A3, A4, B2, C1, C2, CI’, C2’ hold
and suppose that dp, .. are nonsingular. Under the hypothesis that h (A, 0o)- m (, Cbo) for
all [-rr, rr] the limiting distribution of n[(S,(n)- Vn(cn))-(0-2(Oo)-62(Cbo))] is the
same as the distribution of-1/2xrdPx +1/2yT..y where [xryr]r is distributed as

where A, B and C are defined in the statement of Theorem 8.1. The variance of the
limiting distribution is

p q

i,/’= k,l=l

p q

--1/2 E Z (Aiifkl+Biinil+BilBik)dPiikl
i,]=l k,l=l

+ 1/4 E Y’. (AiiAt, + Ait,Ail + AilAit, )()ii
i,/=1 k,/=l
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Proof. By the mean value theorem

P

Sn(Oo) Sn(n)-nt-1/2 2 (Oo, n,i)(O0,] On,])-n2 ,.(i])(On:)
i,j=

where 0,* =aOo+(1-al), o<a<l.
Similarly,

q

Vn(O)-- Vn(n)-Jr’-1/2 E (o,i-(n,i)(o,]-n,])v(in])(n)
i,/’=

where &* A24o+(1-A2)n, 0<A2< 1.
The hypothesis that h (a, 0o) rn (,, 0o) for all , e [-rr, rr] immediately implies that

Sn(Oo) Vn(o) and o.2(0o)= 62(0o), thus

n[(&(&)- v. (&))- ((Oo)- a(o))]
qn
2 (o,k n,k)(0,I- n,l) V(:(8.1)

2 k,l=l

P_n E (Oo,i-ni)(Oo,j-nj)S(iJ)(o:g)
2 i,[=l

But Theorem 8.1 now implies that the limiting distribution of the 1.h.s. of
equation (8.1) is as stated in the theorem.

Let it be remarked that the theorem obviously applies in the case that h (’, 0o)--
rn(., o)= f(" )-1, this being a classical null hypothesis. It is to be stressed, however,
that it has not been assumed that h(’, 0o)= rn(., &o) f(" )-1. It is easily seen that it is
possible to have h(-, 0o)= rn(., Oo) without having h(’, Oo)= rn(’, &o)= f(" )-1.

9. Ralprochment with classical results. By considering assumptions additional to
those made in 2-9 we are able to recover many of the results of the classical theory of
finite parameter models for purely nondeterministic time-series.

Consider any one of the Process Type 1, 2, 3, 2’ and 3’.
Additional Assumption 1: {xt} is weakly stationary and has an absolutely continu-

ous spectral distribution. Again, the spectral density is denoted by f(. ).
Additional Assumption 2" _=, log f(a da > -oo.
Introduce now the set {f(., 0)10 cO} which satisfies the following additional

assumptions.
AdditionalAssumption 3: f(. f(., 0o) for a unique 0o (R) (here two functions are

considered equal if they differ at most on the set of A-measure zero).
Additional Assumption 4: f(,, 0)->0 for all (,, O)eZ, _==f(a, 0) da <oo and

_== log f(a, 0) d, >-oo for each 0 e (R). Now define

m(. 0)& 4,(0)
foreach 027 ; O)

where

0(0)exl log2rrf(a, 0) da

Also, let o.2 denote (00). The next result if well known
THEOREM 9.1. _=rn(a, O)f(a) da is minimized at the single value of 0o (R). (0o is

sometimes referred to as the "true value" and yields f(., 0o)= f(" a.s.)
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Proof. For the proof see [12]. 71
Introduce now the following additional Assumption.
Additional Assumption 5: m (A, 0) is continuous in (, O) Z and (R) is a compact

subset of a metric space :g with distance d (.,.).
THEORZM 9.2. Under Additional Assumptions 1-5, for Process Types 1-3:

lim d(n, 00) 0

lim Sn() 0-2(0o), for w f’.

For Process Types 2’ and 3’:

Prob
oo) o,

Pro
Proof. The proof is an immediate consequence of Theorems 4.1 and 5.2.
In the next result we specialize to processes of the type 3’.
THEOREM 9.3. Suppose Additional Assumptions 1-5 and Assumptions A1, A2,

A3, A4 and B2 hold and that Assumptions C1 and C2 hold ]:or m(h, O) replacing
h (h, 0). Let W (Wi) where

=--a1 ff, m (i)(h,..ib._oi0O)m(i) (h, 0o)
dA.

1/2(n
dist

W-Now provided W is nonsingular n 0o) N(O, ).
Proof. The result follows from Theorem 6.1 and the following observations. Since

_
log m (h, 0) dh 0 for 0 O and since for 0 No this can be differentiated under the

integral sign w.r.t. 0i
m(i) (A’

dh =0
0)

re(A, 0)

and

m(i])(/., O) f-r m(i)(A, O)m () (h O)
:9) d:j_ a dA for ONo

hence 2o-2 and the result now follows from Theorem 6.1. 71
THEOREM 9.4. Under the conditions required ]:or the validity of Theorem 9.3,

n [o’2(n) 0"2(00)] is in the limit distributed as 1/2x Tdpx where x is distributed asN(O, w-l).
2Let it be remarked that E{1/2x Tdpx} r p.

Proof. The proof is an immediate consequence of Corollary 6.1 and Theorem 9.3.
THEOREM 9.5. Under the conditions required for the validity of Theorem 9.3

n[S,(Oo)- Sn(,)] is in the limit distributed as 1/2y T(I)y where y is distributed as N(O, w-l).
2Let it be remarked that E{1/2y Ty} o" p.

Proof. Immediate consequence of Corollary 6.2 and Theorem 9.3. 71
THEOREM 9.6. Suppose Additional Assumptions 1-5 and Assumptions A1, A2,

A3, A5, A6 and B3 hold and that Assumptions C1, C2 and C3 hold for re(A, 0)
replacing h(A, 0). Then if W is nonsingular

nX/2[S(,,)_o.2(Oo)]_ ,rot, N(O, 8)
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where

8 --a 2+--/0-
Proof. The proof is a consequence of Theorem 7.1. [q

THEOREM 9.7. Under the conditions required for the validity of Theorem 9.6

1/2 Sn(n)-O-2(Oo)]
dist

N(O,B)
O. Oo J

where

o]B=
0 W-1"

Proof. The result follows from Theorem 7.2 and the following observations. As in
the proof of Theorem 9.3 we note that

Hence ’i =0 for /’= 1,..., p since by assumption f(A) is proportional to
1/m (A, 00). During the proof of Theorem 9.3 it was also shown that 20-2 and the
result now follows by Theorem 7.2.

10. Conclusions. This paper has developed results pertaining to the estimation of
the parameters in optimal interpolators when the class of interpolators is restricted. The
practical impact of the results is that they allow us to establish asymptotically valid
confidence regions for parameters under weak assumptions on the system. Results
pertaining to the case where two interpolators of different structure are fitted to the one
piece of data have also been presented. These results form a theoretical basis for
interpolator structure choice.

Appendix A. Consider the following type 3 process:

Xt Et -[" Et-1

where {e,} is an i.i.d, sequence, E(e,)= O, E(e 2 4,)=1 and E(et) tx4<.
The best one-step ahead autoregressive predictor of order 1 is

Xt --Xt--1
3/0

-Xt--1.

Cascading k > 1 such predictors we obtain

However, the appropriate mean square k-step-ahead predictor error is 0"2(0)
E{(x,--Oxt-k)z} ,/o(1 + 02)-- 3,k(20) which is minimized by 0o=0 for k > 1, giving the
optimal restricted complexity predictor as )t "-0 for k > 1.
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Appendix B.
THEOREM B.1. Under the conditions of Theorem 6.1 and using the notation

introduced in the proof of that theorem

Prob.,."; 0" ----* ,.
Proof. Since Z is a compact subset of p+l and h(ii)(X, 0) is continuous on this set,

h (ii)(X, 0) is also uniformly continuous. Hence given e > 0 a neighborhood Nx and 0o can
be found such that NlCNo and for which Ih")(x, 0)-h")(X, 0o)l<e uniformly in
O N, X [-r, zr].

Prob
Now since 0* 00 the limit result may be derived on the assumption that

0* N1. Now for 0*n NI"

IS’(o*.)-sd’(Oo)l In(A){h(U)(A, O*)-h(q)(A, 0o)} dA

<-_ eCo.
Prob

Now Co "/o and e is arbitrarily small so that

(B.1) IS(/, (On#)__ S(in])(O0)
Pmb
0.

Let q(A, 0) denote the Cesaro sum of the Fourier series of h(i(A, 0) taken to M
terms i.e.

isAq(h,O)= a
q) (O 1- e

s=--M

(The derivatives exist by virtue of assumptions C1 and C2 which imply (2.5) can be
differentiated under the integral sign.) Also let

Jl(0o) sii(Oo) qt(A, 0o)In(A) dA

r(0o) qt(A, 0o)/ (A) dA qM(A, 0o)f(A) dA

J3(0o) qu(A, Oo)f(A) dA ,.
Note IS) (0o)-qt <--Jl(Oo)+J2(Oo)+J3(Oo).

Now given e > 0 we may fixM so large that Ih (i])(A, /9) qM(A, 0) < e uniformly in
(A, 0) Z since the Cesaro sum converges uniformly in (A, 0) Z.

J(Oo) <-_ Ih("(a, Oo)-q’(A, 0o)11(,) d

Similarly J3(Oo) -< elyo,

](Oo)= E .;(Oo 1-
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But h(’)(h, O) has been assumed to be continuous on a compact set, so
(ii)

max(;,,0)z ]h(ii)(h, 0)] _-< k < (30. Thus independently of 0 19, ]as (0)]-< k and

M

J2(Oo) <-- k E ]G -’,,,l.
s.._M

Prob Prob

But Cs - ’s, so that J2(O0) . 0 (M fixed).
Hence combining these results Jl(00), J2(O0), J3(0) for given e > 0, r > 0 we can fix

M sufficiently large and find an n(>M) sufficiently large that

p{].(ii) (0o)- 6,1 > e} < r/

2

Combining this with (B. 1) yields the desired result. El

Appendix C.
LEMMA C.1. Under assumptions A2, A3, A5 and A6
(a) E{8i}-- O, E{eiej} o’2ij.
(b) E{eieekel} 0 for > j > k > l.
(c) E{e3 e,}= O for k.
(d) E{eZieie}=O fori#j, i#kandj#k.

2}=0"4 for #j.(e) E{eei
Proof. The proof is straightforward using properties of conditional expectations.
THEOREM C.1. Under assumptions A1, to A6 we have the following

implications
(a) Y’., ull < oo implies Y. ul2 < 0o.

(b) Y., u12, < (30 implies Y.u Y2t < (30.

(c) y. ulZul implies Yt ]tv,
(d) Zt ]t’v,I oo implies Z, 1’,[ < 0o.

(e) Z, I,1 < oo implies Y,t Yet < (30.

(f) Zt "/t2 <(30 implies f(h)=(1/27r) Y Tne
inx in mean-square where.

A --inh

(g) t lYtl (30 implies f(h is continuous and

1 inAf h =---- "y,, e

pointwise.
(h) Zt Itv, < oo implies f’(h is continuous for h [-zr, zr].
Proof. (a) Suppose Y ull.[ < oo then clearly II.I < a for u > some N but then l < I/1.

Hence u ulu < (30.

(b) Suppose Yu ul2 < (30 then
2

lulu + 0-

--<t (u 12u)( " 12v+t) 0"4
v=O

)12, vZO= 12v+tO’4= 12 el2t 0
-4 <U. 0(3.
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(c) Suppose Z ullul < c. Now for > 0

E ullu+el <= Z (u +t)ilu+el <- Z ul/.I <.
u=l u=l u=l

Hence

tZ 2t[ytl 2 l,lu+t 0-

_-< 2 E Iz.I E tlt, <.
t=l

(d) and (e) are elementary.
(f) By the Riesz-Fischer theorem Y, /2 < c ::> [(A) En ")/n e
(g) By the Weistrass M-test Et I ,,I < implies that Yn 3’n e

inx

Hence f(A is continuous and f(h) Y, ,, e inx pointwise.
(h) Suppose E1 It,/,[ <. Now if we define

in mean-square.
converges uniformly.

then we see that

g(z) k(h dh where k(A) a 1 ihs

=’- (iS)yse

Clearly k(A) is continuous on [-rr, rr]. But g(z)=f(z)+constant, f’(z)= g’(z) so
that f’(z) k(z). Consequently f’(z) is continuous for A [-rr, rr]. 71

RFSULT C. 1. Under assumptions A1, A2, A3, A5, A6, B3, let K4 &/x4 30-4 (K4 is
the fourth cumulant of et). Then

F--, {XiXjXkXl} "/i-j’Yk-I -[" /i-k/j-I "[" i-l’]/-k
()

+ 4 Y. ll+(i-i)l+(g-i)l+(l-i

(B)
rt COV(Ct, Cr)

1 t "f’
Yi--iYi+t--i--r "Jr- 3/i-]-r’i+ -]

n i=1 i=1

q- K4 2 lala+tla+(]-i)la+i+r-i}

(c)

Proof. (A): the proof is almost identical to pp. 466-467 of Anderson [20]. (B)
follows by calculation from (A), and (C) is an immediate consequence of (B).

RESULT C.2. Suppose xt , l,et-, with E{et} O, E{e,,e,,,} 0-2&,,,, E{ee,eqer}
O, # s, # q, # r, E{e 2 2} 4 i/t[<o"e. o’4r # S, E{E } t2,4 and Zt

limn cov (c,, c)= Z {l/s’l/s--r+t-’l/s--r’/s+t}+’tt’itr
0-

Proof. The proof is essentially as on pp. 467-468 of Anderson [20]. [q

THEOREM C.2. Suppose xt Yu l,et- with E{et} O, E{ene,,} 0-26m,
E{eteseqer} O # s, # q, r, E{e 2

e 2 } 0.4, : s, ’{E 4 } [-4 and Y, [Yt[ < CX3. Let
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Wl(/.), W2(,) be even and bounded with at most a finite number of discontinuities for
A [-Tr, zr]. Now let

where

and

then

6s a 1 ixs=- e WI(A dA,
1 If iArr " e Wa A dA

a a_ nl/Z[T., -E{T,.}], bAnl/Z[v,-E{V,}];

limlimE{ab}=4zr WI(A) W2(A)fa(A) dA

+--a" W,(a)/(a da W2(A )/(A dA.

Proof. From the definition of a and b

1/2a=n 2 8t[ct-E{ct}],

1/2b n E fl,[c, E{c,}]

hence

By Result C.2

E{ab}= E E arn COV (Ct, Cr).

lim E{ab}= Y Y tr {/s’/s--t+r q- "}ts+r/s-t} q-"-’/t’Yr
t=--m (7"

Now since

limE{ab}=2 E E 8B, E
t=--m

t4
-{’-’- E E E tl3r’Yt’)lr

O" t=--m

By Parseval’s theorem

lim lim E{ab} 4- WI(A) W2(1)fa(A) dA

+-’ W1(A)f(A da W2(A )f(a dA. 71

THEOREM C.3. UnderAssumptions A1, A2, A3, AS, A6 and supposing , [, <
(which is implied by Assumption B3 (see Theorem C.1)) n/2c,, Otm, are asymp-
wtically normally distributed.
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Proof. The proof is in a manner similar to Hannan and Heyde [18], pp. 2062-
2063. 71

THEOREM C.4. Suppose Assumptions A1, A2, A3, A5, A6 and B3 hold. Introduce
now gl(A),’’’, gq(A) where each gi(A) is even and ]:or which

Now define

A 1 I --inAa -- g A e dX

S A gi(A 1I. (A) dA Y. a tct.
t=--n+l

Then nl/2{[Sln, Sqn]T -E[Sln, Sn]T} is in the limit distributed as N(O, Z) where
Z (Zij) and

if4
zij 4r gi(A )g.(A )f2(A dA +--- gi(A )f(A dA g(A )f(A dA.

Proof. Now

1/2[Sin E{Sin}] hi 2 ol, t[Ct E{ct}].
t=-n+l

Now define

A 1/2Zm, n E a [[ct E{ct}],

R 1/2 , I[n . O ,LCt- -,tCtJ_l, m n
m<ltl<n

By Theorem C.3 the limiting distribution of nl/2[ct-E{ct}] O<--t<--rn is normal.
Also, from Theorem C.2

lim lim cov (Z,,, Zm,) 4r g(A)gk(A)f2(A)dl

+--" gi(A )/(A dA gi(A )/(A dA.

Also

t=m+l r=m+l
11 In cov (c,, cr)l

_-<4
t=m+l r=m+l

+ I____[ . Ilala/,la-Ja/r-vl} by Result C.1.
O"

Now

t--- m+l r=m+l

2

t=m+l r=m+l

t=m+l r=m+l
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Also
1/2 1/2

E ]lala+tla-vla+r-vl <= lala+ lb-vlb+r-v

Consequently limm El = o. Therefore by a result of Diananda [20] Zimn +
Rmn, 1,..., p each have a limiting distribution which is, respectively, N(0, zii).

Similarly, it can be shown that the limiting distribution of n 1/2 Y.-I/3i[S/ E{S}],
where ill," ", flq are arbitrary constants, is N(0, Y.i,i=l fld3izi). By the Cramer-Wold
[12] theorem the limiting joint distributions of nl/2[Si-E{Si,}], l<=f<-q is
N(O, z). [

RESULT C.3. Suppose (xt} is weakly stationary with absolutely continuous spectral
distribution and thatf( has a derivative which is boundedfor -rr <--_ A rr. Suppose also
that W( is any bounded even function with at most a finite number of discontinuities
then

{I_ } I (logn).nE I. (A) W(A dA f(X W(A dX + 0\,
Proof. The result is stated and proved by Granander and Rosenblatt [23]. Their

proof depends essentially on a result due to Fejer !21].
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BOUNDARY CONTROL FOR THE HEAT EQUATION
WITH STEADY-STATE TARGETS*

E. J. P. GEORG SCHMIDTt

Abstract. Let II be a given domain in R ", and u(x, t) denote the temperature distribution of lq at time t.
The evolution of u(x, t) is governed by an initial boundary value problem for the heat equation; the boundary
value can be regarded as a control function. Within this context, given initial and target temperature
distributions Uo(X) and ul(x), traditional questions of control theorymcontrollability, optimal controllability
and the characterization of optimal controlsmhave been extensively studied. Here these topics are considered
with particular reference to steady state distributions, that is solutions of the heat equation which do not
depend on time. We show that any Uo(X) can be controlled exactly to any steady state target ul (x), and that the
corresponding time optimal problem (with bounded controls) has as solution a "bang-bang" control. For
controlling from Coy(x) to ClV(X) (where v(x) is a steady state with boundary value g(x), and Co and c are
constants) the restricted class of controls of the form h (t)g(x) is considered. Controllability results (including a
necessary and sufficient condition for exact controllability within that restricted class of controls) are proved.
Moreover, we show that a certain time-optimal problem, in which the target is a neighborhood of c 1/.) (X), has a
unique solution h(t)g(x) with h(t) "bang-bang". These results apply in particular to the problem of
controlling from Co to Cl using controls dependent on time alone.

1. Introduction. Let 1) be a bounded domain in R whose boundary Of is a C
manifold. Let A denote the Laplacian operation on R n, O/Ou denote differentiation with
respect to the outward pointing normal u to f, a be a nonnegative constant, and
B"= "a(O/Ou)+ 1. We consider the following initial boundary value problem:

OU(x, t) Au(x, t) for x f, (0, oo),
at

(1) Bu(x,t)=f(x,t) for x 0f, (0, oo),

u(x, O)= Uo(X) for x f.

It can be shown that, given u0 in H L2() and f in L L(Ofl (0, )), (1) has a
unique solution u in a certain weak sense to be specified later. Moreover u(., t) lies in H
for each > 0.

Let u0 H be given, and be a fixed positive time. For any subclass L of L we
define

R,(uo; L) {u(., t): there exists f L with u the corresponding solution of (1)}.

Controllability involves the study of these sets. It is well known that Rt(uo, L) is dense
in (but not equal to) H, i.e., that the system (1) is approximately controllable. (See, for
example, [9]). Exact controllability involves identifying elements of Rt(uo; L). Certain
rather stringent sufficient conditions for ul to lie in Rt(uo; L) have been developed by
Fattorini and Russell (see [3], [4] and [11]); in particular it follows that 0 R,(uo, L)
for all > 0, a property known as null controllability.

We introduce a class of temperature distributions on fl which generalize the
constant temperature distributions, and share many of their desirable properties.

* Received by the editors September 13, 1978 and in revised form March 12, 1979.
t Department of Mathematics, McGill University, Montreal, Quebec H3C 3GI, Canada. This research

was supported in part by the National Research Council of Canada Grant A7271 and by an Alexander von
Humboldt Research Fellowship.
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A steady state for the system (1) is a weak solution v H of

Av(x) 0, for x f,
(2)

By(x) g(x), for x

where g Loo(OIl). From null controllability it follows that each steady state v is
"reachable", i.e., v Rt(u0; Loo) for any u0 H and any > 0. Steady states have other
desirable features too.

To actually find a control which takes one from a given initial state u0 to an
arbitrary reachable target state Ul is extremely difficult. However when ul is a steady
state with Bul g, the control function f(x, t) g(x) yields a solution u of (1) with the
property that u (., t) converges to u as -+ oo. Thus, given e > 0, one can explicitly find a
control such that for sufficiently large Ilu(", t) ull < (where I/" denotes the norm in
H). This suggests introducing the class of control functions

Lgoo {f(x, t) h(t)g(x) h L(O, oo)}.

Such control functions were already studied by Glashoff and Weck in [6], but
not in connection with steady states. We obtain a characterization of the closure of
Rt(0; Lgoo) in H. We then also use a result of Galchuk [5] to derive a necessary
and sufficient condition for el/) to lie in Rt(Cov,’L,..M),g where L,,,.Mg
{f gh L" rn <- h (t) <-M a.e.}. These results apply in particular when v --- 1, in which
case the control function depends on alone, i.e., the control of the temperature of the
"body" is by means of the ambient temperature h (t), and the aim is to cool (or heat)
the body from Co to Cl. That situation originally motivated this paper.

The paper finally deals with optimal problems related to the above mentioned
controllability results, with special reference to the bang-bang property of optimal
controls.

2. Some facts about the heat equation. We shall need some facts concerning the
spectral theory of the Laplacian. A self-adjoint operator L can be defined in H as the
Laplacian acting on a suitable domain of functions satisfying Bu 0 on 8f. It is well
known (see Agmon [1]) that L has a complete, orthonormal system of eigenfunctions
{qk}k (N the natural numbers) corresponding to negative eigenvalues {--&k}kr"

(3) Ac --o, B0 0.

For the eigenvalues one has the asymptotic estimate

(4) Ck2In (C a constant).

The eigenfunctions lie in C(), and, letting D denote an arbitrary partial derivative
of order r,

(5) ]Drcpt (x)l CrA r,
where Cr and mr are positive constants.

Following Fattorini I-2] who treated the case a 0, we shall say that a function
u(x, t) which belongs to L2(f (0, T)) for each T > 0, is a weak solution of (1) if

u(x, t) -aft(x, t)+ Aq(x, t) dx dt + Uo(X)q(x, O) dx

(6)
T

+ Ioa Io f(x’ t)o(x’ t) dsx dt ’
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where dSx denotes an element of surface area of 0tq, 0 belongs to the space of test
functions

and

DT ={q C(aD x [0, T]) q(x, T)=-O, Bq(x, t)0}

t) for x e 0f, > 0, if a > 0,
(7) q(x, t) )-(x, t) for x e 01), > 0, if a 0.

Combining Fattorini’s results with those of Glashoff and Weck [6], it is not difficult
to prove the following theorem in which the main facts relevant to this paper are
summarized.

THEOREM 2.1. Given Uo Handf L there exists a unique weak solution u to (1).
That solution belongs w C(O x (0, m)) as well as w L2(O x (0, T)) for each T> O.
Moreover for each 0 one has

(8) u (., t) V,uo +

where
(a) { Vt}teo is a strongly continuous semigroup of bounded linear operators on H;
(b) St L H is continuous from the weak*-topology on L to H;
(c)

(9) V,uo e -"’(uo, ),
kN

with (., the inner product on H;
(d)

where (y) is equal to (y) /a i[ a > 0, and -O/Ou i[ a O.
(e) If Uo(X) and[(x, t) are essentially bounded below by m (or above by M) the same

is true [or u (x, t).

3. Steady states Ior the heat equation.
DEFINITION. Let g be in L(O). A function u H is said to be a steady state (for

the heat equation) hoMable by g, if it is a weak solution of (2); i.e., if for each in
{ e C(fi) Be 0 on 0}

(11) [ v(x) a(x)dx + [ g(x)(x)dS=O.

Let S be the subspace ofH consisting of all such steady states (elliptic theory implies the
existence of steady states corresponding to each g; see Ne6as [10]).

The role of steady states as targets is illuminated by the next result.
THEOREM 3.1. Let Uo H be given.
(a) Suppose u Hhas the property thatforsome e > 0 there existsf L andf > 0

such that

[[U (VtUo + St)[1 for > t.

Then there exists a steady state v with [[U x- v[[ N e.
(b) Suppose the hypothesis of (a) holds for each e > 0 and that sup>o lf[] < m.
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Then u is a steady state.
(c) Suppose there existsfin Lo such that Ilul (V,u0 / 0 as -, oo. Then U is a

steady state.

Proof. We prove (a). Since u u is a weak solution of (1) (with f if), it follows
from (6) that for any p > 0, T > 0 and q in C() with Bq ---0 on

u(x, t) Aq(x) dx dt + [u(x, r)- u(x, T +p)]q(x) dx
"T

+ f(x, t)o(x) d$ dt O.

Let T , and define

u(x) p- u(x, t) dr, f(x) p- (t, x) dt.
OT OT

Then

up(x) Aq(x) dx + fp(x)q (x) dS

p [u(x, T +p)- u(x, T)] dx.

Now, since Ilu(", T +p)ll <_- max (llfl[oo, Ilu(", T)lloo), the right side of (a2)converges to 0
as p .+ oo. Moreover, because IIfll <--Ilfll, and

T+p

t)
1/2

(13) Ilup-ulll<=\p-1( I[u(", t)- Ulll2 d =<e,
aT

one can pick a sequence p, ’ oo, such that fp. converges weak* in Loo(of) to gl g and
up. converges weakly in L2(f) to v v . Passing to the limit in (13), and noting (14) one
sees that v is a steady state (holdable by gl, with Ilgll{m<= [[fllm), and that I[ul-v[I <- e.

That (b) implies (c) is trivial. That (b) follows from (a) is proved by passing to the
limit in

n
v (x) A(x) dx [ g (x)q(x) dS,

noting that v (x).+ Ul as e -+0, while g has a weak* convergent subsequence because
11g711oo =< sup>0 Ill I1 <.

Most of the desirable properties of steady states depend on the following trivial
lemma, which is obtained by setting k =--A {1 Ak in (1 1).

LEMMA 3.2. Let v be a steady state holdable by g. Then

(14) n V(X)k(X) dx Aa oa g(x)(x) dSx.

4. Controllability results. We prove that
THEOREM 4.1. (a) For any uoeHand t>0, S c Rt(uo; Loo).
(b) Let u be a steady state holdable by g. Suppose that m < ess inf g, ess sup g < M.

Then, for any Uo H, Ul Rt(uo, L,,,t) for sufficiently large.
Proof. The trivial proof depends on the less trivial fact that 0 Rt(uo; Loo). This

property (null controllability) was proved for general l) by Russell in [11], but can also
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be proved following Seidman [14], by more elementary means. Let v beta steady state
holdable by g. To prove v Rt(uo; L) one needs to find L such that Vtuo + St[ v.
Since obviously v Vtv+Stg this requirement on can be rewritten as Vt(uo-v)+
St(]’- g) 0. Since 0 Rt(uo- t, Loo) such an f can be found, thus proving (a). The proof
of (b) depends on the fact proved by Russell, that for any uoH and M>0,
0 Rt(uo, L) for sufficiently large. Thus the equation Vt(uo- v) + St(f- g) 0
occurring above can be solved (for sufficiently large) with f-g arbitrarily small i.e.,
certainly with L..

We show also some controllability results using the restricted classes of controlsL
and gL. defined in the introduction. Before evaluating St[ with L we introduce
some notation. Let {-}1 denote the distinct eigenvalues of L in decreasing order,
MI {k N" hk l} and PI kMl (" k)k be the projection operator onto the
eigenspace corresponding to . From the representation (10) and Lemma 3.2 it easily
follows that, if f(x, t)= g(x)h(t).

((15) Stf= E l Pv,
lN

where v is the steady state corresponding to g.
THEOREM 4.2. Let v be the steady state corresponding to g, and H

{u sH: u =t= cPtv}. (H is a closed subspace of H). Then [or any uoHo, and any
> O, Rt(Uo, L) is dense in H.

Proof. It is enough to consider the case u0 0, since it follows from (9) that H is
invariant under {V,},0. Suppose Rt(0; L) is not dense in Ho. Then there exists a
nonzero element lSClPlV in H satisfying the following identity for all h s L(0, )"

2 cPv, e- (s sPv =0.
]N lN

Letting h(s) be the characteristic function of [0, r] (with r<t), and noting that
(ev, Ply) IlIPlvll2, one gets, after integrating and then differentiating with respect to r,
(which is permitted, since, as a consequence of (4), the series converges uniformly for
r [0, e ], with any e > 0),

’. CIIIPll)II2I e -’,(t-r) O.
IN

It follows, by a standard argument, that Clllell)ll2lj, 0 for each 1, so that Y.IuClPlV O, a
contradiction which completes the proof.

We have not been able to resolve the problem of null controllability within Ho
using the controls L. However a deep result of Galchuk [5], for which we give a new
proof and a slight extension in an appendix, does allow us to characterize the situations
in which it is possible to control exactly from Uo Coy to u cv with controls inL or

g

THEOREM 4.3. Let v be a steady state holdable by g, Co and ca be constants. Theh

(16) /x <, whereS={lN:PlvO},
lS

is a necessary and sufficient condition for the validity of each of the following statements"
(a) cvRt(cov, L) for each t>0;

;L,,,,t) for(b) if m<co-[C Co[ and M>co+[C-col then ClVRt(CoV g

sufficiently large.
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Proolc. We prove first the equivalence of (16) and (b). We suppose that (16) holds.
Then, using the representations (9) and (15) the requirement clv Vt(cov)+ Stf (with
f(x, t)= g(x)h(t)) is equivalent to

or, equivalently, to

el Co e-’ + Id, e-"’<-S)h(s) ds for in S

(1 7) tabl e-"s (h (t s) Co) ds c Co for in S.

Now, since (16) holds, the theorem of Galchuk (Appendix; A.1, part (b)) assures that
for given e, and sufficiently large, the moment problem (17) has a solution satisfying

Ih(t- s)- c01 =< ]cx- Col + e.

g L,,t).If e is sufficiently small this ensures that [ L, so that indeed cv R,(cov
Suppose conversely, that car lies in Rt(cov gL,), or equivalently that (1 7) has a

solution. Let c=c-co, and k(s)=h(t-s)-co for s in (0, t) and k(s)=0 for s>t.
Then, for each in S,

Io e-"’k (s) ds c c e ds.

From this it follows that

o
P(S)(k(s)- c) ds 0

for each P(s) which is a finite linear combination of real exponential functions e -"’s,
with in S. Now k(s)-c does not vanish identically, and lies in L(0, ). Hence the
class of the above exponential "polynomials" is not dense in Lx(0, ). From well known
results (see, for example, Schwartz [13]) it follows that (1 6) holds. The equivalence of
(16) and assertion (a) is proved similarly using Theorem A.1, part (a).

It is interesting to apply this theorem in the case that v 1. One can check that (1 6)
is then satisfied if is a ball, but not if it is a parallelopipedon. In the former (but not in
the latter) case one can therefore control exactly from one constant temperature to
another using controls dependent on time alone.

5. Results on optimal controllability. In connection with Theorem 4.1 we have
THEOREM 5.1. Let uoH and u be a steady state hoMable by g. Suppose

m < ess inf,0a g(x), ess sup,n g(x) < M. Then there exists a unique f. L such that

u V,.uo + S,,[. with t. inf {t: u R,(Uo; L.u)}.

Moreover f.(x, t) m orM a.e. on OO x (0, t.).
We remark that the fact that t, is finite follows from (b) of Theorem 4.1, while the

existence of f. is a consequence of certain continuity properties of Vt and St. The
"bang-bang" property of f., from which the uniqueness also follows, was proved in a
previous version of this paper; that proof has however been generalized (also using
ideas occurring in Fattorini [2] and Henry [7]) in Schmidt [12]; we refer to the latter
paper for proofs and for greater precision in the formulation of the "bang-bang"
property.

The final results deal with problems using the restricted control class Lg
,M. These

are much more easily proved than the deep Theorem 5.1. They can, unlike the latter
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theorem, be derived by the standard separation argument (used already in Yegorov
[15]) as systematized with great generality by Knowles in [8]. For the sake of complete-
ness we give a different direct proof.

THEOREM 5.2. Let v be a steady state holdable by g, Uo and u belong to Hv, be a

fixed positive number and suppose that

(18) ginf {11 Vuo + s,f u ll f L,M} > O.

Then there exists a unique h, Lo(0, t) with m <-_ h,(t)<-_M such that, letting/,(x, t)=
h,(t)g(x), one has

V,uo / s& u11-- .
Moreover, h* takes on only the values m and M, with a finite number of "umps" in each
interval (0, e ).

Proof. The existence of a minimizing control f,(x, t)= h,(t)g(x) is standard, Let
Uo ublPlV, ul ,IuCIPlV. Then, using the representations (9) and (15)one has, for
f(x, t)= h(t)g(x),

lN

with

Al(h)=ble-gt-Cl+ta, e-"(’-S)h(s) ds.

Now h* has to minimize the functional J(h)=YINIIPlV[[2(AI(h))2 subject.to the
constraint m -< h (t) =< M. Hence, for any h satisfying the latter constraint, one must have
that

J’(h*)(h -h,)>-_O,

where J’ denotes the Fr6chet derivative of the function J. More explicitly the latter
condition is

(19) E IlPtvll2At(h,)t e-U"(t-)[h(s)-h,(s)] ds>-O.
lN

Let c be any constant in (m, M) and

h(s) (1 --,(r,r+e) (s))h,(s) + CX(r.r+) (S),

where X(r,r+(s) is the characteristic function of (r, r+e). Substituting h in (19), and
letting e 0, one obtains for a.e. r in (0, t) and for c in (m, M)

Let

--Il(t--r)Y,llPlVll2Al(h,)tx, e (c h,(r)) >= O.

rt(r)= 2 [IPvll2A(h,)t,x, e-"’(t-’.
l.N

This cannot vanish on a set having an accumulation point in [0, t), for then one would
have IlelvllA(h,) 0, for each l, in which case J(h,) 0, contradicting the assumption
> 0. From this fact, together with the inequality q(t)(c- h*(t))>-O, the "bang-bang"

property of h, (and hence its uniqueness) follows.
This leads directly to a result on time-optimal control.
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COROLLARY 5.3. Let v be a steady state holdable by g, Uo and U belong to Hr. Let
8 > 0 be given along with constants m and Msuch that

gt, inf {t" there exists f L,,,t with IIV uo / S,f ulll <

is finite. Then there exists a unique f,(x, t)= h,(t)g(x) in L,t with IlV,,uo+ St,f,-
u ll . The control h, has the "bang-bang" property described in Theorem 5.2.

Proof. The existence of f, is standard. The "bang-bang" property is proved by
noting that f, is also a solution of the norm approximation problem in Theorem 5.2 with
t=t,.

Remarks. (1) If Ul clv (Cl a constant) it follows from (9) and (15) that, setting
f(x, t)=clg(x), Vtuo+Stf- Ul as t-m. In this case therefore if m <Cl <M, t, is finite
and the conclusion of the corollary holds.

(2) We have not been able to decide what happens in the case 8- 0, i.e., when
t, inf {t: Ul e Rt(u0; Lgm,M)}. This is related to the question of null controllability in Hv
with controls in L; null controllability would imply the "bang-bang" property.

Appendix. On the moment problem treated by Gaichuk. In [5] Galchuk proved
assertion (b) of the following theorem about the moment problem

(A.1) e-glSf(s) ds =/2, for N.

THEOREM A.1. Let {I.lbl}lN be an incteasing sequence ofpositive numbers such that
-1tr /xt < m. Then

(a) for each > 0 the moment problem (A. 1) has a solution f in Lo(O, t);
(b) let C> 1 be given; then for all sufficiently large (A.1) has a solution f in

too(O, t), with I1 11 _-< C,
We provide a proof which is considerably shorter and more elementary than that of

Galchuk, at least if certain results on real exponentials due to Schwarz are assumed;
moreover this proof yields (a) which was not proved by Galchuk. The following
proposition is just a special case of a theorem due to Banach and Riesz.

PROPOSITION A.2. The moment problem

(A.2) e-"lSf(s) ds c,

has a solution fin Loo(O, t) ifand only ifthere exists a positive constant Csuch thatforeach
{:,}tN with only a finite number ofnonzero terms (the set ofsuch sequences is denoted by
Sv) one has

(A.3) c _-<C E e -"is ds.
lN

Moreover if C is the smallest constant for which (A.3) holds one has

C inf {11/11oo/is a solution of (A.2)}.

Proof. An easy estimate shows that if f is a solution of (A.2) one has (A.3) with

c <_-Ilfll ,
Conversely, if (A.3) holds, one can define a nonvanishing functional on LI(0, t) by

setting F(.,ll e -’s) .,INC (where {,l}N S), extending that functional by
continuity to the subspace generated by {e-tS}leN and to all of L(0, t) by the
Hahn-Banach theorem. That functional has norm bounded by C and can be represen-
ted by a function f e Lo(0, t) with Ilfll <-- c: f is a solution of (A.2).
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The following result is a refinement of a theorem proved by L. Schwartz in [13];
P. Koosis showed me the proof.

THEOREM A.3. Suppose Elan ].-1 < C. Then for each > 0 there exists a (least)
constant Ct > 0 such that

(A.4) Io E l e-tls ds<=Ct Y l e-tls ds
lN lN

for each {/}tu 6 Sv; moreover Ct
Proof. The existence of such a constant Ct for each > 0 is proved by Schwartz, but

he does not discuss the asymptotic behavior. We show that C, 1 as 0o. Set 1,
clearly C1 > 1. Now

I1 ZIoN ’le-tZtS[ds--Io [ZION ’le-"’slds--o ’le-"’s[ ds

Po ete-g’s]
where p 1 (1 / C1) satisfies 0 < p < 1. Using the identity

n+1
[ lN (le-"’)e-m ds

one can easily prove inductively that

Hence it follows that

2 e-" ds<(1 0 2 e ds,
lN lN

so that C 1 as n m. Since C is monotone decreasing one also has C
Now we can prove Theorem A. 1. To prove the solvability of the moment problem

(A.1) using an estimate of the form (A.3) we note that for {}

lN

Z ,fl e-’’ ds<-Ct Z le-ms
lN lN

and hence (A. 1) has a solution f with []fl] _-< Ct; thus (a) is proved and (b) follows also
since C, - 1 as - 0o.

Remarks. (1) Previously M. von Golitschek has assisted the author in proving that
Ct 1 + O(e -"’t) as - 0o, under the additional hypothesis that/x t/l -/Zl ->/x > 0 for all
and some

(2) The problem of finding biorthogonal series {}N(L(O,t)) to
{e-"’}N( LI(0, t)), i.e., solutions to 0 e-"’fk(s) ds 8kl, can also be solved using
Proposition A.2; estimates for Ilfl[[ are also given by this approach. This provides an
alternative approach to that of Fattorini and Russell (who use the Hilbert space
structure of L2(0, t) to construct biorthogonal functions in that space, for which they
then obtain uniform estimates), but does not yield new results.
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STOCHASTIC REALIZATION AND INVARIANT DIRECTIONS OF THE
MATRIX RICCATI EQUATION*

MICHELE PAVONS"

.bstract. Invariant directions of the Riccati difference equation of Kalman filtering are shown to occur in
a large class of prediction problems and to be related to a certain invariant subspace of the transpose of the
feedback matrix. The discrete time stochastic realization problem is studied in its deterministic as well as
probabilistic aspects. In particular a new derivation of the classification of the minimal Markovian represen-
tations of the given process z is presented which is based on a certain backward filter of the innovations. For
each Markovian representation which can be determined from z the space of invariant directions is
decomposed into twosubspaces, one on which it is possible to predict the state process without error forward
in time and one on which this can be done backward in time.

Introduction. The aim of this paper is to extend the theory of invariant directions of
the matrix Riccati equation to a large class of filtering problems, to present some new
results on the deterministic and probabilistic aspects of the discrete time stochastic
realization problem and to illustrate the particular features introduced in stochastic
realization by the presence of invariant directions.

Section 1 of the paper is concerned with characterizing invariant vectors for the
usual linear least squares estimation problem in additive white noise. We extend the
previous results on the colored noise problem [8], [14], [29] to our more general setting
and present some new ones. The main result of this part is Theorem 1.6 which provides
different necessary and sufficient conditions for invariance. These conditions are
phrased in terms of the convolution of two weighting patterns, of the optimal control of
the dual problem, of the best one step predictor and of the feedback matrix F(t) of the
Kalman filter. The latter characterization appears here for the first time. Indeed, the
space of all invariant directions is simply the invariant subspace related to the eigen-
value zero of the transpose of F(t) for larger than a certain value. This interpretation
turns out to be quite useful and enlightening, since F(. is the transition matrix of the
estimation error and it is essential in classifying Markovian representations in the
stochastic realization setting (see e.g., Theorem 2.8). Also the fact that invariant vectors
are generalized eigenvectors sheds new light on the proof techniques employed in [8],
[9], [29]. The paper by Clements and B. D. O. Anderson [9], which contains results
closely related to conditions (ii) and (iii) of Theorem 1.6, became available to us right
after the first version of this paper was submitted. The emphasis in [9], however, is
somewhat different from ours in that the authors seek to characterize invariance for a
very general form of the linear quadratic regulator problem, whereas our main interest
lies in the stochastic implications of this phenomenon.

The second part of the paper deals with discrete time stochastic realization theory.
Given a wide sense stationary vector process z with rational spectral density , such
that (o) is finite and (e ’’) is positive definite for all w, and a Hilbert space H
containing the components of z(t) for all t, consider the problem of determining all
minimal Markovian representations of z (stochastic realizations) driven by a white
noise with,,,components in H. We solve the problem in the following way. First the
second order properties of the stochastic realizations are described. Our results
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integrate those of B. D. O. Anderson [3]-[5], Faurre [11], [12] and Ruckebusch [33],
[34]. In particular, we show that the correspondence in [33, p. 70] between realizations
with square transfer function and real symmetric solutions of a certain algebraic matrix
equation of the Riccati type holds without any assumption on the feedback matrix. Our
analysis on this aspect of the stochastic realization problem parallels in some respects
the continuous time work of Lindquist and Picci [19].

Then we turn to the probabilistic side of the problem which has received consider-
able attention in recent years [1], [2], [18]-[23], [27], [32]-[36]. A tool for this study is
provided to us by Theorem 2.5, which establishes a correspondence between the
deterministic as well as stochastic elements of realizations evolving forward and
backward in time. The last two subsections of 2 are devoted to a new derivation of the
classification of the state processes of stochastic realizations due to Ruckebusch [33] in
discrete time and Lindquist and Picci in continuous time [19]. Our approach makes
essential use of Markovian representations of the innovation process with the estima-
tion error as the state. Ruckebusch has used the error process in finite and infinite
dimensional stochastic realization to derive a number of results [33]-[35], but our idea
of associating it with a stochastic realization of the innovations appears to be new.
Tackling the problem in this way we not only derive the main results in a rather simple
manner, but we also gain insight into their meaning. For instance, the important result
that realizations which can be constructed from only the process z (internal) are in one
to one correspondence with the invariant subspaces of the feedback matrix F,
(Theorem 2.8) can be given a natural explanation in terms of the backward filter of the
innovations (see Remark 2.10). Last, but not least, these stochastic realizations of
the innovation process provide a key to understanding the relationship between the
invariant subspaces of F, and a certain class of inner functions in terms of which it is
possible to describe the realizations of z [21], [35], [36]. Our results on this subject,
however, will be presented elsewhere.

Section 3 is the natural continuation of 1 and 2 in that it explores how invariant
directions affect the family of stochastic realizations. Indeed the space of invariant
vectors is the same for all realizations and is nontrivial if and only if (eo) is singular.
The characterization of 5 as the invariant subspace of the transpose of F, relative to
zero is important in establishing the two principal results of {} 3. The first is Theorem 3.8
which says, loosely speaking, that in an invariant direction we can either predict or
smooth the state of an internal realization exactly (i.e., without error), showing that is
closely related to the germ space of z [23]. The second is Theorem 3.9 which embeds
every internal realization in a chain of internal realizations (totally ordered with respect
to state covariances) whose minimum element has a full set of predictable directions [14]
and whose maximum one has a full set of smoothable directions (Definition 3.7).

The last subsection of 3 is devoted to comparing two possible approaches to
discrete time stochastic realization based on different factorizations of the covariance
operator. We show that the factorization leading to Markovian representations without
noise in the output 1], [11 considerably narrows, compared with the other approach,
the solution class of the stochastic realization problem when (oo) is singular. This
deficiency of the first method makes it advisable to seek Markovian representations of
the type considered in this paper unless nonsingularity of (oe) is guaranteed.

It is worthwhile remarking that the assumptions made on the process z in 2 and
3 are mostly for simplicity. Indeed many of the central results can be established, in a
suitably modified form, in the nonstationary case under mild assumptions on z, albeit
the derivation becomes more involved. This explains why we refrain from introducing
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backward realizations and related concepts, like that of smoothable direction, in the
setting of 1. Our results on this matter will be presented somewhere else.

The scalar case has some interesting features for which we refer the reader to [23].

1. Invariant directions of the matrix Riccati equation.
1.1. Basic notation and formulation of the prolflem. We use standard vector-

matrix notation, with the following conventions. The unit matrix is denoted by/, the
transpose of a matrix by prime. All vectors without prime are column vectors. (R)
indicates the null space of the matrix R. If R is symmetric, R > 0 (R >=0) means R
positive (nonnegative) definite. If R _-> 0, R 1/2 is the unique nonnegative square root of
R. The Moore-Penrose pseudoinverse [26] is denoted by #. The trace operator is
indicated by tr. The cone of symmetric, nonnegative definite n n matrices is denoted
by cn. The Kronecker symbol is tst. The superscript o identifies "optimal."

Consider the linear stochastic model

(1.1) x(t+ 1)=Ax(t)+Bw(t),

(1.2) y(t) Cx(t)+Dw(t)

with initial condition x(0)=x0, where A, B, C and D are constant matrices of
dimensions n n, n p, m n and m p, x0 is an n-dimensional zero-mean random
vector, the input w is a p-dimensional zero-mean white noise sequence uncorrelated
with Xo, E{xox’o}= Po and E{w(s)w(t)’}= Itst.

As is well-known, the best linear least-squares estimate (t) of x(t), given the data
{y(0), ., y(t- 1)}, is generated recursively by the Kalman filter

(1.3) (t+ 1)=A(t)+K(t)[y(t)-C,f(t)], ,(0) O,

where K(t) is given by

(1.4) K(t)=(AY_,(t)C’+BD’)(C,(t)C’+DD’)#

and E(t) satisfies the Riccati difference equation

Z(t + 1)= AY_,(t)A’-(AY_,(t)C’ + BD’)(CY_,(t)C’ + DD’)#(CZ,(t)A’ + DB’)
+ BB’,

(1.5)
Z(0) P0.

We shall indicate the solution of (1.5) at time s by Z(s; P0) when we intend to emphasize
the dependence on the initial condition Po.

DEFINITION 1.1 (8). The n-dimensional vector a is called an s-invariant direction
of (1.5) if a’Z(t; P0) a’Z(s; 0) for all ->s and all Poe n.

We shall study the problem of characterizing all invariant directions of (1.5).

1.2. Preliminaries. In this section we transcribe some well known results of duality
between estimation and control into a form best suited to our problem. We refer the
reader to 24J for the variational principles underlying this duality.

Since (t + 1) is in the linear span of y(0), , y(t) there exist matrices U(s, t) for
s =0,..., such that (t + 1) -ts=o (U(s, t))’y(s). Such sequence is optimal for the
following dual problem: find U(t)= (U(0, t), , U(t, t)) which minimizes

(1.6) tr {J[U(t)]}=tr {Q(-1, t)’PoQ(-1, t)+ Z(s, t)’Z(s, t)},
s=O
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where

(1.7) Q(s-l,t)=A’Q(s,t)+C’U(s,t), Q(t,t)=I,

(1.8) Z(s, t)=B’Q(s, t)+D’U(s, t).

A standard argument yields the closed-loop form of the optimal control

(1.9) U(s, t)= -K(s)’Q(s, t), s 0,..., t.

Consider the linear estimator of x(t + 1) given by y(t + 1) Y’.ts= o U(s, t)’y (s). Then it
is easily seen that

(1.10) x(t + 1)- v(t + 1) Q(-1, t)’Xo+ E Z(s, t)’w(s).
s=0

Introducing the quantities P(s, t)--E{x(s)[x(t + 1)-y(t + 1)]’}, R(s, t)-
E{y(s)[x(t + 1)- y(t + 1)]’} and applying the operator E{.[x(t + 1)- y(t + 1)]’} to both
sides of (1.1)-(1.2) we obtain, in view of (1.10), the following ad]oint system

(1.11) P(s+l,t)=AP(s,t)+BZ(s,t), P(O,t)=PoQ(-1, t),

(1.12) R(s, t)- CP(s, t)+DZ(s, t).

The terminology is justified by the fact that, setting up the discrete minimum principle
for the dual problem (1.11) are seen to be, with the appropriate normalization, the
adjoint equations. Let us note that

(1.13) R(s,t)=O, s=0,... ,t

is a necessary and sufficient condition for optimality of the U(t) sequence. Whenever A
is nonsingular we can rewrite (1.7) in the form

(1.14) O(s,t)=(A’)-lO(s-l,t)-(A’)-lCU(s,t), O(t,t)=I.

Hence we have the following input-output relations"

(1.15) Z(s, t)= (i)U(s-i, t)+B’(A’)-S-IQ(-1, t),
i=0

(1.16) R(s, t)= T(i)Z(s-i, t)+CASPoQ(-1, t),
i=0

where the weighting patterns 7( and T(. are defined by

ID’-B’(A’)-Ic’, i=0,
(1.17) ’(i) [_B,(A,)_i_Ic,, >0,

D, =0,
(1.18) T(i) CAi_B >O.

Combining (1.14) and (1..15) leads us to the Hamiltonian system

(p(Qs(S, t) [ (A’)-’ o (o(s-
+1, t)] LBB’(A’)-’ A \ P(s, t) t),)

[ -(a’)-lc ](1.19) + BD,_BB,(A,)_Ic U(s, t),

P(O, t) ] Po
O(-1, t),
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(1 20) R(s, t)=[DB’(A’)-a C](O(s- 1, t))P(s, t)
+[DD’-DB’(A’)-Ic’]U(s, t),

where Q(-1, t) (A’) + i=o (A’)iC’ U(i, t). It is clear that the weighting pattern TH("
of the Hamiltonian system is just the convolution of T(. and 7( ).

(1.21) TH(i)=[T. T](i)= E T(i-j)T(j).
i=0

The matrices TH(0), , TH(n- 1) will play a central role in establishing neces-
sary and sufficient conditions for invariance.

1.3. Characterization of invariant directions. We study the case where A is
nonsingular. This assumption enables us to derive explicit expressions for the invariant
vectors. (The case where no restriction is placed on A and on the definitness of the
criterion matrices has been recently investigated in [9]). The three following lemmas
extend known results to our more general setting.

LEMMA 1.2. The vector a is an s-invariant direction of (1.5) if and only if
(1.22) a /’(O(t-s, t)) for all >- s -1 and all Po Cn.

Proof. Observe that a control U(t) is optimal for the dual problem if and only if it
minimizes a’J[U(t)]a for all a 6 FIn. The result now follows from a straightforward
modification of the argument of Theorem 3 in [29].

Notice that optimal quantities in the dual problem depend on the terminal weight
P0. To keep notations simple, we shall refrain from explicitly exhibiting this depen-
dence.

Remark 1.3. The proof of the sufficiency part in Lemma 1.2 relies on the fact that,
under condition (1.22), U(t-i,t)a is invariant over t>-s for i=0,...,s-1.
Moreover, when (1.22) holds, it is easily seen using (1.7)-(1.9) that a6

2V(U(i, t))f’lW’(Z(i, t)) for i=0,..., t-s. In particular it follows from (1.10) that
a,(t+l)=a,i=/-s/l (Z(i, t)) w(i), where 2(t)= x(t)-2(t) is the estimation error.

The mathematical framework set up in the previous section will be useful in
proving the following result.

LEMMA 1.4. The vector a satisfies (1.22)/f and only if

(1.23) a (A’)-ic’Ai,
i=1

where the m-dimensional vectors A a, A 2, , As are such that

s--j

(1.24) E TH(i)Ai+i O, j 1,’’ ", S.
i=o

In this case the optimal control satisfies

(1.25) U(t)a (0, , 0, As,’", h 1).

Proofi Assume that (1.22) holds. In view of the time invariance discussed in
Remark 1.3, we can set Ai-- U(t-i + 1, t)a for/= 1,..., s. Expression (1.23)can now
be derived using (1.7) recursively. Let us consider the input-output relation of the
Hamiltonian system

R(s, t)=[DB’(A’)-a C]A( I Q(-1, t)+ TH(i)U(s--i, t),
\/--0/ i=0
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where

(A’)- 0]An BB’(A’)-1 A

As observed in Remark 1.3, a e A/’(O(-1, t)). Then (1.24) follows from the optimality
conditions (1.13). Conversely suppose a is as in (1.23) with the hj’s satisfying (1.24).
Using (1.9) and, recursively, (1.7), we obtain

U(k, t)a =-K(k)’ (A’)t-k + Y (A’)i-IC’U(k + i, t) a
i=1

which, together with (1.23) yields

s-t+k

U(k, t)a =-g(k)’ Y (A’)-’C’ht-k+I
i=1

t_k }+ , (A’)’-IC’[U(k + i, t)a--lt_k_i+l]
i=1

A calculation similar to that found in the proof of Theorem 8 in [29], i.e., using (1.4),
(1.5) repeatedly and condition (1.24), shows that

s-t+k

(1.26) K(k)’ , (A’)-ic’ht_k+i ,t-k+X
i=1

which, inserted into the previous expression for U(k, t)a, enables us to derive
U(k, t)a At-k+l for k t-s + 1, , recursively. This and (1.7) yield Q(t-
s, t)a 0, i.e., condition (1.22). Also (1.25) now follows in view of Remark 1.3. This
completes the proof. 71

A straightforward extension of the proof of Theorem 8 in [29] establishes the
following lemma.

LZMMA 1.5. A vector a is s-invariant ]’or (1.5) if and only if a is as in (1.23) and

(1.27) a’(t+l)=- hly(t+l-i) for all >=s-1.
i=1

Let F(t) denote the feedback matrix A-K(t)C.
THEOREM 1.6. The following statements are equivalent:

(i) a is an s-invariant direction of (1.5).
(ii) a satisfies (1.22).
(iii) a is as in (1.23) and (1.24) holds.
(iv) a is as in (1.23) and (1.27) holds.
(v) a generates the same s-dimensional cyclic subspace ofF(t)’ for all >-s- 1 and

all Poe this invariant subspace of F(t)’ is associated with the eigenvalue
zero, i.e., (F(t)’)Sa =0. Moreover F(t-s + 1)’... F(t)’a =0 for all >- s- 1.

Proof. The equivalence of (i), (ii), (iii) and (iv) follows directly from Lemmas 1.2,
1.4 and 1.5. Suppose a satisfies (v) and observe that relations (1.7) and (1.9) yield the
expression Q(t-s, t)= F(t-s + 1)’... F(t)’. By assumption F(t-s + 1)’... F(t)’a =0
and (1.22) follows. Conversely, if we assume (iii), we derive from (1.26) and the last part
of the proof of Lemma 1.4 the relation

s-j s-j-1

r(t)’ 2 (A’)-’C’X,+.= E (A’)-ic’Ai+i*l
i=1 i=1
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for all _-> s -] 1 and all P0 ’n, where ] 1, , s 1 and, for/’ s 1, the right hand
side is defined to be zero. This establishes (v).

Condition (v) of this theorem is new. Its importance will completely surface in the
stochastic realization setting.

Remark 1.7 ([8]). The sets Is of s-invariant directions and US=I Is of invariant
directions are vector spaces. It follows from the previous theorem that CI ’= I.

Remark 1.8. The dimension of the invariant subspace can be easily determined
in the single-output case y(t) c’x(t) + d’w(t). It is equal to the minimum between the
rank of the observability matrix [c A’c,. , (A’)"-c] and the first index j such that
Tn(/’-1) Tn(0) 0 and T,(/’) 0. The general case is rather involved. We
shall not pursue here the extension of the results of [29] on this matter.

Let

(1.28) W(z)= E T(i)z -i= C(z-r-A)-IB +D
i=0

be the transfer function of (1.1)-(1.2) and

(1.29) W(z)= Y TH(i)z-i=0

the transfer function of the Hamiltonian system. The following characterization of
T(. will be helpful in the third part of the paper.

THEOREM 1.9. Assume A nonsingular. Then

(.3o) W(z) W(z) W(z-)’.

If y in (1.2) is stationary with spectral density (z), we also have

(.3) W(z ,(z ).

Proof. Consider W(z-1)’=B’(z-II-A’)-IC’+D’=-B’(A’)-a(I-z-lx
(A’)-I)-a C’+ D’. Expand the last term in a neighborhood of infinity as follows"

-B’(A’)-I (I z-I (A’)-I)-Ic
(1.32) D’-B’(A’)-IC’-B’(A’)-2C’z-I-B’(A’)-3C’z -2

2 T(i)z -i.
i=0

Take the Cauchy product of the two series in (1.28) and (1.32) to get (1.30). In the case
of a stationary y the well-known spectral factorization formula

(1.33) (z) W(z) W(z-X)
yields (1.31). [-1

Notice that the calculations in the previous theorem make sense because the series
in (1.28) and (1.29) converge respectively to W(z) and to Wn(z) in an appropriate
neighborhood of infinity.

Let A(t, s)= E{y(t)y(s)’} be the covariance operator of the observations. It is a- (i)’w(s + i) which cansimple matter, using the expression y(s) CA-"x(s + n)+g=0
be derived from (1.1)-(1.2), to see that the parameters Tn(0), , Tn(n- 1) deter-
mine the degree of "smoothness" of A(., ), i.e., the number of differencing operations
on h(.,. necessary in each direction to produce a Kronecker delta.. This number has
been named in the scalar case relative order of the covariance, see [14] for example. This
fact has its counterpart in the spectral domain in Theorem 1.9.



162 MICHELE PAVON

1.4. Predictable directions. The invariance properties of invariant directions have
been pointed out by several authors [8], [14]. Indeed, as it is apparent from Theorem
1.6, the space 5 is invariant over models (1.1)-(1.2) having the same covariance of the
output and the same (up to a change of basis in the state space) pair (A, C). However, if
a is an s-invariant vector for (1.5) the value a’E(s;Po) does depend on.,the model. A
special case of particular interest is when a f(E(s; P0)).

DEFINITION 1.10 ([14]). The n-dimensional vector a is called an s-predictable
direction of (1.5) if a’E(t; Po)= a’,(s; Po)=0 for all s. The two following theorems
extend some results of Gevers [14].

THEOREM 1.11. The vector a is an s-predictable direction of(1.5) ifand only ifa is as
in (1.23) with the Ai satisfying

(1.34) E T(i)Ai+i O, j l, s.
i=0

Proof. If a is s-predictable a’Y(t + 1) 0 for all => s 1. Using (1.10) with optimal
quantities we see that a/’(O(-1, t)) and afqi=o.....t(Z(i,t)) for all t>=s-1.
Again time invariance of the optimal control can be shown to hold and, identifying
quantities as in (1.25), we get (1.23) from O(-1, s 1)a 0. Also (1.34) follows from
(1.15). To prove the converse first observe that (1.34) implies (1.24). By Lemma 1.4
a W(O(-1, t)) and (1.25) holds. From (1.15) and (1.10) we conclude that a’(t + 1)
0 for all -> s- 1, i.e., a is s-predictable. 71

THEOREM 1.12. Let E(s; Po) > 0. Then E(t; P0)>0 for all >=s if and only if T(O)
has rank m.

Proof. Let A be such that 7(0)A 0. Then (A’)-1C’A o/V’((/; P0)) for all >= 1. To
prove the other half we use induction. Suppose E(t- 1; P0) > 0 and a (E(t; Po)). It
follows from the principle of optimality that

0 a’E(t" Po)a min {(a’A + A’C),(t- 1" Po)(A’a + C’A)
AR

+(a’B +A’D)(B’a + D’X)}.

Let A be the optimal value in (1.35). Since Z(t-1; P0)>0 we get a =-(A’)-IC’&
B’a +D’A 0 and finally (D’-B’(A’)-IC’)A=O. If lb(0) has rank m this implies that
a=0. 71

Remark 1.13. Theorem 1.12 agrees with the results obtained by Silverman et al.
[25], [30], [38]. In fact, the presence of nontrivial predictable directions of (1.5) implies
that the system (1.1)-(1.2).is not strongly observable [38]. However, it can well happen
that it is completely observable (and controllable). In the third part of the paper we shall
study a set of minimal realizations with a nontrivial invariant and, for some of them,
predictable subspace.

1.5. Discussion. Our study has shown that invariant directions can occur in a more
general situation than just the noise-free measurements case treated in [8], [14], [29].
Conditions (iv) and (v) of Theorem 1.6 provide us with a probabilistic interpretation of
this phenomenon. In an invariant direction the optimal filter depends only on some of
the last observation instead of the whole information available. This fact is strictly
related to the invariant subspace of F(t)’ corresponding to zero. Moreover, in the case
when y is stationary with rational spectral density, condition (iii) of Theorem 1.6 with
Theorem 1.9 shows a precise connection between invariant vectors and the spectrum of
y. All of this motivates the stochastic realization approach to the problem taken in 3.



MATRIX RICCATI EQUATION 163

Finally we remark that this theory can be extended in a straightforward manner to
the case when the system matrices are time-varying replacing the concept of invariant
direction by that of degenerate direction [14]. A reduction of the order of the Riccati
equation which has to be solved can be achieved along the lines of [8] whenever
invariant (or degenerate) directions exist.

2. Discrete time stochastic realization: General theory.
2.1. Notation and problem formulation. Almost sure equality between random

vectors is simply indicated as equality. If {so(t); Z} is a second order vector process
defined on the probability space (f, @, P) and S a subset of the integers 7, we denote by
Hs() the closed linear hull in L2(I), o, P) of the components of :(t), S. We shall
write H(:), H- (:), HI () and H((t)) instead of Hz(:), HlzZlz<-_ti (), H{zeZlzt} ()
and Ht(:) respectively. Let/{. [Hs(:)} denote the orthogonal projection operator
onto Hs(). We abbreviate/{. IH(z(t))} as/{. [:(t)}. The process is called a wide
sense vector Markov process if

/{(s)lH ()} =/{(s)l(t)} for s _-> t,

or equivalently

{(s)lHt+ (so)} =/{,(s)l(t)} for s <- t.

For the sake of brevity we shall use the word "Markov" instead of the expression "wide
sense vector Markov."

We shall be concerned with a wide sense stationary, purely nondeterministic,
m-dimensional stochastic process {z (t); Z}. The process z, defined on the probability
space (D, o%, P), is assumed to be centered and to have a rational spectral density such
that (eo)< oe. The finiteness of (oo) is essential only in 3 and is assumed here for
simplicity. The matrix function (. enjoys the following properties: each element of
is analytic on the unit circle, is discrete para-Hermitian, i.e., (z)’=(z-1) and
(e i’) _-> 0 Hermitian for all real to. In addition we suppose that z is a minimal process
[31] which, in view of the rationality of its spectral density, is equivalent to (e i’) > 0 for
all w. This assumption too is made for convenience and can be removed without
impairing the main results of 2 and 3.

In many problems of estimation and optimal control, when given a non-Markov
process z which models the information flow, it is necessary to resort to an auxiliary

Markov process x which makes :(t) (z (t 1)1
a Markov process. More precisely we

are interested in the following two problems.
I. Wide sense stochastic realization problem. Determine, from the knowledge of ,

all quadruplets [A, B, C, D], with dimension of A minimal, such that the process y,
generated by the dynamical system (1.1)-(1.2) driven by an arbitrary normalized white
noise w, has the same spectral density as z.

II. Proper stochastic realization problem. Let H be a Hilbert space such that
H(z)cHcL2(I),,P). Given H and the process z find all quintuplets
[A, B, C, D; w], with dimension of A minimal and w a normalized white noise
satisfying H(w)c H, such that y(t), generated by (1.1)-(1.2) and z(t) are equivalent
random vectors for all t.

We shall call a solution to problem I a wide sense minimal stochastic realization and
a solution to problem II a proper minimal stochastic realization. It is immediate that to

From now on we shall leave the word minimal out. All realizations are to be intended to be minimal
unless the opposite is explicitly stated.
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each proper stochastic realization there corresponds a (unique) wide sense realization.
The converse is false. To attack problem II we shall choose a route passing through the
solution of problem I, with the intent of deriving some new results along the way. It is
good to bear in mind, however, that a direct probabilistic approach to proper stochastic
realization is possible and in a sense more natural [18], [20]-[22], [27], [35], [36].

2.2. Wide sense stochastic realizations. Our preliminaries on problem I are based
on the important work of B. D. O. Anderson [3]-[5] and Faurre [11], [12]. Problem I is
equivalent to the classical spectralfactorization problem. Find all minimal stable spectral
factors of , i.e., all matrices W of real rational functions of minimal McMillan degree
[6] and with all their poles inside the unit circle which satisfy (1.33). Indeed, if
[A,B, C, D] solves problem I, then W(z)= C(zI-A)-IB +D is a stable minimal
spectral factor of . Conversely, any such W yields a whole class of wide sense
stochastic realizations. In fact, using one of the algorithms [16], [39], [41] available in
the literature we can compute a minimal [6] realization [A, B, C, D] of W. Then all
minimal realizations of W given by

(2.1) [T-AT, T-1B, CT, D], T GLdimA()

solve problem I. In view of this equivalence problem I can be solved as follows. Express
by means of partial fractions, as

(2.2) (z)=S(z)+S(z-)’,

where S is a positive real2 and rational function. Let [F, G, H, J] be a minimal
realization of S. As observed before, several procedures are known to determine
IF, G, H, J] which is unique up to an equivalence such as in (2.1). The following simple
lemma allows us to eliminate J in the sequel.

LEMMA 2.1. Let S be the positive real function satisfying (2.2) and [F, G, H, J] a
minimal realization of S. If dim F n _-> 1, then F is nonsingular and J+J’=
G’(F’)-IH + (oo).

Proof. Taking limits in (2.2) we see that (oo) J + J’ + limz_, G’(z-II-F’)-IH’,
since S(z) H(zI-F)-1G + J. The conclusion now follows from the finiteness of
and the minimality of [F, G, H, J]. I-1

To avoid trivialities, we shall assume from now on that z is not a white noise, i.e.,
dim F n -> 1. It follows from Lemma 2.1 and the celebrated positive real lemma (see
e.g., [28]) that the set of all wide sense stochastic realizations is nonempty and given by

(2.3) [A,B, C,D]=[T-1FT, T-I(B1, B:z)V, HT, (R(P)/2, 0)V],

where T GLn(R), V is any p x p constant orthogonal matrix, B1 is n xm, Bz is
n x (p rn) (here p _-> rn is arbitrary), P is n x n, symmetric and positive definite, R (P) is
the nonnegative definite quantity G’(F’)-IH +(oo)-HPH’ and (P, B1, B2) solve the
system

(2.4) P FPF’ +BaB +BzB,

(2.5) G FPH’ +BIR (p)a/2.

A real rational function with no pole on the unit circle is said to be (discrete) positive real if it has no

poles outside the unit circle and S(e i") + S(e-i) 0 Hermitian for all real co.
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It is no restriction to choose T I and V I in (2.3). In fact all other realizations can be
obtained from realizations of the form

(2.6) x(t+ 1)=Fx(t)+BlU(t)+B2v(t), w

(2.7) z(t) Hx(t) +R (P)/Zu(t)

by means of a change of basis and an orthogonal transformation of w. Hence, whenever
convenient, we shall narrow our attention to realizations of the type (2.6)-(2.7). We
shall write for the set of all symmetric, positive definite P which solve (2.4)-(2.5) and

for the subset of consisting of those P such that R (P) is singular. Notice that the
realizations corresponding to elements of R are precisely those which have singular
intensity of the noise in the output equation. It can be shown [12] that 3 is compact,
convex and forms a complete lattice when endowed with the natural partial order

Px >- P2 if and only if P1 P2 >- 0. There exist a maximal and a minimal element P* and
P, so that P, <_- P _-< P* for all P 6 . Moreover the minimality of the process z implies
[13] that P*-P, and R(P,) are positive definite. Hence \2 is nonempty. The
following result provides us with some information about the set R.

PROPOSITION 2.2. The set\ is convex. For all P \, O 22 and )t (0, 1] we
have that [AP+(1-A)Q] \22. The set is contained in the relative boundary of .

Proof. The first two results follow at once from the fact that for P, P2 6 , A 6 [0, 1]
we have R (APa + (1 A )P2) AR (P1) + (1 A )R (P2). They in turn imply that, if P \
and Q 22, the segment [P, Q] cannot be extended beyond Q without leaving . We
conclude that Q belongs to the relative boundary of . V3

Let us introduce the mapping A: FI nn -- Iq defined by

(2.8) A(P) -P +FPF’ + (G FPH’)R (p)-i(G,_ HPF’).

The set /22 is contained in the domain of A(. ). It is possible to extend A(. to all of
since the points in constitute removable discontinuities. We can now derive an
important alternative characterization of the set

THEOREM 2.3. Let A(. be given by (2.8). Then {PIP P’, A(P) -<_ 0}.
Proof. Let (P, B1, Bz) solve (2.5)-(2.6) with P P’ and P>0. Then if P e \22, we

get immediately A(P) -B2B’2. If P e , let {Pi}i= be a sequence in\ converging to
P. Then A(Pi)<_-0 and it follows that A(P)=limi A(Pi)_-<0. This shows that
{PIP P’, A(P)_-< 0}. The other inclusion can be proven by an argument akin to that
used by B. D. O. Anderson [4, p. 140].

This result provides a bridge between the theory of positive real functions and the
study of quadratic matrix inequalities and algebraic Riccati equations.

Let us introduce the set 0 {P IA(P) 0}. Clearly o consists of all P for
which B2 0.

Remark 2.4. Since the eigenvalues of F lie in the open unit disc, elementary
Lyapunov theory ensures that to each (B1, B2) there corresponds a unique P. The
converse does not hold in general. However, for realizations of the form (2.6)-(2.7), to
each P there corresponds a unique B1. This is immediate from (2.5) for P e \22 and
holds for all P e since points in 22 appear as removable discontinuities of the map
P--)(G-FPH’)R(P)-/2. Hence there is a unique wide sense realization of the type
(2.6)-(2.7) corresponding to each P in 0.

Both problems I and II seek to find dynamical systems evolving forward in time like
(1.1)-(1.2) which is natural to call forward representations of the process z. Yet, there
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are other representations of interest. There exist situations, for example, in which it is
more useful to consider a backward representation of the form

(2.9) 2(t- 1) A$(t)+ Bv(t),

(2.10) y(t) C$(/) + D(t),

where # is a normalized white noise such that (t) is orthogonal to HI- (g) for all t. This
leads us to formulate the backward counterpart of problems I and II.

I. Wide sense backward stochastic realization problem. Determine, from the
knowledge of , all quadruplets [A, B, C, D], with dimension of A minimal, such that
the process y, generated by the dynamical system (2.9)-(2.10) driven by an arbitrary
normalized white noise #, has the same spectral density as z.

II. Proper backward stochastic realization problem. Given H and z find all quin-
tuplets [A, B, C, D; v ], with dimension of A minimal and # a normalized white noise
satisfying H(#)cH, such that y(t) given by (2.9)-(2.10) and .z(t) are equivalent
random vectors for all t.

Solutions to problems I and II are called wide sense and proper backward stochastic
realizations respectively. We shall now briefly discuss.problem I, while problem II will
be implicitly solved in the next three sections in view of Theorem 2.5 below.

Problem I is equivalent to the dual spectral factorization problem considered by
Anderson [3] and Faurre 12] which consists in finding all minimal unstable (i.e., with all
the poles outside the unit circle) spectral factors W(z) of (z). It follows from the
para-Hermitian property of that this problem is equivalent to the spectral factoriza-
tion problem for (. )’. Hence all the results on problem I have a natural counterpart in
the backward setting via the duality relation (F, G, H, (oe)) (F’, H’, G’, (oe)’). In
particular all solutions to problem I are characterized by

(2.11) [ft.,B, ,J]=[T-1F’T, T-1(/1,/2) V, G’T, (/(/5)1/2, 0)V],

where T and V are as in (2.3), B1 is n x m, B2 is n x (p m), P is n x n, symmetric and
positive definite, R (P) HF-1G + (oe)’- G’PG and (/5,/1,/2) solve the system

(2.12) P F’PF +BIBI + B2B2,

(2.13) H’= F’PG +B1/ (p)l/2.

Whenever it is appropriate, we shall restrict ourselves to realizations of the type

(2.14) $(t-1)=F’$(t)+;IF(t)+2f(t), 1, (vU_-)
(2.15) z(t)= G’i(t)+R(P)/a(t),
where P is the state covariance. The set of all symmetric, positive definite solutions to
(2.12)-(2.13) and R of all P such that R(P) is singular enjoy the same kind of
properties as and respectively. In particular there exist P, and P* such that
fi, <-fi<-.fi* for all /5 . It is well known [12], [37] that {P-lIP }, so that
/5, (p,)- and/5, (p,)-l. Indeed, the following result holds.

PROPOSITION 2.5. The quadruplet IF, B, H, D] with B (B1, B2) and D
(R(P)/2, O) solves problem I if and only if [F’,, G’,] solves problem where

(2.16) / (/1,/2) -p-1F-aB(I-B’p-1B)/,
O (D-HF-1B)(I-B’P-B)1/2

(2.17)
(R (P)1/2 HF-1B1, _HF-1B2)(I B,P-B)I/2.
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Proof. The result follows from long but simple calculations using (2.4)-(2.5) and
(2.12)-(2.13). [3

This proposition exhibits a correspondence between forward and backward wide
sense realizations and raises the question whether a result of the same type can be
established for proper realizations. We turn to this problem in the beginning of the next
section.

2.3. Proper stochastic realizations. Let us consider a proper stochastic realization
of z IF, B, H, D; w], with state process x and state covariance P. As is well known, the
orthogonal decomposition

x(t + 1)= E*{x(t + 1)ln- (x)}+[x(t + 1)-{x (t + 1)IH7 (x)}]

yields (2.6). Similarly the expression

(2.18) x(t) {x(t)lH+,+l (x)}+[x(t)-{x(t)lH[+l (x)}]

leads to a backward model. In fact, the process x is Markov in both directions and

E*{x(t)lx(t + 1)} E{x(t)x(t)’F’}E{x(t + 1)x(t + 1)’}-ix (t + 1)

PF’p-lx(t / 1),

which gives

P-x(t) F’P-x(t + 1)-F’P-B[w(t)-B’(F’)-Ip-1x(t)]

F’P-Ix(t + I)-P-IF-aB[I-B’P-’B][w(t)-B’(F’)-lp-lx(t)].

Defining

(2.19)

and

(2.20)

we finally obtain

(2.21)

2(t)=P-’x(t+l)

ge(t) (I-B’p-1B)/2(w(t)-B’(F’)-P-x(t)),

2(t- 1) F’2(t)-p-1F-B(I-B’p-1B)I/2ge(t).

It is not difficult to check that is a normalized white noise such that (t) is orthogonal
to H (2) for all t. The forward and backward noises are related as follows

(2.22) (I-B’p-1B)I/2(t) w(t)-{w(t)[H[+l (x)}.

We also have

z(t) Hx(t) + Dw(t) [G’(F’)-IP-1- DB’(F’)-Ip-1]x(t) + Dw(t)
G’p-lx(t + 1)+[D G’p-1B][w(t) B’(F’)-P-lx(t)]
G’2(t)+[D -HF-1B][I-B’p-1B]I/2#(t).

Summing up we obtain a strict sense version of Proposition 2.5, analogous to the
continuous time result of Lindquist and Picci [19].

THEOREM 2.5. The quintuplet IF, B,H, D; w] is a proper (forward) stochastic
realization of z with state process x and state covariance P if and only if the quintuplet
[F’, B, G’, D; ff is a proper backward stochastic realization ofz with state process 2 given
by (2.19) and state covariance P-I, where v is as in (2.20) and ;, are given by
(2.16)-(2.17).
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Results closely related to this theorem have been presented by Akaike [1, p. 168]
and Ruckebusch [33, p. 32]. However, the first deals with realizations without noise in
the observations, the second does not derive expressions for #, B and D such as (2.20),
(2.16) and (2.17).

So far we have said nothing about existence of proper stochastic realizations. It is
well-known that a necessary and sufficient condition for a purely nondeterministic wide
sense stationary process z to admit finite dimensional stochastic realizations is that its
spectral density is rational and that in such a case there exists a unique realization of the
type (2.6)-(2.7) corresponding to P, (cf. [33] for example). The minimum variance
realization

(2.23) x,(t+ 1)=Fx,(t)+B,u,(t),

(2.24) z(t) Hx,(t) + R (P,)l/2u,(t)
is the steady-state Kalman filter, with the steady-state Kalman gain B, given by

(2.25) B, (FH’ +BD’)(HEH’ +DD’)-1/2 (G -FP,H’)R (p,)-1/2,

where [F, B, H, D] is any wide sense realization and X is the unique nonnegative
definite solution to the algebraic Riccati equation

(2.26) X, FEF’ (FYH’ +BD)(HH’ +DD’)-(HYF’ +DB’) + BB’.

The noise ix, is called the innovation process and is characterized by the fact that
H7 (z) H7 (u,) for all Z. Finally, if x is the state process of any proper realization
(2.6)-(2.7), we have

(2.27) x,(t) ?{x(t)lHT-1 (z)}.

By duality there exists a proper backward stochastic realization corresponding to P,,
namely the backward steady-state Kalman filter
(2.28) Y,(t 1) F’,(t) + B,a,(t),

(2.29) z(t) G’Y,(t) +g (P,}X/2,(t).
Here the backward steady-state Kalman gain B, is given by

(2.30) ,=(F’G+B-I’)(G’G+D’)-I/2=(H’-F’P,G)(P,)-1/2,
where [F’,B, G’,D] is any backward wide sense realization and is the unique
nonnegative definite solution to the dual algebraic Riccati equation

(2.31) , F’,F (F’.G + B-’)(G’,G +II’)-I G’.F +I:’) +::’.

The equality H+ (z)=H (tT,) for all Z characterizes the backward innovation
process ,. The backward filter satisfies

(2.32) $,(t) J{Y(t)lH-+x (z)},

where is the state of any proper backward realization (2.14)-(2.15). By Theorem 2.5
there exists a proper stochastic realization corresponding to (2.28)-(2.29) (which, as it
will be apparent in the next section, is unique)

(2.33) x*(t+ 1)-Fx*(t)+B*u*(t),

(2.34) z(t) Hx*(t) +R (P*)l/2u*(t)
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with state covariance P*. Then, if x is the state process of any realization,

(2.35) X,(t) (P*)-x*(t + 1)= P-l{x(t + 1)IH++ (z)}

and

(2.36) E*{x(t)[H+ (z)}- P(P*)-ax*(t).
This justifies our choice of working with P-ax rather than x in the backward setting. In
fact (2.36) is not invariant over .

DEFINITION 2.6 ([19], [33]). A proper stochastic realization of z with state process
x is said to be internal if H(x)_ H(z), external otherwise.

Internal realizations are of particular interest since they are the only ones we can
construct from the process z. For example, the minimum and maximum variance
realizations introduced in this section are internal. It should be noted that the existence
of external realizations depends on H. If H H(z), for instance, all realizations would
be internal.

2.4. Characterization of internal realizations. Let us consider the spectral
representation of z (see e.g. [31]) given by

z(t)= ei’td(w),

where d. is an orthogonal stochastic measure such that

O(e ’)
E{d(w) dr(w)?}- doo.

2rr
(Here ? denotes complex conjugation and transposition.) Let W(z)=
H(zI-F)-IB1 + R(P)1/2 be a square (m x m) spectral factor of (z). Then the process
u, defined by

I:(2.37) u(t) e’[W(e’)]- dz(m),

is a normalized white noise such that u(t)H(z) for all [31, p. 41] and consequently
IF, B, H, R(P)/; u] is an internal realization of z. The following result shows that
W(. being a square matrix function is also necessary for a realization to be internal.

T4]EOR]EM 2.7 ([19], [33]). A proper stochastic realization is internal ifand only i its

transfer function is square.
It follows from this theorem and Remark 2.4 that internal realizations of the form

(2.6)-(2.7) are in one to one correspondence with the real symmetric solutions of the
matrix equation A(P)-0. Hence, to characterize further internal realizations, one
could derive the discrete time counterpart of the fundamental results of J. C. Willems
[40] on the algebraic Riccati equation. However, a result akin to the classification of the
solutions of the algebraic Riccati equation can be obtained directly for the state
processes of internal realizations. Notice that once the state x(t) of an internal
realization has been determined the input u(t) can be obtained inverting (2.9) as
follows:

u (t) -R (P)-a/2Hx (t) +R (P)-a/zz (t).

(In the case when R(P) is singular we need to perform an appropriate number of
differencing operations on the output in various directions (cf. [7] for example) before
we can express u in terms of x and z.)

Therefore we turn to the problem of characterizing the state process of internal
realizations.
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Let us introduce the feedback matrix

F, =F-B,R(P,)-I/2H.
The matrix F, is asymptotically stable due to the minimality of z [13]. It plays a central
role in stochastic realization theory, as it is clear from what follows. In particular we
have the following important result, whose continuous time counterpart can be found in
[19].

THEOREM 2.8 ([33]). The process x is the state ofan internal realization ifand only if
(2.38) x(t)=[I-Trs]X,(t)+Trsx,(t),

where 7rs is the profection onto an invariant subspace S of F, along (P*-P,)S +/-. The
covariance P of x and 7r are related as follows
(2.39) 7r 7r(P) (P P,)(P* p,)-l.

We shall give a new proof of this theorem, by means of an approach which allows us
to characterize also the external realizations in the same framework. Our derivation
hinges on the following simple observation. Let [F, (B1, BE), H, R (P) I/2; w] be a
proper stochastic realization of z with state process x and state covariance P. Then
IF,, (B1-B,R(P,)-I/ER(p)I/2, BE),R(P,)-I/EH, R(P,)-I/ER(p)I/2; w] is a proper
(nonminimal) stochastic realization of the innovation process u, with state process
x-x, and state covariance =P-P,. This can be seen by inverting the filter
(2.23)-(2.24) to get

(2.40) x,(t + 1) F,x,(t)+B,R(P,)-l/Ez(t),
(2.41) u,(t) -R (P,)-l/ZHx,(t) +R (P,)-a/2z (t)

and by using (2.6)-(2.7). If we set ,(t) x(t)-x,(t), we obtain the model

(2.42) Y(t + 1)= F,Y(t)+(B1-B,R(P,)-I/2R(p)I/2)u(t)+B2v(t), w (uv),
(2.43) u,(t)=R(P,)-I/ZHY(t)+R(P,)-I/zR(P)I/Zu(t),
which is a forward stochastic realization of u, since w(t)_l_H-[ (Y) for all t. The
representation (2.42)-(2.43) is not minimal since u, is a white noise and its minimal
realizations have dimension zero. Conversely consider a forward stochastic realization
of u, of the form

(2.44) :(t + 1)= F,(t)+BlU(t)+B2v(t), w

(2.45) u,(t) R (P,)-I/2[H(t) +R (P)1/2u (t)],

where w is a normalized white noise and/1 is n x m. Observe that w(t) is orthogonal to

H- (x), where x : + x,, since x,(t) e H--1 (z) H--1 (u,). We conclude from this that
[F, (/1 +B,R (/5)1/2,/2), H, R (P,)I/2R (16)1/2; w] is a minimal stochastic realization of
z. We collect these observations in the following

LEMMA 2.9. The map which sends the realization IF, (B1, B2), H, R (p)l/z., w] to the
realization [F,, (BI-B,R(P,)-I/2R(p)1/2, B2), R(P,)-I/2H, R(P,)-I/2R(p)I/2; w] is
a one to one correspondence between realizations of z of the form (2.6)-(2.7) and
realizations of u, of the form (2.44)-(2.45).

The map in Lemma 2.9 also induces a correspondence between state covariances
which maps P to P-P,, translating the set of the amount -P,. The set
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-P, has the zero element as its minimum and the positive definite quantity
P*-P, as its maximum. Notice that the correspondence established in Lemma 2.9 is
simply the correspondence between the two input-output relations

and

Z(t)- ei’tW(e i’) d(oo)

u,(t) eiO’tW (e i) W(e i’) d(oo),

where W(z) H(zI-F)-I(B1, B2) +R (P) 1/2, drb is an orthogonal stochastic measure
such that w(t)= _,e i’t d(o) and W,(z) H(zI-F)-IB, +R(P,)/2.

From (2.23)-(2.24) and (2.40)-(2.41) we know that HI (z)=H-(u,) for all
and H(z)=H(u,). Since u, is a white noise we have the following orthogonal
decomposition for the space H(z)

(2.46) H(z) H-[-1 (z)@H[ (u,).

Then, if x is the state process of an internal realization, we have

x(t) E*{x(t)ln(z)} E*{x(t)[n-[_l (z)}+ {x(t)lH (u,)},

which implies

(2.47) x(t) x,(t) + ,{x(t)-x,(t)lH[ (u,)}

in view of (2.27) and the orthogonality between x,(t) and H+ (u,). To compute
E*{x(t)-x,(t)lH[ (u,)} observe first that (t)=x(t)-x,(t) is the state process of a
realization of u, of the form (2.41)-(2.42). Secondly, notice that u, is stochastic process
enjoying all the properties of z. Therefore we simply derive relation (2.26) with and
u, in place of x and z respectively. This idea of replacing a stochastic process by its
innovations is of course very common in filtering theory and it turns out to be helpful
also in our context.

We shall now derive the backward counterpart of a realization of the type
(2.42)-(2.43) corresponding to an internal realization. We set B2 0 in (2.42)-(2.43)
and define/3 =p_p,. An orthogonal decomposition for (t) as in (2.18) yields the
identity

(2.48) (t) =/SF/3#(t + 1) + [(/)-/3F/5#(/+ 1)].

Observe that ;(t)-/SF/3#;(t + 1) is orthogonal to H--1 (z). Also, using (2.42)-(2.43),
we see that/{(t)-16F/5#(t + 1)IH+I (u,)} 0. Hence, using (2.46), we have

;(t)-PF’,P#;(t + 1) =/{(/)-PF/#;(t + 1)lu,(t)}

and (2.48) becomes

Lh{,(t)lu,(t)} PH’R (P,)-/2u,(t)

(2.49) 2(t) rP*;(t+ 1) +_H’R (P,)-X/2u,(t)
or

(2.50) /5#;(t) Pr’,;(t+ a) +#H’R(P,)-a/u,(t).
The output simply reads

(2.51) u,(t) 0/3#2(t + 1)+ u,(t)
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where 0 is the m n zero matrix. The model (2.50)-(2.51) is the backward counterpart
of (2.42)-(2.43). We stress the fact that all backward realizations of the innovations
which we obtain in this fashion from realizations (2.42)-(2.43) with B2 0 have the
same input noise u,. For x*-x, we obtain the backward filter

(P*-P,)-a(x*(t)-x,(t)) F’,(P*-P,)-I(x*(t + 1)- x,(t + 1))
(2.52)

+H’R(P,)-/:u,(t).
Using alternatively (2.42) and (2.49) to compute E{2(t + 1)2(t)’} we establish the

identity F,/5 =/5/5#F,/5 which gives

(2.53)

Then, using (2.49) and (2.53) we obtain

2(t) =/3 E (r)’H’R (P,)-l/2u,(t + i)
i=0

which, together with (2.52), yields the desired expression

(2.54) x(t) x,(t)+(P-e,)(e*-P,)-(x*(t)-x,(t)).
Hence :(t) H(x*(t)-x,(t)) and (2.54) can be written

(t) t{(t)lx*(t)-x,(t)}
(2.55)

(P-P,)(P* -P,)-l(x*(t)- x,(t))

from which it is seen that 7r(P) (P-P,)(P* _p,)-i is a projection. Rewriting (2.53) in
the form

F,r(P) r(P)(P* P,)P#F,7r (P),

we see that 7r(P) projects onto an invariant subspace of F,. Since 7r(P)(P*-P,)=
(P*-P,)rr(P)’ and 7r(P)’ projects along S +/- [15, p. 61], we conclude that zr(.P) projects
parallel to (P*-P,)S+/-. Conversely if 7r projects onto an invariant subspace of F, and
r(P*-P,) (P*-P,)Tr’, i.e., r is an admissible projection in Ruckebush’s language, it
is easy to construct first a realization of the innovations and then one (internal) of z
along the same lines as in [33]. This completes the proof of Theorem 2.8. I-1

Remark 2.10. Notice that, given the special form of the realization (2.50)-(2.51),
we did not need to invoke any invariance property such as (2.32) of the filter (2.52) to
compute {(t)lHt+ (u,)}. The following interpretation for Theorem 2.8 emerged in the
proof. The state process of an internal realization of z is given by the forward filter of z
plus a "piece" of the maximum variance error x*(t)- x,(t). This piece must be such as
to conform with the dynamics of x*(t)-x,(t) which is determined by the transition
matrix F,, i.e., it must correspond to an invariant subspace of F,.

2.;. External realizations. It is clear that a necessary condition for the existence of
external realizations is the presence in H of elements orthogonal to H(z). For the sake
of simplicity we assume thatH H(z)(H(), where r is an n-dimensional normalized
white noise orthogonal to H(z). As it will be apparent from what follows, this
assumption is the minimum one needed to guarantee the existence of a proper
stochastic realization corresponding to each wide sense stochastic realization.

Let x be the state process of a realization (2.6)-(2.7) and P its covariance. Then the
counterpart of (2.47) is

(2.56) (t) x,(t)+l{(t)lH (u,)}+{(t)lH(()}



MATRIX RICCATI EQUATION 173

and (2.48) corresponds to

(2.57) 2(t) =/3F/5#(t + 1)+PH’R(P,)-I/2u,(t)+E{(t)-F’,#2(t+ 1)lH(r)}.

Now let us assume that r is chosen in such a way that the condition H[_I () +/-H[ ()
holds and r and are stationarily correlated for every realization (2.42)-(2.43). This
assumption is introduced to enable us to treat r in the same way as the innovations. It
will be clear from what follows that indeed this is a natural assumption when trying to
model all realizations using a unique exogenous noise. We can now add to (2.42)-(2.43)
the output

’(t) MY(t) + {r(t) M(t)],

whereM E{((t)2(t)’},# and an argument very similar to that used for the innovations
gives/{?(t)-/SF/#2(t + 1)lH(r)} PM’((t) so that (2.57) becomes

(2.58) ,(t) PF’ "",P x(t + 1) + ff’H’R (P,)-l/2u,(t) + PM’((t).

Note that M must satisfy

j5 =/F/#F,/3+H’R(P,)-1Hi5 +_M’M

and that, as in the internal case, the input noise (u,, ’) is the same for all realizations.
Let 2f(t) and :E(t) denote/{?(t)lH (u,)} and/{:(t)lH(()} respectively. Then it

follows from (2.58) that

(2.59) ,(t) (P-P,)(P*-P,)-(x*(t)-x,(t))
and

(2.60) 2E(t) "#PF,P xz(t + 1) + M’((t).
Using (2.53), (2.56), (2.59) and (2.60) we conclude that

(2.61) x(t) x,(t)+(P-P,)(P*-P,)-a(x*(t)-x,(t))+ E (F’,)iM’(( + i).
i=0

Conversely, given any matrix M such that M’M n, let/5 solve

Ft ~-1,P F, +H’R (P,)-IH +M’M.
Then, using (2.61), we construct the state of a stochastic realization of z. All the
realizations with singular P can be obtained through limiting procedures, using realiza-
tions corresponding to unbounded sequences of M’M in the cone

The derivation of the classification of external realizations presented above is quite
similar to the one given in [33, p. 65], but we feel it will give some further insight into the
concepts described there. Moreover it provides a clear stochastic meaning for the
parametric representation of the set derived by Faurre [12, p. 52] in continuous time
and by Germain [13, p. 61] in discrete time. Finally the input processes of external
realizations can be characterized along the same lines as in [19].

3. Discrete time stochastic realization: The singular case.
3.1. Invariant predictable and smoothable subspaces. Problems I and II are called

singular when (eo) is singular. It follows from Theorems 1.6 and 1.9 that in the
singular case there exist nontrivial invariant directions for the Riccati equation (1.5)
associated to every solution to problem I. Abusing language we shall say that a vector a
is invariant (predictable) for [A, B, C, D] if it is invariant (predictable) for the cor-
responding equation (1.5).
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PROPOSITION 3.1. The space g ofinvariant directions is invariant over all wide sense
realizations of z.

Proof. Immediate from Theorems 1.6 and 1.9.
The following result describes the singular case in a number of different ways.
THEOREM 3.2. The following statements are equivalent"

(i) () is singular.
(ii) F, is singular.

(iii) R (P*) is singular.
(iv) R(p,)I/2-B’, (F’)-IH is singular.
Proof. Let yN" be in the null space of (m). Then, recalling that

(o)=DD’-DB’(F’)-IH where [F,B,H,D] is any wide sense realization, we
obtain from (2.25) B,(F’)-IH’y’ (HY,H’+DD’)I/2T =R(P,)1/2y. Hence 3’
g’(R(p,)I/E-B’,(F’)-IH’) and (F’)-IH’yg’(F’,). Conversely, if (ii) holds, use the
fact that the eigenvalues of F, are equal to the zeros of the determinant of W, to get (iv)
from which (i) follows trivially. The equivalence between (ii) and (iii) has been proven
by Ruckebusch [33, p. 70].

COROLLARY 3.3. The set 22 is nonempty if and only if (o) is singular.
Proof. For any P 22 we have R (P*) _-< R (P).
This says that the singular case occurs precisely when some of the wide sense

realizations have R (P) singular, in particular when R (P*) is singular. This contrasts
with the continuous time situation where, when the innovation process is full rank, all
the input noises have nonsingular intensity.

Let Tu(i), i=0, 1,... be as in Theorem 1.9 so that (z)= Y,i=0 Tn(i)z-i for
large enough and T, be the weighting pattern (1.17) corresponding to the minimum
variance realization.

THEOREM 3.4. The following statements are equivalent"
(i) a is an s-invariant direction of the wide sense realization [F, B, H, D].

s--I(ii) a i=l (F’)-iH’Ai with Y’,i=o Tn(i)Aj+i O, f 1,..., s.
(iii) a i=1 (F’)-iH’Ai with Ei=o 7x,(i)A+x 0, ] 1,..., s.
(iv) a -’.i (F’)-iH’h with a’x hs= ,(t) "i=1 iZ(t-- i) for all t.

(v) a is a generalized eigenvector of rank s (an eigenvector /f s 1) of F’,
corresponding to the eigenvalue zero.

Proof. The equivalence of (ii) and (iv) is immediate. The rest follows at once from
Theorem 1.6, in view of Proposition 3.1 and the fact that the deterministic and
stochastic elements in the minimum variance realization can be obtained as limits of the
corresponding quantities in a transient Kalman filter of the form (1.3). I-1

COROLLARY 3.5. All the invariant directions of IF, B,, H, R (p,)/2] are predic-
table.

Proof. It follows directly from Theorem 1.11 and condition (iii) of Theorem 3.4.
Note that in Theorem 3.4 the space appears as the invariant subspace of

related to the zero eigenvalue. We now introduce the backward counterpart of the
concept of invariant direction. A vector i is said to be a dually s-invariant direction of
the dual transient Riccati equation

,(t- 1) F’,(t)F- (F’,(t)G + B-I’)(G’,(t)G + I;’)-(G’,(t)F +:;’) +
(3.1)

(0 P
if ’(-t; if) ’,(-s 0) for all _-> s and all/ ,. Also let P be given by (1.17) with
[F’,/, G’,(P)/] in place of [A,B, C,D]. Duality now gives the following result.
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COROLLARY 3.6. The following statements are equivalent"
(i) / is a dually s-invariant direction of the backward wide sense realization

[F’,B, G’,D].
(ii) Y,=x F-GIx with Y’,=0 T,(i)/xi+ 0, ] 1,. , s.

(iii) g =a F-G with =0 T,(i)i+ O, j 1,. ., s.
(iv) =F-G with ’y,(t) =1 z(t + i) for all t.
(v) g is a generalized eigenvector of rank s (an eigenvector if s 1) of F,

F’-,(,)-1/2G’ corresponding to the eigenvalue zero.
Next we define the dual counterpart of predictability.
DEVNTON 3.7. The n-dimensional vector is called an s-smoothable direction of

(3.1) if

(3.2) ’Z(-t; P) ’Z(-s; P) 0 for all s.

The terminology is motivated by the fact that if g satisfies (3.2) then, by property
(iv) in Corollary 3.6, we can smooth the state of any proper stochastic realization
corresponding to [F’,, G’,D] exactly in direction P-. Clearly all the dually
invariant directions of IF’, ,, G’, (,)x/2] are smoothable. Let ff indicate the space
of the invariant directions of (3.1) which, by Proposition 3.1 and duality, is invariant
over all backward wide sense realization. Ruckebusch proved that F,=
(P*)-1(P*-P,)F(P*-P,)-aP*[33, p. 53]. Therefore it follows from Corollary 3.6
that (P*-P,)(P*)- is the invariant subspace of F, corresponding to the zero
eigenvalue. Moreover the dimensions of N and N are equal. The following theorem
characterizes the predictable subspace of an internal realization and the smoothable
subspace of the corresponding backward realization. It also shows that the sum of the
dimensions of these two subspaces is constant and equal to dim N.

THEOREM 3.8. Let x be the state process of the internal realization
[F, B, H, R(p)I/2; u] and S the invariant subspace of F, associated with x in Theorem
2.8, so that x(t)=x,(t)+(x*(t)-x,(t)) with given by (2.39). Then, if a=
7=1 (F’)-H’A belongs to Sz and =F-iG belongs to P*(P*-P,)-S
we have

(3.3) a’x(t) h Iz(t- i)
i=1

and

(3.4) a’(P*)-lx(t) IZ(t + i- 1).
i=1

Moreover dim (S +/- CI ) + dim (P*(P*-P,)-Is ) =dim .
Proof. Since (P* p,)-xzr(P*-P,) ’s and r projects parallel to (P*-P,)$-,

we have a’zr =0 and ’(P*)-X’s =’(P*)-l. Properties (iv) of Theorem 3.4 and
Corollary 3.6 now yield (3.3) and (3.4) respectively. Let k be the smallest positive
integer such that A/’((F,)); Theorem 3.4(v) insures the existence of such a k. Then
we have the direct decomposition " (((F,)), where ((F)) is the range space
of (F,), cf. [15, p. 166] for example. Consider also the usual orthogonal decomposition
FI W((F,)) ((F)), where W((F,)) (P*-P,)(P*)-. It follows that dim (S
5) =dim (S V] (p,_p,)(p,)-l). To complete the proof, observe that # (5 S)@
(3 7) S +/-) and that dim (S (3 (P*-P,)(P*)-)=dim (P*(P*-P,)-Is (3 ). [3

It is worthwhile mentioning that d’(P*)-a in (3.4) has actually the form

= ia,,,_gHF with = T(k)’lU,,,-k 0 for j 1, ., n, as one can readily verify
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u.sing (2.4)-(2.5) and (2.16)-(2.17) to establish the correspondence between T(. )’ and
T(. ). Conversely such a vector leads to a smoothable direction in the backward setting.
Hence a predictable-smoothable direction in the forward setting (i.e., a direction in
which the state can be computed from a finite number of observations z) has the form

n--I H, (’}/n-l,)’n-2, ", 3/0, y_, y_ and T is ai=- (F’) yi with 3’ /’(T), where y’
block diagonal matrix, the two diagonal blocks being block triangular Toeplitz matrices.
The upper one has ith row IT(i- 1)’, T(i- 2)’, , T(0)’, 0, , 0] and the lower one
has ith row [1F(i-1), (i-2),..., (0), 0,..., 0], where 1,. ., n.

The linear hull of the components of x,(t) and x*(t) is called the frame space [18]
and denoted by Ht (z). In view of Theorem 2.8, we know that the components of the
state at time of an internal realization belong to Ht (z). Let us introduce the subspace
Ht+(z) of H(z), given by the linear hull of elements of the form a’x,(t) and
8’(P*)-lx*(t), where a varies over and over ft. By analogy to the continuous time
case [10], we shall call Ht+(z) the germ space, since it contains linear combinations of
differences of the type ArT (S) Z (S) Z (S r) and of certain other values of the process
z that indicate precisely the degree of "smoothness" of the covariance of z in different
directions. Then Theorem 3.8 shows that dim (X(t)f)Ht+(z))-dim 5, where X(t) is
the space spanned by the components of the state x(t) of an internal realization. Note
that in contrast to the continuous time situation [18], the inclusion Ht/(z) X(t) does
not hold. From now on let dim I v.

THEOREM 3.9. Let [F, B1, H, R(p)I/2; u] be an internal realization. Then this
realization can be embedded in a chain of internal realizations [F, B(i), H, R (Pi)/2; ui]
with state spaces X(t), -0, , v, such that Po <-P1 <-... <-_

P, (Xo(t)OHt+(z)) H-[_ (z) and (X(t)f"IHt+(z)) H7 (z).
Proof. Let S be as in Theorem 3.8 and a, , a be a basis for S- 5. Then we can

generate a family Si of invariant subspaces of F., i= 0,..., u, with dim (S-fq 5)=
u- i, simply eliminating from S+/-, one at a time, the a or adding to S+/- new linearly
independent elements of 5, both operations being performed taking due care of the
rank of the generalized eigenvectors which are dropped or added, so that the resulting
subspace is indeed invariant for F. This can be done since 5 can be decomposed into
cyclic subspaces. Clearly this procedure yields a family of internal realizations which
differ only on the germ space and such that S &-r. The state covariances are totally
ordered since, if < ] and x(t), xi(t) are the corresponding state processes, xi(t) is equal
to x,(t) in any direction in which it differs from xi(t). Finally, by construction,
[F,B(O),H,R(Po)a/2; u0] has a full size predictable subspace and the backward
realization corresponding to [F,B(u),H,R(P)/2; u] has a full size smoothable
subspace. Thus, the last assertion of the theorem follows.

Notice that the chain of realizations in Theorem 3.9 is by no means unique.
However the minimum and the maximum realizations are uniquely determined. In the
case when F, is cyclic, the number of internal realizations is finite and _-<2" [40; Remark
18]. Our work has shown that 2"-’(u + 1) is actually an upper bound in the cyclic case.
In fact internal realizations are in one-to-tone correspondence with the invariant
subspaces of F, and, when F, is cyclic, 5 is cyclic and the chain of invariant subspaces
constructed in Theorem 3.9 is unique, so that the number of different invariant
Subspaces of F, is less than or equal to 2 (v + 1).

Let us consider a proper external realization of the form (2.6)-(2.7) and an
invariant direction a Y,=a (F’)H’Ai for it which is not predictable. Then two cases can

n--i -ill,Aoccur. Either =1 (F’) +, belongs to /’(B2) for ] ---0,. n 1 or it does not. It
can be seen that in the first case we are in a situation akin to the one for internal
realizations and we can associate to the vector a a smoothable direction in the backward
setting. In the second case, which always occurs if B2B > O, a is invariant but the state
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cannot be determined exactly from a finite string of observations and we would need to
have available the process " orthogonal to H(z) and to model external realizations as
done in 2.5 to be able to calculate the state in u linearly independent directions. For
the sake of brevity, we have avoided here going into details about external realizations.
However, it should be clear from our discussion that the sum of the dimensions of the
predictable and smoothable subspaces associated with an external realization is less
than or equal to u. This fact has the intuitive meaning of indeterminacy introduced by
the presence of the orthogonal component r.

The presence of nontrivial invariant directions allows, as it should be expected, for
a reduction in the dimension of the filtering algorithms available in the literature. For
instance, it is a simple exercise to verify that Faurre’s algorithms to compute P. and P*
[12, p. 56] reduce to solving (n- u)x (n- u) matrix equations, the values of P. and
(p,)-I on the subspaces 3 and ff respectively being known a priori in terms of H, F and
G. A similar reduction can be obtained for the fast algorithms which compute the gain
(1.4) directly (cf. [17] for example), since it is clear that in an invariant direction the
value of the gain can be computed directly in terms of the system matrices.

3.2. Noise free stochastic realization and the singular case. Akaike, in his
important paper [1], deals with Markovian representations of the process z without
noise in the output and only in his concluding remarks discusses representations with
additive noise terms. Indeed, his work was based on some results of Faurre 11] which,
starting from a certain factorization of the covariance matrices, were phrased in terms of
noise-free realizations. In subsequent work [12] Faurre turned to a different factoriza-
tion of the covariance matrices which led naturally to realizations with noise in the
output. The same choice has, since then, been made by a number of authors [13], [22],
[23], [33], but, up to our knowledge, it has never been explained whether the two
approaches are equivalent and, if not, what are the shortcomings of either one. We shall
now show that, precisely in the singular case, the first approach presents a considerable
disadvantage, in that many minimal Markovian realizations are lost. Let us start
considering a minimal factorization (E, 19, ) (i.e., completely controllable and
observable) like the one in [11], namely

(3.5) Aj E{z(t +j)z(t)’} _(R), j O, 1, 2,.

and let dim .. r. On the other hand, since is the double side z-transform of A, we
have

]= 1,2, 3,’’’,
(3.6) A. G,(F,)_IH + dp(o), ] O.

THEOREM 3.10. Let k be the dimension of Y(()) and assume, without loss of
generality, that () [R 0] where R is (m k) m. Then (, 19, ) is given, up to a
change of basis, by

(3.7)

where

F=
0 0

the identity matrix is m-k dimensional and r n + m -k.
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Proof. It is easy to check that the triplet in (3.7) satisfies (3.5). Also (_, (R)) is

controllable and (.., ) is observable. In fact suppose a with a and
O2

a e Iq’- is such that

(38) (a,l,a)[F-AG G FG Fn+’-’-EG]=0.0 0 0

Then we see that a must be zero, which forces aR 0 and finally a2 0o We conclude
that the controllability matrix in (3.8) is full rank. Similarly the observability matrix is
seen to have rank n + m k. The conclusion now follows from the uniqueness, up to an
equivalence as in (2.1), of the triplet (.., (9, ). [3

Let us assume for the moment that (oo) is nonsingular and consider a proper
stochastic realization of z IF, B, H, D, w]. Then we can associate to it the noise free
model

(3.9)
F_,B ](t+ 1)=/:(t)+ D_HF_IB rl(t),

(3.10) z(t) =[H I](t),

Where

F-lx(t + 1) ):(t) (D_HF_IB)w(t)
and r/(t)= w(t+ 1). This induces a one-to-one correspondence between wide sense
realizations of the form [F, B, H, D] and noise free wide sense realizations of the form
[, X, (HI)] which are minimal too in view of Theorem 3.10. If we agree to call
realizations [/, X, (H I); r/] with x(n + m) m internal, then the above correspon-
dence is one-to-one between internal realizations. In particular it maps
IF, B., H, R (P,)1/2., u.] to a realization related to the steady state pure filter, i.e., the
second innovation representation IRz in Gevers terminology [14].

Suppose now that (o) is as in Theorem 3.10 with k > 0. Then it is possible to set
up a correspondence similar to the one in the nonsingular case only for a rather small
subclass of wide sense realizations. More explicitly, let [F, B, H, D; w be a realization
such that (0) D’-B’(F’)-IH has rank m k and V an orthogonal matrix such that

[D HF-1B]V [’] where S is (m k) x p, p being the number of columns of B. Then

we have the n + m- k dimensional noise free model

[F-1B](3.11) so(t+ 1)=/(t)+l_ S .I
r/(t),

(3.12) z(/)= [H (0/)],(t),
(Fix(t+ 1)) and r/(t) V’w(t+ 1). The wide sense realization given bywhere so(t)=
__V’w(t)

(3.11)-(3.12) is minimal. This establishes a one-to-one correspondence between
minimal wide sense realizations of z such that T(0) has rank m- k and minimal wide

sense realizations of the form [/, X, (H ())]. It is now apparent that the choice
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of seeking noise free representation of z can cost us, in the singular case, the loss of a
considerable number of realizations. Indeed, it is not hard to see that the subset of
corresponding to realizations with rank T(0) m k lies, as , in the relative boundary
of .

This shows that, in discrete time, the factorization (3.6) and the associated choice of
H--1 (z), instead of H- (z), as past space at time t, is more convenient, even though it
implies the unpleasant fact that white noise processes have zero dimensional minimal
realizations.
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ASYMPTOTIC STABILITY OF SYSTEMS: RESULTS INVOLVING THE
SYSTEM TOPOLOGY*

R. K. MILLERS" AND A. N. MICHEL

Abstract. In this paper we answer the following question for a large class of (linear and nonlinear)
dynamical systems. Given is a system with dissipation and given is the associated conservative system.
Suppose the associated conservative system is stable. What properties of the system topology (system
configuration) will ensure that the overall system with dissipation is asymptotically stable?

Both linear and nonlinear (Hamiltonian) systems are treated. For the linear case, necessary and sufficient
conditions for asymptotic stability are established, while for the nonlinear case, sufficient conditions and also
some necessary and sufficient conditions for asymptotic stability are obtained.

It is emphasized that the application of the present results to specific problems will usually not require a
search for appropriate Lyapunov functions. Indeed, a stability analysis by the present method involves the
following two steps:

(a) given a system with dissipation, the stability of its trivial solution (equilibrium) is ascertained by
determining the stability of the associated conservative system, i.e., by determining whether the potential
energy is a minimum at the equilibrium; and

(b) attractivity of the equilibrium of the entire system (with dissipation) is determined from the system
topology (system configuration).

This approach to stability analysis appears to be new. Furthermore, since the present method involves
concepts from control theory (namely, the notion of observability), these results provide further insight into
the mechanisms of stability (and stabilization).

To provide motivation and to demonstrate the applicability of the results, some specific examples are
considered.

1. Introduction. Consider the linear mechanical mass-spring system of Fig. 1
which is governed by the equations

(1)
ml)l + klXl + k(Xl-X2) O,

m2.i2 + k2x2 + k(x2-xl) O,

FIG. 1.

where xi denotes the displacement of mass mi and k l, k2, k denote linear spring
constants. When the initial state of this conservative system is displaced from its
equilibrium position, the system will remain in motion indefinitely. If linear viscous
damping is added at some or all of the masses and springs, as shown in Fig. 2, then the

* Received by the editors November 28, 1978, and in revised form July 17, 1979. This work was
supported in part by the National Science Foundation under Grant ENG 77-28446 and by the Engineering
Research Institute, Iowa State University.

Department of Mathematics, Iowa State University, Ames, Iowa 50011.
Department of Electrical Engineering and Engineering Research Institute, Iowa State University,
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governing equations become

m1/c’1 + klXl + k(Xl-X2)+Bl.l +B(.cl-.:O O,
(2)

m2.2 + k2x2 + k (x2 x 1) d-- B2.2 + B (.2 . 1) 0,

/
/ "--"’Xl X2

,-’l ,’n /.
,.u ,.u
k mz k2 1//

FIG. 2.

where B 0, B2 0, B _-> 0 and B -[- B2 +B > 0. At a first glance, it would seem that the
indiscriminate or random addition of such damping terms will stabilize the rest position,
making system (2) asymptotically stable. Indeed, one could argue that since the addition
of a dash pot at even one single location shown in Fig. 2 will reduce the total energy of
the system, eventually all of the energy will be dissipated and the motion of the system
will tend to its equilibrium.

The preceding argument is simple, appealing but unfortunately wrong. While for
most values of the parameters the above conjecture is correct, it is not true when
BI BE 0, B >0, kl/ml kE/mE, forin this case the two masses can be made to move
in synchronism. When this happens, x X2 is constant, the term B (A -2) has no effect
on the motion and no dissipation of energy will occur.

The conservative system (1) and its corresponding damped system (2) are simple
enough to be analyzed by simple inspection. However, in the case of general, highly
complex, possibly nonlinear, stable conservative systems, it is far from trivial to decide
where damping should be added in order to ensure that the rest position will be
asymptotically stable. Similar questions can be asked with respect to adding dissipative
terms in electrical systems, electromechanical systems, and so forth.

In the present paper we establish conditions which answer the questions raised
above for such systems. Although we give results involving several cases, our main
result answers the following question: for a stable and conservative system, what are
appropriate conditions which ensure that an associated damped system will be asymp-
totically stable?

In 2 we obtain general results for linear systems. These results are applied in 3
to conservative mechanical systems to obtain a result of Walker and Schmitendorf [9].
The results in 3 motivate generalizations to nonlinear systems which are presented in
4. All of our nonlinear results concern conservative mechanical systems to which

damping is added. Some related work for nonlinear circuits can be found in Varaiya and
Liu [8]. Our results do not overlap those of [8] but have a similar flavor.

2. General linear systems. We will employ the following frequently used
definition.

DEFINIIO 1. Let U and V be matrices of dimensions m n and n x n, respec-
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tively. We say that the pair (U, V) is observable if and only if the matrix

U
UV
UV2

LUV
has full rank.

We consider a linear system of differential equations given by

(3) 2 =Ax,

where xR n, tJ=[to, OO), to>-O, 2=dx/dt, and A is an nn matrix. We let
x(t; Xo, to) denote the solutions of (3) with Xo X(to; x0, to). We assume that the trivial
solution x ---0 of (3) is stable (in the Lyapunov sense (see Hahn [3])) so that there is a
positive definite matrix G(i.e., G > 0) such that the matrix

B =ATG+GA
is negative semidefinite (i.e., B =< 0). Thus, there exists a Lyapunov function v: R --> R
with

v(x)=xOx,
(4) Dt(3)(x) xrBx,

B =ArG+GA,

where Dv(3)(x) denotes the derivative of v with respect to along the solutions of (3).
Our first result is as follows.

THEOREM 1. For system (3) assume a Lyapunov function (4) such that G > 0 and
B <= O. Then the trivial solution of system (3) is asymptotically ’stable (in the Lyapunov
sense (see [3]))/f and only if the pair (B, A) is observable.

Proof. Suppose that (B, A) is observable and let

N {x:Bx = 0} {x:Dv(3)(x) 0}.

Let N1 be the largest subset of N which is invariant with respect to system (3). (That is,
N1 is the largest subset of N such that xoNi implies x(t; Xo, t0) a--x(t)NI for all

R.) Now if x (t) NI, then Bx (t) =- 0 so that

d
O -(Bx B2 BAx,

d
0 -(BAx) BA2 BA

d
0 ---_(BA"-x) BA-2 BA-x.

dt

Sirtce (B, A) is observable, we must conclude that any trajectory x(t) in Nx is the rest
state, i.e., Nx {0}. By the invariance principle (see e.g., 1 ], [4], [6]) it follows that x 0
is asymptotically stable.
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Conversely, assume that (B,A) is not observable. Then there is a trajectory
x(t) [exp (At)]Xo, Xo s O, such that B[exp (At)]xo=O. For this trajectory,

d
dtV(X(t)) x r (t)Bx(t) x T (t) 0 O,

and so v(x(t)) V(Xo) > 0 for all -> 0. Thus, x(t) can not tend to the origin as , i.e.,
the trivial solution x 0 is not asymptotically stable.

The method of proof used in Theorem 1 can be modified to establish the following
more general result.

THEOREM 2. For system (3) assume that (4) is true with G > 0 and B <= O. Define
N {x:Dv(3)(x) 0}.

Suppose that there exists a matrix C such that the set

N1 a__ {X: Cx 0}

equals N, and suppose there exists a matrix D such that

Nza--{x:Dx 0} N1.
Then the trivial solution of (3) is asymptotically stable ifand only if the pair (C, A -D) is
observable.

Proof. First we consider a trajectory x(t) N for -< < c. Then Cx(t) 0 so
that Dx(t) 0 and

d
0 -(Cx)= C CAx C(A -D)x,

d
0 -[C(A -O)x] C(A -O) C(A -O)x,

O=C(A-D)"-x.
Since (C, A-D) is observable, it follows that x(t)=O. By the invariance result in [1] it
follows that the equilibrium x---0 is asymptotically stable.

Now suppose thatN N and that (C, A D) is not observable. Then there exists
Xo # 0 such that C{exp [(A D)t]}x0 0. Since N N it follows that

d
d--v(x(t))=xr(t)Bx(t)=O, x(t)Aexp[(A-D)t]Xo

and

v(x(t))=--V(Xo)>O.

Thus, x(t) cannot tend to the origin. Also, since Nz N1, we have

:f(t) (A -D)x(t) Ax(t)-O Ax(t),

i.e., x(t) solves (3). Thus, the equilibrium of (3) is not asymptotically stable. 71
For Theorem 2 there are many possible choices for the matrices C and D. For

example, C B and either D 0 or D +B will do. As another example, since B is
symmetric and negative semidefinite, there exists a matrix C such that C*C -B. For
this choice of C we may choose D =0, or D +C, or D +B. For a third way of
choosing the matrices C and D, refer to Theorem 3 in the next section.

We note that David Russell [7] has communicated to the authors a version of
Theorem 2 with C*C =-B and D 0.
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3. Linear Hamiltonian system. The Hamiltonian formulation in mechanics is well
established (see, e.g., [2], [10]). Given a Hamiltonian function H(ql,’" ,q,,
pl," , p,), the Hamiltonian differential equations for conservative systems are

()

OH
4i =-pi(ql, qn, Pl, P,,),

Di yOH(ql,. q,,,P," ,P,,),
Oq

1,. ., n, or in vector notation,

OH -OH(q, P ),it -p (q, P), D Oq

where the qi denote generalized position coordinates, the Pi denote the generalized
momentum coordinates and H represents the total energy of a system. (Using appro-
priate analogies, lossless electrical systems, electro-mechanical systems, etc., can be
represented by (5) as well.) The motions of system (5) are always such that the energy is
conserved, since

--H(q,p) (O-Oi -[-
tgH

i--1 Pi

i=1 c3pi C3pi

A linear Hamiltonian differential equation is obtained from a quadratic Hamiltonian of
the form

(6) H(q, p)= 1/2q rHlq + 1/2 pTH2 p,

where we can assume, without loss of generality, that the matrices H1 and Hz are
symmetric. Since in general dH/dt O, we can use H as a Lyapunov function for (5)
(when the potential energy has a local isolated minimum at the equilibrium (q T, pr)=
(0T, Or)). In particular, in the linear case (6) we ensure stability of the trivial solution
with the assumptions that Ha and H2 are positive definite.

The linear system of differential equations corresponding to the Hamiltonian (6) is
given by

(7) q H1 p, p -Hq.

Now if viscous damping is added, then system (7) will be replaced by

(8) dl Hlp, D -H2q + Kp,

where B1 HK +KTH2 is negative semidefinite. In this case, the derivative of H(q, p)
along the solutions of (8) is given by

D(sH pTBp <= O.

If in particular we specialize (6) to a simple mechanical system consisting of n rigid
bodies with masses mi, 1,..., n, then (6) will assume the form

(9) H(q, p) 1/2qTnq + 1/2pTM-p,
where M=diag[m, m2,"’, rn] and H =HT (which characterizes the potential
energy term) is determined by the system configuration. For this case (8) assumes the
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form

(10) 0 M-’p, D -Hq + KM-lp
which is equivalent to Newton’s law (p M0, K KT),

M[t" + Hq Kgl O.

The derivative of (9) along the solutions of (10) is easily computed to be

D(IoH prM-KM-p.
The next result, which is similar to a result reported in [9], is a direct consequence of
Theorem 2.

THEOREM 3. Consider the Hamiltonian (9) and the system (10) with M=
diag [m, m, , m,]> 0, H Hr > 0, K Kr <_- 0. Then the trivial solution of (10) is
asymptotically stable if and only if the pair (K, M-H) is observable.

Proof. Applying Theorem 2 with

A=
-H KM- B=

0 M-IKM-
it is easy to see that for ] 0, 1, 2, 3,. ., we have

C(A_D)i/=[ 0

K(-M-1H)+

and

[o o ]C=D=
0 KM-1

0 K(-M-H)M-’

Thus, the result follows from Theorem 2.
On the basis of this theorem, we can formulate the following simple rule for

conservative stable systems of the form (10)"
Pick a position in the undamped system where it is possible to add damping (e.g.,

dashpot, resistor, etc.). If it is always possible to detect motion at this position whenever
the system is not at rest, then this is a location at which damping, to stabilize the system,
can be added. To cover multi-position cases, the above must be modified, using linehr
combinations of motions at allowable damping points.

The above rule is easily seen to work for the example discussed in the introduction.
One can also check the algebra for this example to obtain the results precisely. Indeed,
we have

(-B-B)

M_IH (kx k) -k
(k2 + k)

and we consider the following possibilities"
Case 1. detK0;
Case 2a. det K 0 with B B2 0;
Case 2b. det K 0 with B B 0;
Case 2c. det K 0 with B2 B 0;
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For case 1, the pair (K, M-1H) is observable. For case 2a, we have

K(M-1H)=B

k k

ml

k
m2

(kL.+_k) +___
L ml m2

k(k.+k)+
-(k2+k)

m2 roll

In order that the pair (K, M-1H) not be observable, it is necessary and sufficient that the
first row of KM-IH be the negative of the second row, i.e.,

kl+k k k2+k k
/ -t

ml m2 m2 ml

or

k k2

This is the condition under which it is possible for the two masses to move in
synchronism.

For case 2b it is easy to compute that the condition which ensures that the pair
(K, M-1H) be observable is B2k > O.

For case 2c the condition which ensures that the pair (K, M-1H) be observable is
Blk >0.

Applying Theorem 3 we see that the system of Fig. 2 will be asymptotically stable
for all the above cases, except case 2a.

4. Nonlinear Hamiltonian systems. We now extend the results of 3 to nonlinear
systems. To this end we consider a Hamiltonian of the form

(11) n(q, p) 1/2pTM-p + G(q)

and the associated system (with damping)

(12) M-lp, D KM-lp VG(q),

where G" R" - R is assumed to be continuously differentiable over R" and where 7G
denotes the gradient of G. We will find it convenient to associate with (12) an output
equation of the form

(13) y diag [KM-, KM-]
VG(q)

DEFINITION 2. System (12), (13) is called distinguishable (see, e.g., [5, p. 377]) if
whenever (q(t), p(t)) is a solution of (12) with (q(0), p(0)) (0, 0), then the output
y(t) 0. System (12), (13) is called locally distinguishable if there is an e > 0 such that
when (q(t), p(t)) is a solution of (12) and 0 < Ip(0)[ / Iq(0)l < e, then the output y(t) 0.

We now prove the following result.
THEOREM 4. Consider Hamiltonian (11) and system (12) with M=

diag [m 1, m2, , m,] > 0, G positive definite with respect to the origin, andK Kr O.
Then the trivial solution of system (12) is asymptotically stable if and only if the system
(12), (13) is locally distinguishable.

Pro@ Since G is positive definite, we may choose H given by (11) as a Lyapunov
function. The derivative of H with respect to along the solutions of (12) is given by

DH(2)(q, p) pTM-IKM-p 0
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for all (q, p). Let

N {(q, p): KM-lp 0}

be the null set of DH(12 and let Nx be the largest invariant subset of N. If (q(t), p(t)) is a
solution of (12)with (q(O),p(O))Nx and Iq(0)l/[p(0)[ sufficiently small, then
KM-p(t) =- 0 and

0 KM-O(t)= KM-I(KM-lp(t)-FG(q(t)))= -KM-1VG(q(t)).
Since system (12), (13) is locally distinguishable, then p(t) =- q(t) =- O. By the invariance
theorem (see [4]) the trivial solution of (12) is asymptotically stable.

Conversely, assume that system (12), (13) is not locally distinguishable. Then in
any neighborhood 0-//of the origin (0, 0) there is a nontrivial solution (q, p) of (12) which
starts in q/and for which the output (13) is identically zero. Thus (q, p) will solve the
stable, conservative Hamiltonian system given by

gt =M-P, /6 -VG(q).

Since G is positive definite and since M Mr > 0, then H(q(t), p(t)) =- H(q(O), p(0)) a_

Ho > 0 and (q(t), p(t)) , 0 as - oo. 71
Essentially the same proof works for the next result.
THEOREM 5. Consider Hamiltonian (11) and system (12) with M=

diag Ira1, m2,’’’, mn]> 0, with G positive definite (with respect to the origin) ]’or all q,
with G(q) c as Iq[ - oe (i.e., G is radially unbounded), and with K Kr <__ O. Then the
trivial solution o]’ (12) is asymptotically stable in the large if and only i]’ (12), (13) is
distinguishable.

In certain cases the distinguishability of the nonlinear system (12), (13) is easily
checked. For example, if G1 is the linear part of VG at q 0 so that

VO(q)=Glq+(q),

then system (12), (13) can be linearized and we have

gl M-P,
(14) /i KM-Ip Glq,

y [KM-Ip, KM-Glq].

In this case we obtain the following result.
COROLLARY 1. Assume M=diag[m,m2,...,mn]>0, VG(q)=Gq+o(q)

near q=O with G=G>O and K=Kr<-O. Then the trivial solution of (12) is
asymptotically stable if (K, M-1G) is observable in the sense of Definition i (see 2).

Proof. If (K, M-IGI) satisfies the criterion of Definition 1, then system (14) is
observable (see the proof of Theorem 3 and see, e.g., [5]). If system (14) is observable,
then the corresponding nonlinear system (12), (13) must be locally observable (see [5, p.
378]) and hence also distinguishable. Apply now Theorem 4 to complete the proof. [3

Remark. Theorems 1-5 can be stated in stronger terms by recalling the facts that
(a) asymptotically stable plus autonomous imply uniformly asymptotically stable, and
(b) asymptotically stable, autonomous and linear imply global exponential stability.

As a final example, consider the system obtained from Fig. 2 by replacing the linear
springs by nonlinear ones. Specifically, replace the linear spring restoring forces
ku, kEY, kw by gl(u), g2(/9) and g(w), respectively, where gl:R -R, gE:g R, and
g: R R are assumed to be differentiable. Then linear system (2) will be replaced by the
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nonlinear system

(15)
ml.l -t- gl(Xl) + g(xl-x2)-.bBl.il -t-B (21-.i2)- 0,

m22 + gz(x2)- g(xl x2) + B222-B (21 22) 0,

where it is assumed that gl, g2 and g satisfy the conditions gl(0) g2(0) g(0) 0 and
g (x)>0, g(x)>0, and g’(x)>0 for all x 0. Once more it will be assumed that
B1 _->0, B2>-0, B >=0, and BI +B+B >0.

Next, to (15) we adjoin the outputs

(16)

Yl =B2-(B + B1).il,

Y2 B21 (B q- B2).i2,

y3--[(B +O)/ml]" [gl(Xl)+ g(xl-xz)]-(B/m2)" [g2(xz)-g(xl-x2)],

y4 -(B/m,). [gl(Xl)+ g(xl-x2)]-[(B +B2)lm2]" [gz(x=)-g(xa-x2)].

In studying the asymptotic stability of the trivial solution of system (15) we check
when the system (15), (16) is distinguishable. We accomplish this by considering several
cases.

Case 1. B(BI+B2)+B1B.O. If all yi-=0, then by (16), .il 22-= 0. Also,
gl(Xl)=--g(xl-x)=-g2(x). Since xlgl(xl)>O if Xl0 and xg(x)>O if x0,
then xl=x=O. Thus (15), (16) is distinguishable in this case and system (15) is
asymptotically stable in the large.

Case 2. B > 0, B B2 0. If all yi 0, then from (16) we see that .il 0 and so
Xl=-Cl is constant and gl(cx)=-g(cl-x(t)). Thus x=ce=-g-X(-gl(Cl))+Cl is
constant. The only constant solution of (15) is the trivial one. Thus, system (15), (16) is
distinguishable in this case and system (15) is asymptotically stable in the large.

Case 3. B > 0, B B1 0. Using an identical argument as in Case 2, it follows
that system (15), (16) is distinguishable and system (15) is asymptotically stable in the
large in this case.

Case 4. B1--B2-" 0, B > 0. This case is more complicated. If all yi--0, then
.ix 22 and

(17) [gx(xi)+g(xx-xz)]/ml=[gz(Xz)-g(Xl-X:z)]/m2.

If the two masses can be made to move in synchronism, i.e., if

gx(x)/mx g2(x)/mz

in some interval containing the origin, then (17) is possible with nonzero X and x2 =- x 1.

Under such conditions, system (15), (16) is not distinguishable and the trivial solution of
(15) is not asymptotically stable.

Conversely, if system (15), (16) is not distinguishable, then 21 .i2 and (17) is true.
Thus Xl-X2=C is constant. Substitute xl =x +c, x2=x and x =0 into (17). If c 0,
then one side of (17) is positive and the other side is negative. Thus, c must be zero and
gl(x)/ml g2(x)/m2 for all x in some closed interval I which contains the origin in its
interior. If there is no such interval/, then in this case (Case 4) the system (15), (16) is
distinguishable and the trivial solution of system (15) is asymptotically stable in the
large.

5. Concluding remarks. We re-emphasize that in the present results, the asymp-
totic stability of the equilibrium of a system is ascertained by (a) determining the
stability of the equilibrium of the corresponding conservative system, and (b) determin-
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ing the attractivity of the equilibrium by examining the topological properties (i.e., an
observability condition) of the entire damped system. Step (a) is easily verified for linear
as well as for nonlinear systems. Step (b) is also easily verified for linear systems and for
certain classes of nonlinear systems (e.g., nearly linear systems); however, in general,
the verification of step (b) for nonlinear systems may be quite difficult. In any event, the
present results provide added insight into the mechanisms of stability (and stabilization)
for a large class of dynamical systems.
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THE OPTIMAL STRATEGY IN THE CONTROL PROBLEM ASSOCIATED
WITH THE HAMILTON-JACOBI-BELLMAN EQUATION*

AVNER FRIEDMAN AND PIERRE-LOUIS LIONSt

Abstract. Consider the Hamilton-Jacobi-Bellman equation max,. {A,.u(x)-f,.(x)}=O a.e. in R n,
where A,. (m 1, 2, are the infinitesimal generators of diffusion processes with constant coefficients and
with discount c,. a > 0. It is known that the solution can be represented as the optimal cost functional in
which one can switch from one stochastic system to another without penalty. In this paper it is shown that if,
for some k, Akf,.(x)--Amfk(X)>--C >0 for all m # k, Ixl> R, then AkU(X)--fk(X)=O if Ixl> R, for some R1
sufficiently large; that means that the optimal strategy when Ixl> R1 is to stay with the diffusion and cost
associated with Ak, fk.

1. The main result. For each positive integer m, let r" (o’) be an n n matrix of
constants, and let b"= (b’) be an n-vector of constants. Let

a ii - O’ikO’jk
k=l

and introduce the (generally degenerate) elliptic operator

V 3V
(1.1) Av- alia- bi+c v,

i,j= Xi Xj i= Xj

where c are constants. We assume that

(1.2) lalCo, ]b?lCo, c,
where Co, a are positive constants. We also assume that there exist numbers 01 (0, 1)
(1 n0) and integers 1 m <m <. <m such that

(1.3) Ol 1, E Olaq ii > pl2 (p>0)
/=1 /=1 i,=1

for all R" (This assumption is not essential; see 3, Remark 6).
Let f(x) be functions in W2’(R"), satisfying

(1.4) I[&ll
the constants C1 and C0, a are independent of m.

Consider the Bellman equation

(1.5) sup {Au(x)-f(x)}= 0 a.e. in R .
ml

THEOREM 1.1. There exists a unique solution u(x) of (1.5) in W2’(R").
This theorem is due to P. L. Lions [5]; under more restrictive assumptions it was

proved earlier by Krylov [2], [3]; see also [1], [4], [6] for the study of (1.5) in case of the
Dirichlet problem.

The solution of (1.5) has the probabilistic interpretation

(1.6) u(x) inf J(x, v),

* Received by the editors June 11, 1979.
5" Department of Mathematics, Northwestern University, Evanston, Illinois 60201. The work of this

author was supported in part by the National Science Foundation under Grant MCS-7817204.
t Labortoire d’Analyse Num6rique, Universit6 de Paris, 75230 Paris 5e, France.

191



192 AVNER FRIEDMAN AND PIERRE-LOUIS LIONS

where v v(t) is any nonanticipative control function taking values 1, 2, 3,. .,
(1.7) J(x, v)= E f(t)(yx(t, v)) exp [-cV(t)t] d

and yx(t, v) is the stochastic integral defined by

dy(t) o"v(t) dw(t) + b v(t) dt, y(0) x,

where w(t) is an n-dimensional Brownian motion in the canonical Wiener space.
Thus, in the cost function J(x, v) one may switch from any diffusion process

(corresponding to or’, b") with its corresponding running cost fin and discount c" to
any other one without any cost for the switching. The question naturally arises" Which is
the best diffusion to choose at a particular point x ? Analytically, the problem can be
formulated as follows:

For a specific k, when does the equality
(1.8)

sup.,a {A,,,u(x)- f.,(x)}= AkU(X)-- fk(X) hold?

The purpose of this paper is to give a sufficient condition under which the equality in
(1.8) holds. The main result is contained in the following theorem.

THEOREM 1.2. Suppose there exist constants R > 0 and c > 0 such that

(1.9) Akf,,(x)--A,,fk(X)>=C forallm k,

Then there exists a number R1 > R such that

(1.10) sup {A.,u(x)-f.,(x)}= AkU(X)-- fk(X)
ml

if[xl>R1.

The proof is given in 2. In 3 we show that the condition (1.9) is rather sharp, and
make some remarks on generalizations of Theorem 1.2.

2. Proof of Theorem 1.2. The proof is divided into two parts: in part I we show
that it is sufficient to consider the case where k 1, all the operators are uniformly
elliptic, and (1.5) is replaced by a penalized system approximating (1.5). In part II we
prove the theorem in this case, applying A1 to the system and using some arguments
reminiscent to some which occur in variational inequalities.

Part I. Without loss of generality we may take k 1. Then (1.9) becomes

(2.1) Alfrn-Amfl>-C iflxl>R, m_->2.

Without loss of generality we may assume that

(2.2)
the A,, are nondegenerate elliptic,

with modulus of ellipticity independent of rn

Indeed, otherwise we replace each A,, byA A,,, e A (A Laplacian in Rn). In view
of (1.4), the condition (2.1) remains true for the A, (with another c > 0) provided e is
sufficiently small. As shown in [5], the corresponding solution u of the Hamilton-
Jacobi-Bellman equation satisfies: u (x)- u(x) if e 0. If we can prove that

(2.3) Au-f’=O for Ixl>R1
(with R independent of e) then it would follow that also

Alu-fl=o if [x[>Rx.
Thus it remains to prove the theorem under the assumption (2.2) (with R independent
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of the modulus of ellipticity of the A,.).
CLet/3(t) be a function satisfying

(2.4) /(t)=0 ift<0, 0</3’(0-<1 and /"(t)=>0 ift->0

and set

(2.5) /3e (t) =/3(t)

Consider the system of elliptic equations

(2.6) A,,u,, +e(u,,-u,,,+a)=[,,,, l <=m <=N,

in R n, where N is a fixed positive integer, to be taken arbitrarily large later on.
In [1], [4], [6] such a system is considered (with the assumption (2.2)) in a bounded

domain 12, with boundary conditions u, 0 on lq, and it is shown that the solution
u, uN satisfies

(2.7) u,,(x)u(x) ase0, N,

where u(x) is the solution of the Hamilton-Jacobi-Bellman equation in I with u 0 on
M. The method of proof shows that by taking f {x Ix < 1 / k}, k c we obtain the
assertion (2.7) uniformly with respect to k; in fact the corresponding solution u,;,lv’k
satisfies

(2.8) u,k u

where ffu is the unique solution in W2’(R n) of (2.6), and

(2.9) uas e->0, Noo.

From now on we denote t by u,. In view of (2.9), it suffices to show that

(2.10) Aau2-fl>=O if Ixl>R1,
where R1 is independent of e, N.

Part II. We shall suppose that

(2.11) AlU2(X)-fl(x)<O forsome x,
and derive a contradiction for a suitably large R1.

Consider the functions

Zm (X) [AI Um (X) fl (X)] q- ’I/IX X0]2,(2.12)

in the set

(2.13)

where

[x[ > R

,,/>0

and p is a sufficiently large positive number to be determined later on.
Notice that (since f W2’) the u, belong to W4;" for any p < c, and therefore, Go

is an open set. On the part ago t3 Bo(x) of its boundary,

Alum-fl>=O for all 1-<_ m-<_N;

Bo(x)--{x; Ix-xl<o}

Go=Bo(x)fq{ min [AlUm(X)-fl(X)]<O},
l<m<=N



194 AVNER FRIEDMAN AND PIERRE-LOUIS LIONS

hence

(2.14) z,, > 0 on OGo (3 Bo(x).
In view of the convexity of/3 (t),

c (u.,-u.,+)<-c (u.,-u.,+l)(U.,-u,.+).

It follows that

al[a,,um +(u,,-u,,,+l)]<-a,,,alu,,,

-[3 (u,, u,,,+l) Z a ..--(u, Um+l)--(Um Urn+l).
t1OXi OX

Applying A1 to both sides of (2.6) and using the last relation and the inequality
/3 (t) >- 0, we find that

A,,(A U,,,) + [3,.(A U,,, -A u,,,+l)

where

(2.15)

In view of (1.2),

Hence

(2.16)

where

Hence, by (2.1),

(2.17)

(2.18)

provided p is such that
(2.19)

Bm. -= t’ (u, u.,+) _1/3’(urn u,,+) => 0.

Amzm+m,e(Zm-Zm+l)>-(m,

(m A1 f,, Amfl + "yAm (Ix x[Z).

A,.(lx xl) Ix x[a CCo(1 + Ix xl).

C

sr.,(x)> ifxeGo, 2<=m<=N,

’l(X) -> -- if x Go

and provided y is sufficiently small, say y_-< yo; yo depends on a and Co, but is
independent of e, N and the modulus of ellipticity of the A.,.

Since IA u.,-fl]--< C, for any y we can choose p p(y) such that

(2.20)

from now on we fix p p(,).
Let

z,, > 0 on OBo (x);

M/= min zi(x).

Now, if (2.11) holds with R1 sufficiently large, then (2.19) holds; we shall show that this
is impossible if/9 p(y) and y is sufficiently small.

Clearly (2.11) implies that x Go and z2(x)<0. Therefore M2<0. Let y be a
point in Go such that z2(y)=M2. In view of (2.14), (2.20), y belongs to Go.
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Consequently, A2z2(y)< 0. From (2.16), (2.17)we then obtain

C
t3, (z(y)- z(y)) >.

Since i2,e - 0 we deduce that z2(y)--Z3(y)> 0 and, using also (2.15) we obtain

It follows that

z2(y) z3(y)>(’)-l( )

and, in particular, M3 < 0.
Proceeding in this way step by step, we get

e if2=<j<=N

and, in particular,

(MN+I M1)

MI <M2-(N-1)(8’)-I( c )-e.
Let 7 be a point in Go such that z1(37) M1. In view of (2.14), (2.20), 37 belongs to

Using (2.18) and the inequality Az(7) < 0 in the relation (2.16) for m 1, we get

1
(2.22) -z--(z ()- z2()) C’}/.

Adding the inequalities (2.21), (2.22) we obtain

C/e>(N 1)(/3’)-( ) c
e _-> (N- 1)e

since/3’(t) <= 1. This is impossible if y is sufficiently small.

3. Remarks and generalizations.

ife <--co

Remark 1. R in Theorem 1.2 can be determined explicitly in terms of c, R and
the W2’ norm of

Remark 2. The proof of Theorem 1.2 remains valid if we replace (2.1) by the
weaker condition

(3.1)

provided

Alfm(x)-Amfl(x) e "ym, ,/,, > 0, m#k

1 N

(3.2)
N Ym>--C’ c>O.

m=l
mk

Remark 3. If some of the c,, tn (2.1) are equal to zero then the assertion of
Theorem 1.2 is generally false. Consider for example the case of

max (Alu, A2u, A3u-f3)=O,
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where A2w =AIW + w, f3->0, Alf3c >0. From (1.6), (1.7) we see that

(3.3) u>0.

Now, if the assertion of the theorem were valid in this case (with k 1) then AlU 0 if
lxl>Rx. Since A2u <-0, we deduce that u =A2u-Alu <-_0 if [x[>RI, contradicting
(3.3).

Remark 4. For two operators A1, A2, Theorem 1.2 asserts that

(3.4) ifAlf2-A2fx>=c>Oforlx]>R, thenAlu=Oiflx]>R1.
In the special case of A1W W, fl 0 this gives a well-known result on the support of
solutions of variational inequalities, namely, if

lg<=O, A2u-f2<=O, u(A2u-f2)=O a.e. in R"

and if f2-c > 0 for Ix > R, then u 0 if Ix[ > R1. In this special case, the proof of
Theorem 1.2 extends to A1 with variable coefficients.

Remark 5. To motivate the condition (2.1) notice that if the assertion of Theorem
1.2 holds then, for Ix[ > R 1, Vm Ainu --fm satisfies

(3.5) AlVin AIAmU -Alfm AmAlU -Afm Amfl-Alfm.
Since also Vm =< 0, the right-hand side of (3.5) cannot be "too positive." In Theorem 1.2
we assume that this right-hand side is uniformly negative.

Remark 6. The proof of Theorem 1.2 is actually local; it shows that (1.10) holds in
an open set G provided (1.9) holds in a p-neighborhood of G, where p is a sufficiently
large postive number (independent of G). In particular, if (1.9) holds in a half space
xn > R, theh (1.10) holds for xn > R provided R is sufficiently large.

Remark 7. If we drop the condition (1.5), then existence and uniqueness of a
solution ("suitably" regular) is given in [5]; the proof of Theorem 1.2 for this case
remains valid without any changes.

Remark 8. It seems natural to extend (1.8) by asking: When does the relation

(3.6) sup {Amu(x)-fm(X)}= max {AlU(X)-fl(X), Azu(x)-fz(X)}

hold? The answer cannot be very simple. This is due to the fact that

max (Amg, Amh Am max (g, h)

is a positive distribution, in general.
Let us explain the difficulties in the following one-dimensional example. Consider

d2 2AI=A2=A3=--x+a, fl= -f, f2=0.

Then the Hamilton-Jacobi-Bellman equation for these operators reduces to

(3.7)

and (3.6) reduces to

(3.8)

In general,

max {AlU +f+,A3u-f3}=O,

AlU+f+=O if Ix[ >R.

A3f+=-Ea,,6(x-x,,)+g, g-bounded,
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where an > 0, (x) the Dirac function. Suppose

(3.9) Alf3+A3 =c--E anS(X--Xn)

and set w A3u-f3. If (3.8) holds then

(3.10) Alw =-A3f+-Af3.
Writing w explicitly, in an interval a < x <, and using (3.9), we get

(3.11) w(x)=
w(a) -o,(x-,) -,(x-x.)/ c

2 e + ., e 2.
Ol x. Ol

Since we must have w(x)<--0, we obtain the necessary condition

(3.12) an e -’x-x")/ <= c if x a is sufficiently large.

On the other hand, this condition is nearly sufficient. Indeed, we proceed as in the
proof of Theorem 1.2, assuming

A u (x) +f+(x) < 0,

and designating by (a’, b’) the largest interval containing x where the inequality
A u + f+ < 0 holds and a’ R. Then

A3u-f3=O ifa’<x<b’,

and ff =- AlU +f+ satisfies Alff A3f+ +All3 in (a’, b’). Representing ff analogously
to (3.11) with a a’ and taking x x, the inequality rb(x) < 0 gives

ff(a’) e-(-’)

2 E an e -’(x-x")+ +c<0;
Ol a’<xn <b’

this is impossible if

(3.13) ., an e-’(x-x")+ < c rt,
xnb’

where

is either equal to zero or else is positive and very small if x is sufficiently large. We have
thus shown that if (3.13) holds then AlU +f+ 0 at x (and if ff(a’) 0 then AlU +f+
0 in (a’, b’)).

In conclusion, the location and size of the measures arising in A3 max (AlU-
fl, A2u-f2) affect the answer to the question (3.6) in the above special case, and
similarly also in the general case. If A A2, these measures involve, in addition to fl,
f2, the function u and its first two derivatives.
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EXISTENCE DE SOLUTION ET ALGORITHME DE RESOLUTION
NUMERIQUE, DE PROBLEME DE CONTROLE OPTIMA L
DE DIFFUSION STOCHASTIQUE DEGENEREE OU NON*

JEAN PIERRE QUADRATt

Motivation et introduction. Donnons des exemples pratiques de contrôle sto-
chastique que nous avons eu à résoudre .

1. Une gestion de réservoir Delebecque—Quadrat [8] (Problème posé par EDF) .
t le temps .
Xt désigne les apports dans le réservoir . Ils sont modélisés par une diffusion

stochastique . Xt 0 cette diffusion sera donc dégénérée .
S t le stock d'eau dans le réservoir à l'instant t, Smax[resp Smin] le stock maximum

[resp minimum] .
ut le débit turbiné à l'instant t,
P(St, u t ) la puissance fournie par les turbines lorsque le débit est ut, le stock St .
D(t) la demande d 'électricité en puissance à l'instant t .
La puissance thermique à produire sera alors D(t) --P(St, u t ), le coût associé sera :

C(D(t) - P(St, u t)) •

Le problème de contrôle stochastique s'écrit alors :
dXt = b (t, Xt ) dt + a-(t, Xt ) dm

	

o- = 0 pour X < 0

-OC; -- u t - dt si St = max ,

(0 .1)

	

dSt = (Xt -- ut) dt si Smin < S t < Smax ,

(Xt u t ) + dt si St = = Smin, Xt u t
7

Min E

	

C (D (t) - P(St, u t)) dt.
u

	

j0

2. Un problème de croissance de firme Bensoussan-Lesourne [9] .
Xt trésorerie à l ' instant t,
y t capital investi à l'instant ,
f(y t )(A dt + dwt ) rendement du capital investi à l'instant (wt est un brownien) ,
v t investissement,
u t dividende versé aux actionnaires ,
7 temps de faillite (trésorerie = 0) .
Contraintes :

u t 0 ,

v t 0 ,

u t + vt ▪ Af (yt ) investissement + dividende

▪ rendement moyen de l'investissement .

* Received by the editors November 30, 1977, and in revised form March 5, 1979 .
t Institut de Recherche d'Informatique et d'Automatique, Rocquencourt, 78150 Le Chesnay, France .
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Le problème de contrôle stochastique correspondant :

MaxE u t e -`t dt,
v, u

	

0

(0.2)

	

dXt = f(y t )(A dt + dw t ) - v dt - u dt,

dyt =vdt.

Le critère représente la maximisation des dividendes actualisés (i taux d'actualisa -
tion) versés aux actionnaires .

3 . Un problème de gestion de portefeuille Merton [16] . Soit Xt le capital dont o n
dispose à l'instant t. On a le choix entre acheter des actions à rendement aléatoire, et un
placement à rendement fixe . Notons u t la proportion investie dans les actions . Notons :

1 + dR le rendement des actions ,

1 + dR le rendement du deuxième placement .

On modélise :

dR = al dt + o dwt,

	

wt brownien ;

dRr =a2 dt.

Soit Ct la consommation à l'instant du capital à l'instant, f ( Ct ) la fonction d'utilité
de cette consommation .

L'évolution du capital est alors donnée par :

dXt =Xt (u dRi +(1-u) dR~ )-Cdt,

= Xt u(a 1 dt+o-dw t ) +(1 -u)Xta2 dt-Cdt,

	

0~ u ~ 1 ,

Le critère :
T

Max E f (Ct ) + O (X,) .
u, C

	

0

4 représente une fonction de legs, le critère représente la maximisation de l'utilit é
de la consommation plus le leg en fin de gestion .

Nous constatons que ces trois problèmes sont dégénérés, le terme de diffusion peu t
s'annuler . Dans le troisème problème le contrôle apparaît dans le terme de diffusion .
Dans le premier problème, la deuxième équation d'évolution a un second membr e
discontinu .

Le but de ce travail est de donner des théorèmes d'existence pour de tels problèmes,
et de caractériser la solution optimale de façon à ce que l'on puisse la calculer effective -
ment.

Un certain nombre de résultats existent dans la littérature Krylov-Nisio [12] ,
Kushner-Chen-Fu-Yu [14], Fleming-Rishel [10], Sentis [21], Bismut [4], Kushner [13]
mais aucun de ces travaux ne donne une réponse à ces trois problèmes .

Ce travail donne une réponse complète aux problèmes 1 et 3 et un théorèm e
d'existence pour le problème 2 (la caractérisation des contrôles optimaux lorsqu'o n
arrête processus n'étant pas donné dans ce travail) .

La méthode de résolution utilise deux techniques :
1 . La formulation faible Stroock-Varadhan [22] de diffusion stochastique (prob-

lème de martingale) .

(0 .3)
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2. Les techniques utilisées en contrôle déterministe décrivant le système com-
mandé en terme de multiapplication Young [24], Castaing [6], Valadier [23] ,
Ekeland–Temam [9], Sentis [21] .

On est donc amené à définir le problème de martingale pour des multiapplication s
s .c.s . (semi continue superieurement) .

On donne un théorème d'existence très général qui contient comme cas particulie r
des équations différentielles déterministes multivoques pour des multiapplications s .c .s .
La méthode employée est celle utilisée dans Stroock–Varadhan [22] dans leur "invari-
ance principle" montrant la convergence de chaîne de Markov vers des diffusions, e t
d'un lemme abstrait énoncé en 1 .2 .3 .

Une fois l'existence assurée, pour de tels problèmes, on montre que l'ensemble de s
solutions au problème de martingale multivoque est un ensemble convexe compact d e
mesure de probabilités sur l'espace des fonctions continues sur (0, T) .

L'existence d'une solution au problème de contrôle stochastique en découle alors
immédiatement .

La caractérisation du contrôle optimal se fait alors en déterminant une suite de
mesures convergeant étroitement vers une solution optimale ; cette suite de mesure s
étant obtenue comme solution de problème ce contrôle de chaîne de Markov . Les
problèmes de contrôle de chaîne de Markov sont définis grâce à une technique trè s
proche de celle employée dans Sentis [21] pour la résolution de problème de contrôl e
déterministe . L'idée d'approcher le problème de contrôle stochastique par un problèm e
de contrôle de chaîne de Markov a été abondamment utilisé par Kushner [13] par
example Kushner–Chen-Fu Yu [17], les techniques employées ici sont différentes e t
permettent de résoudre complètement le problème, alors que dans Kushner–Chen-F u
Yu [14] (dans un cadre d'hypothèses moins général), le résultat obtenu peut s'énonce r
ainsi, on construit un feedback meilleur que tout feedback lipschitzien . On donne en II I
un contre exemple montrant que ce résultat bien que pratiquement intéressant, es t
insuffisant . On peut, avec ces feedbacks être très loin du coût optimal (en fait, aussi loi n
qu'on veut) .

On donne enfin une suite de problèmes de contrôle de chaîne de Markov, en temp s
discret, et à état discret qui converge vers une solution optimale . A chaque étape en
temps il faut résoudre un problème de programmation mathématique (minimisatio n
d'une forme linéaire sur un ensemble convexe) en dimension finie . Ce problème peut
dans certaines applications être lourd à résoudre . On donne alors des résultats qu i
permettent d'obtenir un feedback meilleur que tout feedback lipschitzien (résultat du
type Kushner–Chen-Fu Yu [14] dans un cadre plus général) . Ces résultats peuvent
avoir un intérêt pratique avec la restriction énoncée plus haut . Utilisant alors des
résultats de Bismut [4] on montre que le feedback meilleur que tout feedback
lipschitzien est optimal dans le cas non dégénéré. Ce qui permet de trouver des résultats
du même type que ceux obtenus dans Goursat–Quadrat [11], Quadrat [19] par un e
méthode purement probabiliste, dans un cadre plus général, alors que dans cet article la
méthode était basée essentiellement sur l'analyse numérique de l'équation de Bellma n
correspondante .

L'ensemble des résultats obtenus par les techniques des équations aux dérivée s
partielles est donné dans Bensoussan–Lions [1] bien que ne semblant pas pouvoi r
atteindre le degré de généralité obtenu par les méthodes probabilistes . Cette première
méthode donne des résultats plus précis lorsqu'elle s'applique .

Signalons enfin une technique de semi-discrétisation en espace interprété en terme
de processus ponctuel convergeant étroitement vers la diffusion, développé dans Robi n
[20] .
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Les résultats de cet article ont été annoncés dans Quadrat [25] . L'extension de ces
résultats au cas des processus de diffusion avec sauts sera donné dans Quadrat [26] .

PLAN .

1. Problème de martingale .
1 .1 . Définition du problème de martingale .
1 .2 . Construction d'une mesure solution du problème de martingale .

1 .2 .1 . Une famille de probabilité de transition, définitions et propriétés .
1 .2 .2 . Une famille de probabilité sur C(0, T ; R m ), définitions et propriétés.
1 .2 .3 . Un théorème abstrait.
1 .2 .4 . Le théorème d'existence .

1 .3 . Propriétés des solutions du problème de martingale.
2. Controle optimal de problème de martingale .

2 .1 . Définition .
2.2 . Théorème d'existence.
2 .3 . Caractérisation d'un contrôle optimal (discrétisation en temps) .
2 .4 . Caractérisation d'un contrôle optimal (discrétisation en espace et en temps) .

3. Quelques resultats particuliers .

1. Le problème de martingale.
1.1. Définition du problème de martingale .
1 .1 .1 . Notations .

Soient

= C(0, T ; R'),

	

X(w)w ,

Ft = (r(Xs,s t ) ,

F = FT la tribu des boréliens de f ,

g) la tribu des prévisibles de (fl x [0, T]) ,

la multiapplication

(H 1 ) C : [0, T] x R m --> G = R m x S + (m) s.c.s ., l à valeur convexe dans un compact fixe
noté Mc, où en désigne le cône convexe des matrices symétriques non négatives.

Si l'on désigne par p i et P2 les projection s

pl : R m x Sm-~R m

(x,Y)

	

p i(x,Y) = x

p2• RmxSm-> Sm

(x, y)

	

p2(x, Y) = Y

on appellera :

A la multiapplication p 2 ~ C,

B la multiapplication pi ~ C.

1 s .c.s : semi continue supérieurement ; s.c .i : semi continue inférieurement .
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On notera :

Mb = sup sup 1bl ,
s,x bEB(s,x )

Ma = sup sup ~ a f .

s,x aEA(s,x )

Pour

E Cb'2 ([0 , T] x R i") ,

c = (b, d) : [0, T] x

	

R m x Sm processus prévisible à valeur dans C,

on désigne par :

m

Letp (s, w )
= cp

(s, Xs ( w )) + E b i ( s, w ) ~ (s, Xs ( w ) )at

	

i = 1

	

ax i

a 2+ E ai;( s , w)

	

p
(s, XS(w)) •

ax i ax;

c =(b, ii) : [0, T] x R ' -+ R '
on désignera par :

app

	

a&p	 a 2 ~
Lé p(s, x) =

	

(s, x) + E bi(s, x)

	

(s, x)+E ai;(s, x)

	

(s, x) .
at

	

i=1

	

axi

	

ax i ax;

.41 b (SZ) désigne l'ensemble des mesures bornées muni de la topologie de l a
convergence étroite .

At + (fZ) désigne le convexe des lois de probabilités sur a
1.1.2. Définition du problème de martingale . Une mesure de probabilité P su r

(0, Fr, F) sera appelée solution du problème de martingale pour le doublet (x, C) si :
(i) P(Xo = x) = 1

(ii) il existe un processus c (s, w) prévisible vérifiant :

c(s, w) E C(s, Xs (w ) )

(t, Xt(w )) – Leap (s, w) ds est une (P, Fr) martingale.
0

On désignera par :
PP(K, C) l'ensemble ces mesures de probabilités sur fZ, solution du problème de

martingale (x, C), x E K, K compact de R' .

1.2. Construction d'une mesure solution du problème de martingale.
1 .2.1. Une famille de probabilités de transition . On se donne un nombre n E N, on

pose h = Tin . Pour p, a, X13, >0 ;
notons :

flnC.P.cxJ3(5
, x) = 7r E 11±1 (R m ) :

(1 .1), (1 .2)

	

(y -- x)Tr(dy), J (y - - x)0 27r(dy) _ (b (s, x)h, a (s, x)h) E C(s, x)h,

(1 .3) J Iy –x l 0~(dy ) = ph« .

Pour

LEMME 1 . IIn'c' P ' « ' R : [0, T] x R m -+ At + (R m)
est à valeur relativement compacte.
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Démonstration . Grâce au critère de Prohorov, il suffit de montrer :

Ve > 0 3M,

	

?rs ,x (Iy –xI ~M) < E.

Or, l'inégalité de Tchebycheff donne :

Mah
?rs ,x (l y – xi = M) –< M2 .

En prenant M Ma/Vh/ e on obtient le résultat . D
LEMME 2 . Soit cp : R' --> R continue vérifiant :

( i)

	

3Mi, M2 : z I - Mi

	

cp (z) z 1'sM2 .

Soit une suite {er n } E ,stil+ (R m ) convergent étroitement vers IT vérifiant 3/3' > /3 et p :

(1i )

	

f Y –x i R ~ n ( dY) ~ P

alors :

(a) f y — x I R ir(dy)- p
(b) lim_n Jp(y — xn)?r n(dy) = f cp(y –x)7r(dy) pour toute suite x n - x .

Démonstration . (a) Notons :

Tm : R -* R

x

	

si –Mx M,

TM(x)= M six>M,

–M six < –M.

p ~ Y—xI'qfM(Iy —xi---~ TM (Iy —xI R )7r(dY )
n-~oo

et donc :

J iM(Iy_x')ir(dyP VM,

p sup J TM( l y --x I 0 )Tr(dy) = J sup 1Y'M (IY –x I 0 )7r (dY) = J I y –x I 0'7r(dy) .
M

	

M

(1 .4)

	

(b)

	

J
(p(y –xn)7r n (dy)– ci) (y –x )•n-(dY )

J ( cP(y –xn) – (P(Y –x ))e(dY) + J cP(Y –x)(7r n -- 7r)(dy )

J
I

I—xn)—(p (Y —x)Iv n (dY )
ly–xI~M3

+

	

kp (y –xn) cP(Y x)I7n (dY) ,
fly—xi .m3

	

I(P(Y – xn) – (p ( y – x)Iv n (dY)

	

sup I

	

– xn) – (p (Y
– x)I -->

0
fly–xI,M3

	

ly–xI~M3

On a :

n -~ oo .
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En choisissant M3 suffisamment grand

	

I

	

I
IY- x i~ M3

	

IY- x l~ M3

M4

	

— x R'7r
n

R-R

	

13,

	

( d Y )M 3

+Ix --x n I RM6 -+ 0,

	

n ~oo,

en faisant tendre n et M3 ~ oo ; d'autre part

J 4P(Y
x )( te 7r)(dY)

(1 .5)

	

'wJM0(Y_X)(_)(dY)

1
+ M(R-R)/R

Ly-x)l--,-m
ko(y —x)Iv isl

7r n — a I(d Y )

1If'M °(p (y — x) est continue donc:

(1 .6)

	

J MIlfmo tp(y — x) (7r
n — ,r) dy --> 0,

	

n ---> oo .

Grâce à (i )

(1 .7)

	

I_ x)I7rn — 7rI(dY) Ms I Y — x I R I ~n _ 7rI (dY) 2pMs ;J,P(Y-x)I? M

(1 .4), (1 .5), (1 .6), (1 .7) b en faisant tendre M -* co . 0
PROPOSITION O . La multiapplication l-1n,c,P,«,R

: [0, T] x R m ->1l+ (R m ) est S.C .S.

Démonstration. Montrons qu'elle est de graphe fermé et donc grâce au Lemme 1 à
valeur compacte :

Soit :
(S k , Xk, ?Tic) une suite de [0, T] x R m x Ail + (R m ) convergeant vers (s, x, Ir) . Montrons
que 7r e II n' c'P' a' R

Pour cela il suffit de montrer que 7r vérifie (1 .1), (1 .2) et (1 .3) .
Or, (1 .3) résulte du (a) du Lemme 2, tandis que (1 .1) et (1 .2) résulte de (b) du

Lemme 2 .

1 .2 .2 . Une famille de probabilités sur Û. A partir de la famille de probabilité de
transition rI n'c''' ''R construisons une famille de probabilité sur D, de la façon suivante :

Etant données une section borélienne -rrs, x de IIn 'c'P' "'R construisons la mesure
notée

Pte. sur (R mx(n+1)' A) définie par : 2

P :,Yo = ITh,Yo(dYl) . . . Ir (n-1)h,Yn-I( dyn) •

Considérons maintenant la variable aléatoire interpolation linéaire .

In
(Rmx(n+l)' ~) !.-* ( ,L , FT) ,

In (Yo, yl, .

	

yn)(t) = y i + Yi'
	 Yi

(t — ih) ,
h

2

	

désigne la tribu des boréliens .

(1 .8)

t E [ih, (i + 1)h] .
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On désignera par P;,yo la mesure image de + ';,y0 par In . Notons alors :
n(1 .9)

	

g)(n, K, C, p, a, f3) = {PÇ, yo : 7r section borélienne de 1I n'C,p,«, 0, yo E K}

de même :

9 (N, K, C, p, a, la ) = U 9 (n,K,C,p,a,la) •
nE N

LEMME 3 . 9 (IV, K, C, p, a, 0) est étroitement relativement compacte pour Va, /3

a>1, 4>2.
Démonstration . On utilise le critère de relative étroite compacité suivant [3 th .

12 .3 Pb 7, p . 102]: (a) Ve > 0 aL compact de R m :

P(X(0) E L) 1— e VP E g)(N, K, C, p, a, g) .
2<0_4

(b) 2y 0 et S > 1 et une fonction continue non décroissante F tels que :

Ep{IX(t 2) —X(t)IYIX(t) —X(t 1 )IY} IF(t2) —F(t 1 )I 6 ,

VPEPP(N,K, C, p, a, fl)

	

2<4eta>1 ,

Vt1, t, t2,

	

t 1 t 2 T.

On obtient (a) en prenant L = K.
Démontrons le (b) : Soit : t1 < t t2, fC3 défini en 1 .3 ., y /3/2 ,

tl -- t1 + 1 h, t2 = t? h, t' — [1-1 h t" —

	

t + 1 h ,
h

	

h

	

h '

	

h

où [si désigne la partie entière .
Plaçons nous dans le cas où t '1' < t ' < t " < t, les autres cas conduisant à des

démonstrations analogues . On a :

E I Xt2—XXI Y IX,— X,J

�M (la)E(IXt2 -- Xt2I Y
(1 .10)

+Ixtxcl + IXt „ —xtl Y )(IXt—xt'I Y +IXt'— Xtll Y +lXti— Xti1 Y )

ÇM(/3)(S 1 + S2 + S3 )

avec

,s 1 = E{E(IXt2 —X6 IY + I—Xt„IYIFt „)(IXt —Xt ,IY + I Xt , — XeiIY + IXei

	

j'') l

S2 = E{IXt„—Xt IYIXt —xt ,IY } ,

S3 = E{E(IXt" `Xel.F't')(lXr' —Xt"l Y + IX 1

E(X — Y =
It2	

Y

	

h

t21

	

--

	

Y(I t2 xt2l
1F,,,)

	

Y

	

E ((xt2 +h Xt2) I Ft „)

C
1 1.2 — t'2I

Y

ha/2 M~

	

► inf(«/2,Y )

	

r—
hY

	

1 I t2 — t

E(Ix6— xt„
I Y IFt") - M2(y)E(I Yt2 — Yt„IYIFt „)+ E

or :

E hb(ih, Xih )
t"Sih<t2
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Yt = Xt — E b(lh, Xih)h ou b(ih, Xih) -- E (X(i+1)h —XihlXih )
ih< t

Yt est une Fih martingale on a alors :

E(I Y6 — Ye,l y I Ft--) --E ((Yt2 — Y ») 2 I Fe,)
y/2 grâce à l'inégalité de Jansen

< y/ 2 ► t►►) y/ 2

grâce à la propriété de martingale de Yt et f (y —Xih ) 2?rih,xlh (dy) _ Ma .
En utilisant de plus le fait que :

sup I

	

Xih)I - Mb

avec :

_
(y -Xih)-n'ih,Xih ( dy ) •

i, w

on obtient :

(1 .12)

	

E(IXt2—Xt„IyIFt„) <__MZ(It2 — t►► i v/2 +It2 — t ►► I y ) ~ M3It — t ►► I y/ 2

D'autre part :

►►

	

y

	

► y
E(IXt„—XtlylXt

t
	 —t

	

t~t Eixt„—xt ,I R
h

	

h

h
«

(t" — t)y(t — t ►
)
y

2
< t►► — t' ~nf(2y,« )T-y--I

	

I

	

•h

En combinant les majorations du type (1 .11), (1 .12), (1 .13), on obtient :

E IXt2— XtI yIXt _xt1ly M4I t2-- t1l lnf(2y,«) .

Dans le cas où t~ < t ' < t" < t n'est pas vérifié, on a à faire des majorations du typ e
(1 .11), (1 .12), (1 .13) pour obtenir le résultat .

LEMME 4 (Stroock—Varadhan [22]) . Soit

40ECb' 2 ([0, T],en) .

Notons :

O( t~ x,

	

= t+ h, y) — ~ (t, x) — h
a~

(t, x )~

	

y)

	

a t

— (y —x )D(p (t, x ) —t ( y --x)D2 cp (t, x )(y —x )

0h,,,(t, x) = J I

	

x, y)I 7rt,x(dy )

pour 7r section borélienne de IIn,c,P•«,a .

Alors

lim

	

sup EP E L1,h , ,(ih, Xih (w)) = 0 .
n-. o0 PEP(n,K,C)

	

i

Démonstration . La famille g)(N, K, C) étant étroitement relativement compacte ,

dE > 0 3M sup

	

sup (X (t)) ? M ~ s ,
PEP(N,K,C)

	

O~t~ T

d cp E cb° 2 3K(cp), 1x, y)I ~K(Ix — yl 2 + h) ,

(1 .13)
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et donc

0 ,h , , ( t, x ) � Ml h .

Il reste à montrer que :

sup

	

7~,,r(t, x) = o(h) .
Ir section borélienne d e

Le théorème de Taylor donne :

I

	

x, y)! = 0(h) + o (lx — y
I
) 2 uniformément pour x !xi M, c .à.d . :

Ve>0 28 (e,cp) :

	

h<-slx -YI -5—8

	

x, y ) I eh + e l x -YI2

donc :

0,h ,,r( t, x) =

	

I

	

Y)I7rt,x(dY) +

	

I

	

y)I7rt,x(dY )
y— .1s IY—x~~ s

2 Tr

	

Id+

	

—x '7r d+o hY —xi t,x( Y)

	

0_2

	

IY

	

I t,x( Y)

	

O
S

	

~ y

h

«
~eMah+ P 30_2 + o(h )

d'où le lemme . D

1.2 .3. Un théorème abstrait.
Proposition 1 . Soit sur SI un espace polonais

(i) une suite de mesures de probabilité {Q n} convergeant étroitement vers Q ,
(ii) une suite {C,,} de multiapplication de SI -> R n , s .c .s., à valeur convexe dans u n

compact fixe, convergeant ponctuellement en décroissant, pour la distance de
Hausdorff, vers une multiapplication s .c.s . C,

(iii) une suite Un } de variables aléatoires à valeur dans {CO;
Alors :

(a) la suite de mesure {fnQn} est étroitement relativement compacte ,
(b) il existe une sous-suite extraite de {fnQn} convergeant étroitement vers un e

mesure bornée, notée Qf, absolument continue par rapport à Q ;
(c) si l'on note f = dQf/dQ la classe des densités de Qfpar rapport à Q, il existe u n

représentant borélien de f, appartenant à C.
Remarque . On a évidemment une proposition analogue en remplaçant mesure d e

probabilité par mesure positive bornée .
On a un théorème analogue lorsque C,, - C sans décroître à condition que l'on ai t

supw d (Cn (ce)), Dn(w)) -* 0 avec Dn 1C.

LEMME 5 . La suite {fnQn} définie par (i), (ii) et (iii) est étroitement relativemen t
compacte.

Démonstration . f,, est uniformément borné, notons Mc cette borne .
Q,, est étroitement relativement compacte, de il existe donc [3] un compact KE .

Qn(CKs)
e

M

et donc

d'où le lemme. 0
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LEMME 6 . De la suite {fnQn} définie par (i), (ii) et (iii) il existe une sous-suit e
convergeant vers une mesure bornée notée Qf absolument continue par rapport à Q .

Démonstration. Le lemme 1 montre qu'il existe une sous-suite {fn'Qn'} con-
vergeant vers une mesure notée Qf.

sup Ifn'IM donc : —MQn' fn'Qn' MQn' ,
n '

et donc la suite de mesure (M —fn -)Q,' est positive, et converge donc, vers MQ — Qf 0 ;
de même

Qf —MQ O .

On obtient donc :

--MQ Qf <MQ d'où le résultat . q

LEMME 7 . Soit sur f1 un espace métrisable séparable, une famille de mesure de
probabilité Q,, convergeant étroitement vers Q et une famille Tn de variable aléatoire s.c.s.
bornée décroissante convergeant ponctuellement vers 'LIS' alors :

lim sup T ri dQn

	

dQ.
n

Démonstration .

J ~n dQn ~ J ~N dQn si n N

grâce à la décroissance de T n .
1If' n étant s .c .s . le th . 5 .5 De Lacherie—Meyer [7] entraîne :

lim sup J TN dQn

	

‘IfN dQ.
n

et donc

lim sup J T,, dQn lim sup TN dQn

	

TNN dQ VN.
n

	

n

TN étant décroissante en N et convergeant vers T, on a (Neveu [17] )

limJ. dQ = I lim TN dQ = 1If dQ
N

	

N

d'où le résultat . q
Démonstration de la proposition : Le (a) résulte du lemme 1 ; le (b) résulte du lemme

2 . Montrons le(c) . fn Cr, et donc V qp E CV, 41, Rm )

Max f •cp(cv) .fn . çp(W) Vo).
fnCn(w )

Qn étant positive,

J maxf . dQn Jfn 'çodQ nf ECn
l'application :

co

	

Max f • (p (a)) est s .c .s .
fECn(w)

car Cr, est une multiapplication s .c .s . et cp est continue, notons Tri cette fonction .
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Cn étant décroissante en n, il en est de même de T n, d (Cn (cl)), C (w )) --4 0

lim sup Maxi . ci) dQn

	

Max f • (p dQ
n

	

fEC„

	

fE C

J Maxf • cpdQ=Max f • cpdQ
fEC

	

fE C

lim fn • op dQn ;Max f • çp dQ Vn
n

	

fE C

et donc si l'on désigne par T= dQf/dQ on obtient

J . dQMaxJf . dQ d~P Cb (SI, R m) ,
fE C

ce qui peut se réécrire

0 supo {4, Qf) — sup ( cP, a)} ,
cpECb

	

Qc ECQ

avec :
(• , •) désigne la dualité séparante [5 p . 59] .

.til b (SZ x [ 0 , T]),

	

& al(SZ x [ 0, T]),

CQ désigne le convexe des mesures de Jiil b absolument continues par rapport à Q de
densité c ayant un représentant E C.

Le théorème 6 .3 .7 [15] permet alors d'affirmer que dès que CQ est fermé (CQ
fermé résulte du lemme 7 ' ) :

sup {('P, Qf) sup ((p, Q~ )} = XcQ (Qf) .
cpECb

	

coQ~ E

0 >Xco(Qf) : Qf E CQ Q p.p .

	

la proposition . D

et donc

LEMME 7 ' . CO est un ensemble convexe fermé dans 14 (SI )
Démonstration . Convexe est évident.
Fermé : Soit {fn Q} une suite E CQ. fn reste dans un borné de L°°(fl, Q) donc

converge faiblement o- (L°°, L 1 ) vers f, donc il existe un compromis convexe E anfn

convergeant Q p.p. or E a,fn (w) E C(w) f(w) E C((o) puisque C(co) est fermé c .q .f .d .

1 .2 .4 . Le théorème d'existence.
THÉORÈME 1 .

g)(K, C) ~ (1 U gs(n, K, C, p, a, 0)
N n~N

(1 .14)
3p : n u gs(n,K,C,p,2,3)~ 0 .

N n N

Démonstration . (a) 3p : n u P(n, K, C, p, 2, 3) 0 0 : En effet, P(n, K, C, p,
N nsN

2, 3) 0 (prendre par example des accroissements gaussiens .) .
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Donc 3{Pn }Pn E g)(n, K, C, p, 2, 3), la suite	 est étroitement relativement compacte .
Il existe donc unesousesuite Pn, -4 P E (1 N U n~N P(n, K, C, p, 2, 3) et donc (1 N

U n=N g)(n,K, C,p,2, 3 )	 0 .	
(b)1(K, C)D n N Une.N 1 ( n ,K, C , p, a, ) 3) :SoitPE nN Un~N P (n ,K, C, p, a,0) .

3 une suite {Pni }Pni E P (n i , K, C, p, a, 3 ),Pni ----4 P. Montrons que P E P (K, C) .

En effet, considérons la suite d'espace mesuré {SI x [0,T], FO1 ; Q,, } avec

T n i- 1

Qnf = Pn i (dw)E Sjh(dt) .
ni j = o

Q,, converge étroitement vers P(dw) O dt .

(1 .16)

	

Pni E P(n i, K, C, p , a, )3) 3{'n- n i}{y ni } : {y,, E K}{u-ni E 11

tels que Pni = P ~`n .,Yn;•

(b1) Montrons alors 3y E K, P(xo = y) =1 . K étant compact il existe {n } : yn -+ y E
K. Soit (p. E C

o

b (le )

(1 .17)

	

EPntcp (xo) ----~ EPcp (xo) car co cp ° xo(w) est continue bornée

or

EP" 4p (xo) = (p(Yn'i) -> (P (Y) .
t->oo

(1 .17) et (1 .18) entraîne alors le résulta t
(b2) Montrons qu'il existe f (s, w) prévisible vérifian t

	

(1 .19)

	

f(s,w)EC(s,w)
t

	

(1 .20)

	

cp (Xt) - L fcp (s, w) ds est une (P, Fi) martingale .
0

P ni = Print, y nt. ; il exist donc

c ni(s, x) E C (S, x) avec c ni(s, x) = (b ni (s, x), ani (s, x) )

(y x)7rSi x(dy) = bn i (s, x)h ,

J (y -x)O(y -x)7rSix(dy) = an i (s, x)h .

Considérons alors la suite de mesure

cni (s, Xs ( w )) dQni

Grâce à la proposition 1 3{17 ; 1

(1 .21)

	

C ni ,(S, Xs(w )) dQn4 -4 c ( S , w) dQ

avec

c(s,w)EC(s,Xs(w)) .

Notons e(s, w) la projection sur la tribu des prévisibles de c (s, w). L'inégalité de
Jensen montre que : e(s, w) E C (s, Xs (w )) .

Montrons que P vérifie (1 .20) pour f (s, w) = e(s, w) .

(1 .15 )

(1 .18)
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Notons pour cp E Cb' 2 ([0, T] x R n' )

t

	

n- 1
Z':,, (u , t, w) =

	

h E sjh(ds) {cP((J + 1 ) h , Y) — ~P(1h , Xjh)}'rr;h,x; h (dY )
u j= 0

(D continue Fu mesurable

knh~t,

lnh —> u ,

0 =
EPn

{[cp (knh, Xk n h) — ~P(lnh, Xinh) Z (lnh, knh, w)]C
kn h

	

n-1
= EPn cp (knh, Xk n h ) — cp ( lnh, Xi„,h ) —

	

L, n (p (s, w ) h E 8jh (s ) (DJ In h

	

j = o
kn h

	

n-1
+EPn

	

Lcn cp (s, w ) h E Sjh (s ) — Z; (lnh, kn h, w)] (D .
In h

	

j= 0

Grâce au lemme 4, on a

k nh

	

n- 1
lim sup EP-

	

Lcn`r ( s , w)h E Sjh (s) —Z~ (lnh, knh, w ) QD
n-.00 Pn

	

lnh

	

j= 0

Grâce à la définition de c, k n h -~ t, ln h -~ u on a :
k nh

	

n— 1
lim riPn (D[cp (kn h, Xk nh) — q)( lnh, Xln h ) —

	

LCn`f' (s, w ) h E

	

(s )
n->oo

	

J Inh

	

j= 0

	

= EP (D[cp(t, Xt ) — cl) (u, Xu ) — Lm (s, w) ds = 0

	

c .q .f.d .
u

1 .2.5. Existence d'une solution faible à l'équation de Fokker—Planck . Soit C la
multiapplication défini en 1 .1 on dira que µt est solution faible de l'équation de Fokker
Planck s'il existe ê (s, x) section borélienne de C (s, x) :

(1) µt E ./i/L+(R) ;
(2) µo = 6zo ;
(3) b~~p E Cb' 2 (Rn on a

( T, x)µT ( dx ) — tp (0 , xo) — JL(s,x)s(dx)ds=O .
0 Re"

On notera p ,(K, C) l'ensemble des solutions faibles de l'équation de Fokker —
Planck.

THÉORÈME 2 .

µ(K, C) 0 .

Démonstration . P E g (K, C) correspond µt par l'application w —> Xt (w) : µt vérifie
(3) ; en effet, il suffit de prendre c(s, x) = projection de c(s, w) défini en (1 .21) sur la trib u
du présent {Œ(X)} on a alors

T

0 = EP cp (T, XT ) — cf) ( 0 , Xo) — Le(p (s, w ) ds
0

T
=

J
cP (T, X )µT (dx ) — (p (0, Xo) —

	

L ~~P (s, x )µs (dx ) ds .
0 R '"

=0.



CONTRÔLE OPTIMAL DE DIFFUSION STOCHASTIQUE

	

213

1.3. Propriétés de (K, C) .
THÉORÈME 3 . g)(y, C) est un compact convexe non vide de 11+ (SI) .
On va démontrer ce théorème grâce à trois lemmes .
LEMME 8 . 3(K, C) est étroitement relativement compact.
Démonstration . On utilise le critère suivant P . Billingsley th. 12 .3 [3] . Il existe un e

fonction continue non décroissant F et deux nombres y et a, y 0, a > 1, tels qu e

EpIX(t)—X(s)I ' IF(t) _F(s)la VP E P(K, C) .

On l'applique avec y = 3, a =2, F(t) = t .
Soit en effet P E g)(K, C), 3 c (s, w) = (b (s, w), a (s, w)) E C(s, Xs(w )) prévisible te l

que : Mt = X(t) — $ô b (s, w) ds soit une martingale de processus croissant fo a (s, w) ds et
donc 38(Mb ) :

EP IX(t) —x(s)1
3 3(1t—sr +EiMt -MS 1 3 ) .

En utilisant la proposition 19 de [18] on a :
3/2

E~Mt — MS y 3 _5.E( j a (u, w) du) _ MQ It— s l 3/2 .

	

c .q .f .d .

LEMME 9 . (K, C) est fermé.
Démonstration . Soit Pn une suite de mesures de probabilité appartenant à

P(K, C) convergeant vers P dans ,4t+ (SZ) montrons que P E 9P(K, C) .
On considère la suite de mesures Qn = P n O dt sur (Il x [0, T], O F) elle est

étroitement convergente vers Q = P®dt.
Pn E g)(K, C) il existe donc e n (s, w) e C(s, Xs (w )) prévisibles telles que V cp E

Cb' 2 (0, T x R

	

V(I)Fu mesurable continue

EPn cp ( tf Xt ) `f' ( u , xu )

	

LCn' (s, w) ds (13 - 0

de la suite cnQn on peut extraire une sous-suite e n -Qn , convergeant vers cQ, d'après l a
proposition 1, la projection prévisible c vérifi e

El cp(t, X,) — cp(u, Xu ) — Lecp(s, w) ds] cl)} = 0 ,

c(s, w) E C(s, Xs (w)) .

	

c .q .f .d .

LEMME 10 . 9(y, C) est convexe .
Démonstration . Soit P1 et P2 E g) (y, C) . Il existe alors c 1 (s, w) et c2 (s, w) E C(s, w)

prévisibles tels que Vcp E Cb'2 ([0, Ti x R m
)

(1.22)

	

cp (t, Xt ) — cp(u, Xu) — Lc, cp (s, w) ds est une (P1 , Ft ) martingale ,

(1 .23)

	

cp (t, X,) — cp (u, Xu) — Lc2 cp (s, w) ds est une (P2 , Ft ) martingale ;

alors notons :

Ac 1 (s, w) dP 1 + (1— ~. )c 2 (s, w) dP2cA(s,
w} _

	

~ dP 1 (+1—A) dP2

cA (s, w) la projection prévisible de cA (s, w)
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alors :

(1 .24)

	

cp(t, Xt )—cp(u, Xu) — Le,,cp(s, w) ds est une (API +(1—A )P2 , Ft ),.

En effet, soit (I) continue Fu mesurable on a :

EAP, +(1 -A)P2 40( t, Xt) — (P(u, Xu) — Le,,Sp ( s, w) ds cl)
u

lEAP, +(1 —A)P2 (p ( t, Xt) — (p (u, Xu)— L,„(p (s, w) ds (D
u

--=- [cp(t, Xt) -- (p (u, Xu) -- Lc,(p ( s, w) ds
u

t

+(1—A
)EP2

	

(t,Xt)—cp(u,Xu)— L, 2 cp(s, w) ds cD =0.

Montrons que c„ (s, w) E C(s, XS (w )) . Noton s

= 1 POdt,

	

Q = 1 P20 dt •~-, 1

	

2

	

T

	

,

tlf E Cb (S2 x[0, T], R' x R" ')

E 'Q1 +(1 -A)Q2 c„ • (p = AEQlc 1 . + ( 1 — ~ )E02c 2

~~1E Q1 Maxc . (p+(1_A)EQ2 Maxc . çp

CEC

	

CE C

.EAQ1+(1-/l)Q2 Max c . = Max E
AQ1+(1-A)Q2

c . cp .
cEC

	

cE C

En raisonnant comme dans la démonstration de la proposition 1, on en déduit :

ça (s, w) E C(s, XS (w))

	

AQ1 + ( 1 —A )Q 2

L'inégalité de Jensen montre alors qu e

e, ,(s, w) E C(s, XS (w ) )

d'où le lemme. 0
Soit P E P(y, C) donnons quelques propriétés de la loi de probabilité du vecteur :

X0, Xh, X2h, ••• X(n_ 1)h, Xnh) avech= T(

		

., n

Cette loi de probabilité peut s'écrire :

(Sy (dxo)?rx O (dx i )7rzO, x 1 (dx2) 7r zo,x l ,x 2 (dx3) . . . 77
.zo,x1, . . . xn- 1 (dxn) .

LEMME 11 . Il existe une constante 8(Ma , Mb , T) telle que :

SUp

	

7T xo,xl, . . .xi (dy)IY —
xi I3

	

bh 3/2 .

Démonstration. La même que celle du lemme 8, utilisant le fait que EX°'
. . .X

ih (cf') =
EX°' '''Xih

EFih (çp) avec cf' variable aléatoire sur SZ .

JEAN PIERRE QUADRAT
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Noton s

Ch,E (t, x) =

	

U C (s, z) où ceo désigne l'opération de fermeture convexe ,
t'gst+h
Ix-zI~ e

104(.0=4 : sup i
t~s~t + h

?x,t = inf {s >t~Xs —x i >E} ,

? ;
,, ht = 'r ;, ,e

,t A (t + h)

W (S),

	

S

	

?
x

,h ,aW(s)_
W ( ? x, h ), s ~ ?x,h•

avec

t = (i -1) h,

	

0 = kh/E 2 ,

où k est une constante ne dépendant que de C ; Vo(S) désigne un voisinage de 0 de
diamètre S dans R m x R (mx(m+1»/ 2

Si l'on note F la tribu engendrée par (X0 , Xh, • • • , X~ 1 _ l ~ h) f (y –x)?r l (dy) _ti
EFEFt1 [ f ti b(s, aw) ds +1:i (b(s, w) — b(s, aw)) ds] .

L'utilisation de la formule d'Ito et la définition de 7r ` montre : f (y — x)O2 7r ` (dy) _
EFEFF i fri a (s, aw) ds + ftti' (a (s, w) — a (s, acon ds + f tti2 (X1 — Xt1 ) CJ b (s, w) ds

avec :
CK l'ensemble complémentaire de IÇ ,

aw construit à partir du temps d'arrêt ?x,t ,

t 1 = (i –1)h,

	

t2 =ih,

	

t2

	

t2
b(s, aw) ds,

	

a(s, aw) ds) E Ch, s(t, x)h,
t1

	

Jt l

t 2

	

EFt 1

	

lb (s, w) —b(s, aw)Ids hMbPF`1 (CKe ) ,
t i

t 2

EF` 1 J I( )CS – Xt1 ) CO b(S, w) Ids hMbEF' 1 sup iXS — Xt1 l ,
tl

	

t l Çsst2

t2

	

EF`1

	

(
t 1

Il reste à montrer que 3k :

PF CK
kh

(

	

E)

	

2E

kh
EF sup iX1 —X 11 =

t l~sst2

	

E

a : w-4

LEMME 12 .

(y — x )7r ` (dy), J (y —
x)o2

7r
1 (dy) E [Ch, , (t, x)h + 7/'o(Ia )] n G

a ( W ),
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3kl et k 2 :

P(CK~)supP w : sup IX-s – XI e

	

t

	

t~s-=t + h

.
1E sup

	

–Xt 1 2

	

2

	

(

	

s

	

E

	

h

~klh2 k2h
= 2 + 2e

le deuxième terme étant obtenu en utilisant le théorème de Doob E{sup s < t Ms }
EMt si Mt est une martingale de carré intégrable .

De même,

EFt1 sup i Xs –Xt1~2 ~ k lh 2 + k 2 h
t l~ s ~ t2

d'où le lemme. 0

2. Contrôle optimal de problèmes de martingale .
2 .1. Définition du problème. Soit 1 : R' - R s .c .i ., bornée, une fonction coût .
On se pose le problème de contrôle stochastique suivant :

(2 .1)

	

Min EP(D(XT) .
P€9P(y, c)

2.2. Existence d'une solution.
THÉORÈME 4 . Le problème de contrôle (2 .1) admet une solution .
Démonstration . L'application

fl -- R'

	

est continue

w XT (w )

(D oXT : fl -+ R est donc s .c .i .

,41+(fl)-> R

P EP (D OXT

est donc s.c .i . grâce au théorème 5 .5 [7] .
Grâce au théorème 3, on sait que (y, C) est un compact, convexe, non vide d e

.~Ll+(SZ) . On obtient donc le théorème .
Remarque. Soit r (w) le temps de sortie d'un ouvert, alors l'application :

co --> r(w) est s .c .i .

Considérons le problème de contrôle stochastiqu e

Min EPXm (-r(w), w) ;
PEPP(y, c)

les problèmes de contrôle avec coût seulement intégral peuvent toujours s'écrire d e
cette façon, de plus, dans ce dernier cas si l'intégrande est positif . t -+ Xm (t, w) est P p.s .

(D étant s .c .i .

L'application
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croissante VP E g)(y, C) et l'applicatio n

w --4 EPX,n (-r (w ), w) sera alors s . c . i .

On aura encore existence du contrôle optimal dans ce cas .
Pour des problèmes arrêtés plus généraux, coûts sur l'état final il faudra pou r

pouvoir être assuré de l'existence, montrer que le temps de sortie de l'ouvert et d u
fermé sont P p .s . les mêmes VP E P(y, C) . Ce qui est vrai au moins dans le cas no n
dégénéré [22], et dans certains cas dégénérés également [22] .

2 .3. Caractérisation d'un contrôle optimal (discrétisation en temps) .
2 .3 .1 . Définition d'un problème de contrôle optimal approché . On considère l a

multiapplication

(s, x) - + Ch, , (s, x) avec Ch,e (s, x) = i o

	

U

	

C(t, y) .
E ~t~s + h
IY–xl~ ~

LEMME 14 . Ch,€ (s, x) est une multiapplication s .c .s . convergeant (au sens de la
distance de Hausdorff) ponctuellement en décroissant vers la multiapplication C(s, x )
lorsque h j,0 E j,0 .

Démonstration. Ch,€ (s, x) est s .c.s . Il suffit de montrer que Ch,6 (s, x) est de graph e
fermé c.a .d . soit

(Sn, xn, Cn ) ---> (s, x, c) Cn E Ch, e (Sn, xn)
n->oo

Montrons que c E Ch,€ (s, x)

cn E Ch,e (sn, xn ) ~ il existe :

m(m+1)
d

	

•n,c,

	

i = 1, • ,

	

2

	

+m+1 ;

/1 n,i,

	

O ,

	

L. An,i = 1 , ~

S n,i,

	

O Ç sn,i Sn

	

h > >

xn, i,

	

`xn , i xn ' Ç E ,

dn , i E C ( Sn,i, xn,i),

	

Cn — L, A n,i dn,i•

(sn,i, xn,i, /1n,i, dn,i ) appartenant à un compact, il existe une sous-suite :

> si,

	

Osi --sh,

> xi

	

lx i — x l ç E ,

> Ai

	

Ai

	

E /ii — 1 ,

> di

	

di E C(Si, xi ) car C est s .c.s .

(2 .2)

, iSn
nn '-~ o0

, ix n ,
n'-.00

(2 .3)

n ' -000

n ' -.00
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et donc

E Aidi E `~0

	

U C(t, y )
jy-xl e
O~t-s~ h

d 'où le résultat .

(2 .4)

	

lim d (Ch , e (s, x), C(s, x)) = 0 .
h1 0
e,t 0

En effet, Ch,e (s, x) étant compact

rÎ Ch,e (s, x) = {CI ~Cn E Chn,en (S, X), Cn --.-> C, hn1 0 , EnlO}
h, e

	

n -+oo

c C I 3(Sn, i, x n, i, A n, i, d n,i )

Sn,i -~ Si, xn, i _—''—+ xi, A n,
i

. .4 114 E A n, i = 1, An,
i

O

n -.co

	

n ,00

dn,i E C (Sn,i, xn,i), Cn E

c) carcn -* c = E A idi,

A i = 1im A n ',i, dn',i --- -> di, A i 0, E Ai - 1 ,
n '

	

n ' ,o0

di e C(s, x) car C est de graphe fermé, et c E C (S, x) car C est à valeur convexe, et don c

(2 .5)

	

n Ch,e (S, x) = C(S, x)
h, e

l'inclusion dans l'autre sens étant évidente .
Supposons que (2 .4) soit fausse, la décroissance de Ch, , lorsque h10 et e l ()

ahn, en, yn E Ch n, e n (S, x), d (y n , C(s, x)) > e ,

y n e Compact, an', y n - --> y et d (y, C(s, x)) E

y E nI Ch n, e n (S, X) = C(s, x)
hn, e n

d'où la contradiction . q
Considérons la multiapplication Cn = [C1/n,(1/n)~ + V*(0, kn 27n)] n G avec 0 <

y <1, 3 k défini au lemme 12 . On a Cn (s, x) , C (s, x) pour la topologie de Haus-
dorff grâce au lemme 14 . Considérons la multiapplication

n
: (s, x) -

	

, Cx~S,3/2,3 (que nous noteron s jI

	

n
fi " )

avec S défini au lemme 11 .

3 V*(0, p) désigne la boule fermé de centre 0 et de rayon p dans R mx(m+1)/2 R m
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Cn étant s .c .s . II n est s .c .s . (proposition 0) . Considérons le problème de Program-
mation dynamique

Vn (T, x) = (D (x) avec (D (T, • ) s .c .i . ,

Vn ((n -1)h, x)

	

min

	

Vn(T, y) 7r(dy) ,
4TEn n ((n-1)h,x )

Vn(ih, x) = min J(v(i+1)h,y)(dy) ,
TrEnn (ih,x )

Vn(0, x) = min

	

Vn(h, y ) 7r (dy ) •
?TEn n (o,x )

THÉORÈME 5 . Le problème (2 .6) admet une solution de plus V(ih, x) est s .c .i. V i .
Démonstration. On le démontre par récurrence . L'application :

7r Vn(T, y)7r(dy)

est s .c .i . car (D est s .c .i . 1-1"((n -1)h, x) est à valeur compacte car elle est s .c .s .

Et donc min i. Enn ((n-1)h, x ) f Vn (T, y)ir(dy) existe et V(T — h, x) est s .c .i . grâce au
théorème du maximum [2] .

Il existe 7r*(ih, x), borélienne en x, réalisant le minimum. A ir* associons P n, * par
la méthode exposée en § 1 .2 .2 . {P, * } est étroitement relativement compacte grâce au
lemme 3, car les Cn sont décroissants, et C 1 vérifie les hypothèses du lemme 3 .

Par la méthode exposée dans le théorème d'existence, en remplaçant partout C
par C,,, on obtient que toute sous-suite convergente de PZ*

	

P

	

(y, C )
THÉORÈME 6 . (Caractérisation d'un contrôle optimal) . Si {P nir* } désigne la suite

de mesure sur SI définie, par interpolation linéaire, sur la chaîne de Markov, solution d u
problème de contrôle discrétisé, de probabilité de transition -rra ; {P, * } est étroitemen t
relativement compacte, et toute sous-suite convergente converge vers un élément d e
P* E PP(y, C) solution du problème de contrôle optimal (2 .1) .

Démonstration . On a démontré l'admissibilité de P* démontrons son optimalité .
Pour cela, supposons que P [resp 12] désigne un contrôle optimal [resp le coût optimal ]
du problème (2 .1) et considérons la loi du vecteur (X0, Xh, X2h, . . . , )(ni, ) . Elle peu t
s'écrire :

Sy (dxo)Tr° o (dx1)?rz o, x i (dx 2 )

	

(dxn )

Grâce au lemmes 11, 12 et la définition de Cn, on vérifie que 7r ;ro, . . .x~ E II n (ih, xi ) et
donc

Vn (0, xo) ~ V Vn
or,

	

Vn (0, xo) = En* CXT), (D étant s .c.i .

V ~ lim inf Vn ? EP*(D(XT ) c .q.f.d .
n --~ o 0

2.4. Caractérisation d'un contrôle optimal (discrétisation en temps et en espace) .
2.4 .1 . Définition d'un problème de contrôle optimal de chaîne de Markov à éta t

discret . Soit la multiapplication Ch,E, k (s, x) dont le graphe est défini par :

{(s, x, c)Ic E (6o

	

U

	

C(s, y), x E[ik, (i + 1)k] .

s~t~s+ h

Ch,e,k est donc une multiapplication s .c.s ., constante par morceaux en x, à valeur
convexe .

(2 .6)
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Remarque.

C h,e,O (s, x) = i0{Ch,e (S , x)}.

LEMME 15 . Ch,e,k (s, x) est une multiapplication s .c.s . à valeur convexe convergean t
ponctuellement, en décroissant, au sens de la distance de Hausdorff, vers la multiap-
plication C(s, x) lorsque h, e, k tendent vers 0 en décroissant.

Démonstration .

(2 .7)

	

lim d (Ch ,E, k(s, x), C(s, x)) = O .
121 0
El()
k i 0

En effet, Ch,e,k (S, x) étant compact :

Ch,E,k (s, x)

	

c

	

sn, xn )sn -4 s, x n ---> x , cn c
h, e, k

cn E

	

U

	

C(t, y) ~ hn, en, knIOI ;
sn çtcsn-F-hn

c . a . d .

C n = E dn,iA n, i, A n, i ? 0, E A n,i , 1 , dn,i E C ( tn,i, Yn,i), l = 1, . • , m + m (m + 1)/2+1,

Ixyn,iI 2kn +e n + I x n x l,

	

IS ^tn,il Çhn + I S n —S I ,

et donc, grâce à la s .c .s . de C(s, x )

dn,i —_--> di E C(s, x)
,,-.co

A n, i ----> Ai, A i 0,

	

Ai = 1
n -.00

cn —4 c = EAici

et en utilisant la convexité de C, c E C(s, x) ; et don c

(2 .8)

	

n Ch,e,k (s, x) = C(s, x) .
h,e, k

Supposons que (2 .7) soit fausse, en utilisant la décroissance de Ch,e,k (h, e, k)10 on
a :

3(hn, en, kn),0, y n E C hn,E ,t,kn (s, x) et d(yn, C(s, x)) > e .

y n e compact, 3 une sous-suite convergeant vers y et don c

d ( y, C (s, x)) ~ e or y E n Ch,E,k (s, x ) = n Ch,E, k (S, x ) = C (S 9 x)
h,e,k

	

h,e, k

d'où la contradiction . q
Notons
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On a :
LEMME 16 . 3M(p, k) et pi (p, k )

(2 .9)

	

(y —x ) v(dY) — [rk(Y) — rk(x ))7r(dY) k ,

(2 .10) J (Y — x ) 02
7r(dY) — [rk(Y) — rk(x ))O2 7r(dY) Mk ,

(2.11)

	

J Irk (Y) — rk (x )I 3 7r(dy) p i(p , k), V7r E •/+ (R m ) : J r(dy)(Y — x) 3 p•

Démonstration . (2 .9) est évident . (2 .10) résulte de

(Y -x)02 - ( rk (Y) — rk ( x )) °2 1

- .-M1I (Y - x ) — ( rk(Y) — rk(x))I I

~M1k J (2Iy --xl +k)7r(dy) .

L'inégalité de Holder donne alors (2 .10) .

(2 .11) résulte de Irk (y) — rk (x)I I —x i + k.

Considérons les multiapplications :

=

	

Mn 2y
fl GICn — [Cl/n,(l/n)y +

n

-

	

Mn 2Y

	

1
Cn — C1/n,(11 n) y,(1/2 n) + V

n
	 +m(-))]

1

	

n G,

	

0 < y < 2 ,

M constante suffisamment grande .
On a Cn est une multiapplication s .c .s., constante par morceaux en x, convergean t

ponctuellement pour la topologie de Hausdorff grâce au lemme 15 .
Considérons la multiapplication (s, x) -> iIn''n's'3/2'3'(1/2n)e que nous dénoterons

H avec

fl-
n,C,P,«,13,k =

	

E ./l1+(Rm),

	

[rk(y)—rk(x)] (dy), J [ rk(y ) —rk(x)]02,77-(dy) E C(s, x)h

J I ph«

Grâce au lemme 16, on a :

?T E
Hn,Cn,8,3/2,3(S, x)

	

7r E
nn,Cn,5,3 /2'3'(1 /n)e(S, x)

Soit

	

?n

	

s .c .i .

	

constante

	

par

	

morceaux

	

eD„ = régularisée

	

s .c.i .
E QDnX[ik,(i+1)k],'n'n) ponctuellement, (Dn = Inf '(x)xE[ik,(i±1)ki, (D s .c .i ., k = 1/2n.

Considérons le problème de programmation dynamique

Vn( T, x) = (Dn(x ) ,

Vn ((n -1)h, x) =

	

min

	

J Vn (T, y)7r(dy) ,
TrEnn ((n-1)h,x )

Vn(ih, x) = min J( n(i+1)h,y)ir(dy) ,
7rEn n (ih, x )

Vn(0, x) = min J Vn(h, y)7r(dy) .
?rEn n (0, x )

(2 .12)
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THÉORÈME 7 . Le problème (2 .12) admet une solution, de plus, V (ih, x) est s .c .i.
constante par morceaux.

Démonstration. On le démontre par récurrence . L'application : 7r - >

f Vn (T, y)7r(dy) est s .c .i . car 'n est s .c .i .
H ((n — 1)h, x) est à valeur compacte car elle est s .c .s . (démonstration analogue à l a

s .c .s . de II n) et donc min,rEIIn ((n—1)h,x)f 1/n(7;(T y)7r(dy) existe et Vn(T — h, x) est s .c .i .
grâce au théorème du maximum [2] . Vn (T — h, x) est constante par morceaux car x
TI n (T — h, x) l'est . q

Il existe donc i (ih, x), borélienne en x, constante par morceaux réalisant le
minimum .

A?rn associons P,% par la méthode exposée en 1 .2 .2 .
{P} est étroitement relativement compacte grâce aux lemmes 3 et 16 .
Par la méthode exposée dans le théorème d'existence, en remplaçant C pa r

Cn on obtient que toute sous-suite convergente de P n --> P E P (k, C) grâce au
lemme 16 .

THÉORÈME 8 . (Caractérisation d'un contrôle optimal, discrétisation en temps e t
en espace) . Si {P 4 n } désigne la suite de mesure sur D, définie par interpolation linéaire ,
sur la chaîne de markov, solution du problème discrétisé (2 .12) de probabilité de transition
7rrn ; {P .} est étroitement relativement compacte et tout point adhérent est solution d u
problème de contrôle optimal (2 .1) .

Démonstration . On a démontré l'admissibilité de P*, démontrons son optimalité ;
pour cela, il suffit de remarquer que : si P désigne un contrôle optimal, V le coût optima l
du problème 2.1, la loi du vecteur ; (X0 , Xh, X2h,

. • • , Xnh) peut s'écrire 7r° 0 (dx l ) x
irxo,xi (dx2) • • • X 1 •,xn-1 (dxn )Sy (dxo) et grâce au lemmes 11 et 12, à la définition de en
et au lemme 14, que

7rzo, . . .xi E rI n (th, x)
et donc

EP ~n (e?,,) = Vn (0, xo) EP (Dn EP((D)

car (D n (D .
Grâce au lemme 7, on a :

EP* (D lim inf EP;'t (Dn EP ((D)

	

c .q .f .d .
n

Sur la résolution numérique du problème (2 .12) . Nous avons vu que le 7rSx(dy) est
constant par morceaux ainsi que V n .

Notons alors P;, .' = P
i

n (x ii , „h E A; lx i h A i ) où, P,' désigne la loi de probabilit é
construite sur R (n+l)xm à partir de /fr * comme en (1 .8), A i = [j/2 n , (j + 1)/2n ] +j/2 (n+l )

Notons

	

le coût optimal sur le jème morceau à l'instant ih (2 .12) se réecrit :
n _

Vn,i -n,i

(2 .13) Vn,il = Min E Vn,i'
Pi ,

	

i'
E pi'( j ' —j), E pi'( j ' —j )O2 E Cri

l '

(; pi'Jj~ JI 3 — 5 h3/2)
l'

1Vn,i = — Min E pi'Vn
i ,

Le résultat de l 'optimisation sera p; ; .
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Chaque étape de la récurrence de (2.13) est un problème de programmatio n
mathématique dans R', minimisation d'une forme linéaire sous des contraintes con -
vexes, q = Card { j} .

3. Quelques resultats particuliers . Soit {Cn} une suite de multiapplication s .c.s . à

valeur convexe dans un compact fixe Cn

	

C ponctuellement ; (s, x) - ~'°(s, x)
n J$ oo

une multiapplication à valeur dans , /lil + (R'n ) vérifiant

~d7r E IÎn,c",P,«,R(s~ x)

	

(J(y_x)(dy),J(y_x)®2(dy))ECfl(s,x)h ,

J 1 —x 1 0 7r (dy ) ph« '

bc E C(s, x)37r E IIn,cn,A,«,R(s,
x)

	

(y — x)7r(dy), (y —x)
o27r(dy) E ch ,

13' —xls,rr(dy) ph « ,

	

> 2, a > 1 .

On suppose de plus que f

	

'R est s .c .s .
Remarque . Ici, Il n'c" ne représente plus toutes les lois de probabilités ayant l e

couple (dérive, diffusion) dans C,,, mais seulement une famille de probabilités donnan t
tous les c E Cn possibles . Pratiquement, il peut être intéressant de se limiter à une telle
famille . Par exemple, on fixe le support de la probabilité de transition (chaîne de
markov particulière à état discret) .

On construit un problème approché (2 .6) en remplaçant n n par fln'c"'P'«'R . Ce
problème admet alors une solution optimale que l'on notera irs,x.

Si l'on note Pn la loi de probabilité définie sur les fonctions continues par ir *n on a l a
proposition suivante :

PROPOSITION 2 . Si P désigne un point adhérent à la suite {P n }, t une fonction
continue

EP (D(XT) Inf

	

Sup '(XT) .,
K K P'E P(K,, c,)
C' cz C

Démonstration . 3 une sous-suite encore, notée n :

>PE g)(K,C).

fSoit en E Cn il lui correspond ?rn E Zn'c et donc Pn mesure sur les fonction s
continues, et donc 3 s .s . encore noté n (avec C 'n c Cn , C ',, I C') :

Pn	 >P'Eg)(K',C' )
n -.0 0

or, on a E "(D(XT) E P" '(XT ) et donc, en passant à la limite :

EPc(XT) Ç sup EP (I)(XT )
P'EP(K',C' )

d'où la proposition . q

De cette proposition, on déduit un corollaire lorsque le couple (K ' , C ' ) est tel qu'i l
y ait unicité au problème de martingale .

(3 .1 )

(3 .2)

Pn
n- .00
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COROLLAIRE . Sous les hypothèses de la proposition 2 :

EP (D(XT) - Inf EPX 'a ' b I(Xt)
a(t, }iipscititz en x continue en tb(t

, (a, b)E C
x E K

où Px'a'b désigne la solution du problème de martingale au sens classique [22] .
Remarque . Un résultat de ce type dans un cadre moins général est démontré dan s

[14] .
Remarque . Le contre exemple suivant montre que dans le cas où a dégénère, on n e

peut espérer mieux .
Considérons :

= g (x ),

	

g = 2sgn (x )V I x (,

	

x (0) = 0 .

Cette équation admet au moins trois solutions :

x = 0 ,

x = ± t 2 .

Supposons que l'on veuille maximiser EfM(XT) sur 9(0, (0, g)) avec

x2

	

sixM,
fM(x )

M2 sixM.

La solution de ce problème sera la mesure de Dirac sur la solution x = t 2 or ,

Hn,(o,g)(s,
0) = 3o

et donc, Pn sera la masse de Dirac sur la trajectoire x = 0 qui n'est pas la bonne solution .
Remarque . On a toujours supposé que Cn est à valeur convexe. Notons Cn l e

convexifié de Cn . Alors iI n' cn est le convexifié de II n ' cn et donc les coûts Vn et Vn
associés sont les mêmes, 37r n optimal pour II n' cn appartenant à II n ' cn . Cette remarque
montre que dans le cas où C n'est pas convexe, on peut trouver une suite en E C optimal
tel que la conclusion de la proposition 2 soit vérifiée .

Un cas particulier important.

C(s, x) =B(s, x)Oa(s, x) ,

B multiapplication s .c .s . A valeur dans

	

a (s, x) fonction continue > 0 .
On considère le problème

Min EP b 0 (s, xs ) ds +(D(XT )
(bo,P)E S(y,C)

	

0
N

où e(y, c) désigne l'ensemble couples (fonction borélienne, mesure de probabilités ,
solution du problème de martingale (b 1 , • • • , bm ; a)) tels que (b 0, b 1 , . . . , bm ) O a E C,
(b0, • • • , bm ) (s, w) prévisible .

THÉORÈME 9 .
T

	

T

Min

	

EP

	

bo(s, XS )ds + (1)(XT ) = Inf EPy'b'a

	

bo(s, XS ) ds + cl)(XT ) .
(bo,P)Eg'(y,C)

	

0

	

b

	

J o
section lipschitz en x,
continue en t de B
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Démonstration . On sait [4, th .IV.6 ]

Min EPY ' b 'Q bo(s, x s ) ds + cl)(XT )
b(s,x)EB(s,x)

	

0
b borélienne

J
t

Min

	

E PY .b.a bo(s, w) ds + (D(XT)
b(s,w)EB(s,Xs (w))

	

0
b progressivemen t

mesurable.

et on sait que les minimums existent . À (b i(s, x), • • • , b n (s, x)) -* P unique [22] et donc
minimiser par rapport à b E B ou a (b 0 , P) E PP(y, C) donne le même coût optimal .

Soit donc b*(s, x) E Arg min E f 0 bo(s, Xs ) ds +(1)(XT ). ]{bn } lipschitz en x ,
bE B

continu en t

	

bn

	

> b * dans (r(L°°([0, T] x R m), L i ([0, T] x R m))
n -~oo

et le th IV.3 de J . M . Bismut [4] montre qu e

	

T

	

T
EP(v .b 1. . .,b .«)

	

en ( S , Xs) ds + ~(XT)
	 > EP(v.bi . .

.b,n+a)

	

b°(s, Xs) ds + (D(XT) ,

	

0

	

n ->o0

	

o

et donc P construit au début du § 3 est optimal dans ce cas particulier .
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BOUNDARY CONTROL PROBLEMS WITH CONVEX COST CRITERION*

VIOREL BARBU

Abstract. A class of boundary-distributed linear control systems in Banach spaces is studied. A maximum
principle for a convex control problem associated with such systems is obtained.

1. Introduction. In the past decade or so have been developed several abstract
settings to describe the distributed control systems on a domain ll in which the control is
exercised through the boundary.F. We mention in this context the Hilbert theory of
Lions (see [13]) and the semigroup approach of boundary control system developed by
Fattorini 11 ]. In all these approaches we encounter the same difficulty" for existence of
a sufficiently regular solution, say continuous in t, to state system, the control must be
taken in a space of sufficiently smooth functions on [0, T]. Starting from Fattorini’s
model we introduce here a general class of boundary control systems in a Banach space
which are well posed whenever the boundary control is a summable function in t. A
related class of linear control processes in Banach space has been considered by Curtain
and Prichard [8] and by Balakrishnan [1]. These systems are described in 2. In 3 we
show that the parabolic boundary control systems governed by Dirichlet and Neumann
problems are covered by the preceding theory. For such systems we consider in 4 the
control problem with convex cost criterion and formulate the maximum principle in the
subdifferential form. This is the main result of this paper which will be proved in 5
paralleling the treatment in [3], [5] (see also [6, Chap. IV]). A duality result is given in
6.

After this work was submitted, we learned of two other related works" (i) In [2]
Balakrishnan shows that the solution to a parabolic boundary control equation with
LZ-inputs can be expressed as a "mild" solution to an operator equation of the form
(2.8) below. We shall see in 3 that this fact is also implied by our theory. (ii) In [12]
I. Lasiecka studies the regularity of optimal boundary controls for parabolic equations
with quadratic cost criterion. In particular an estimate of the form (2.9) is obtained for
the Dirichlet boundary value problem.

Notation. Given a Banach space X with norm I1" and a real interval [0, T] we
denote by C(0, T; X) the Banach space of all continuous functions x’ [0, T]X
endowed with the standard norm. For each 1 <-p <= oo denote by L" (0, T;X) the space
of all p-summable functions on [0, T] with values in X.

Given another Banach space Y we denote by L(X, Y) the algebra of linear
continuous operators from X to Y endowed with the usual norm I1" If A is a
densely defined linear operator on X denote by D(A) its domain provided with the
graph norm.

Let q" X-->R ]-oo, +oo] be a lower semicontinuous convex function. The
subdifferential 0q" X --> X* is defined by

O(Xo)={X*o sX*; (Xo)-(x)<-(x’, Xo-X) for all x sX}.

Here X* is the dual space of X (which is assumed real) and (.,.) denotes the pairing
between X and X*. For each h > 0 denote by px" X R the function defined by

(1.1) qx (x) inf -Iix yll + (y); y x x,

* Received by the editors June 12, 1978.

" Faculty of Mathematics, University of Iasi, Iasi, Romania.
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If X and X* are strictly convex and reflexive then ox is convex, Gteaux ditterentiable
on X and (see [6], p. 107).

(1.2) oox(x)=(Oq)xx forallA >0, xX

(1.3) ox (x) ll0qx (x)ll2 / q (Jxx); A > 0, x X,

where Jax xx is the solution to

(1.4) b(xx x) + A Oo(xx) 0

and

(.5) (0)x -- (x x).

Here 4" X -+ X* is the duality mapping of X. For other notions and results of convex
analysis relevant to this paper we refer the reader to [6], [10], [16] and [17].

2. Boundary control systems. To begin with let us briefly describe Fattorini’s
theory of boundary-distributed control system (see [11]).

Let E be a (real or complex) Banach space and let tr be a closed, linear densely
defined operator in E. Let r be a linear operator (the boundary operator) with domain
in E and range in some Banach space X. Finally, let U1 and U2 be two Banach spaces
which in the sequel will be referred to as the control spaces of the system.

The control system we shall consider is

(2.1) y’(t)=try(t)+BlUl(t)+f(t), ry(t)=B2u2(t)over[O, T]

with initial value condition
o(2.2) y(0) y

where B,: U1 + E and B2:U2 +X are linear continuous operators and [0, T] is a fixed
interval. The controllers u (.) and u2(" are summable functions on [0, T] with values in
U and U2, respectively. We shall call u, u2 the distributed and boundary control,
respectively. Here f is a given E-valued summable function.

In applications the state space E is a space of functions on some domain f of the
Euclidean space R", tr is a partial differential operator on f and r a partial differential
operator acting on the boundary F of f.

Assumption I. D(tr)c D(r) and the restriction of r to D(tr) is continuous relative
to graph norm of D(r).

Let A: E -+ E be the linear operator defined by

(.2.3) D(A) {y e D(tr); ry 0}, Ay o’y for y e D(A).

Assumption II. The operator A is the infinitesimal generator of a strongly
continuous semigroup {S(t); -> 0} on E.

Assumption III. There exists a linear continuous operator B" U2-+ E such that

(2.4) trB L(U2, E), r(Bu) n2u for all u U2

(2.5) Ilnull -<- CllB=ullx for all u U
where C is some positive constant.

In terms of A and B system (2.1) can be written as

(2.6)
y’--Az+BlUl+O’Bu+f, O<-t<-T,

y=z +Bu2.
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If u2(’) is continuously differentiable on [0, T] then z can be defined as a "mild"
solution to the Cauchy problem

z’ Az +Blux +rBu2-Bu’2 +f,

z(0) y-Bu2(0).
In this way one can define the solution y to system (2.1), (2.2) by the variation of

constant formula

(2.7)
y(t) $(t)(y-Bu2(O))+ Bu2(t)

+ $(t-s)(Bxu(s)+o’Bu(s)-Bu(s)+f(s)) ds.

Since the differentiability of controller u represents an unrealistic and severe
requirement, we are led to extend the concept ol solution to (2.1), (2.2) for general
u2 e L(0, T;

Integrating (formally) by parts in (2.7) we get

y(t) $(t)y- AS(t-s)Bu2(s) ds

(.

+ $(t-s)(Bu(s)+o’Bu2(s)+f(s)) ds.

In general, unless we impose further assumptions on $(t) and B, the right-hand side
of (2.8) is not well defined.

Assumption IV. For each e ]0, T] and u e U2, $(t)Bu e D(A). There exists a
positive function 3’ e L1(0, T) such that

(2.9) [[AS(t)BIIL(t:, <= y(t) a.e. ]0, T[.

Since S(t)Bu D(A) for all u U2, by the closed graph theorem we deduce that
the operator AS(t)B is continuous from U2 to E so that (2.9) makes sense.

Assumptions IV implies that for every u2Ll(0, T; U2), the function t-
AS(t-s)Bu2(s) ds is well defined as an element of LX(0, T;E). By definition, for
each y0 E, fLX(0, T; E), U L(0, T; U) and u2 L1(0, T; U2), the function y
L(0, T; E) defined by (2.8) is the solution of distributed-boundary control system (2.1),
(2.2).

Since the function t- S(t-s)Bu2(s) ds belongs to L(0, T; D(A)), y(.) may be
expressed in the following equivalent form

y(t)= S(t)y-A S(t-s)Bu2(s) ds + S(t-s)(Bxu(s)

+trBu2(s)+f(s))ds a.e.t]0, T[.

Let X0 be a fixed number in p(A) (the resolvent of A) and let II A-XoI (I is the
identity operator). Thus y may be regarded as solution to distributed control system

(2.10)

where

(2.11)

w’ Aw +Du+D2u2 + I’I-lf,
y =Hw

D1 (A-XoI)-IB1, D2 (A-XoI)-(trB -XoB)-B.
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Denote by U the product space U1 x U2 and by A" U--> E the linear continuous
operator given by

(2.12) A(u,, u2) VxUl + D2u2, for Ul U1, u2 U2.
Then we may rewrite system (2.10) as

w’=Aw+Au+H-’f, 0<t<T,=
(2.13)

y =Hw.

Thus, we are led to interpret the solution y to (2.1) as the observed value of a
control system of the form (2.13) with unbounded observation operator II (we refer the
reader to [9] for definition and theory of observation for infinite dimensional systems).

Remark 1. If UEELP(O, T; U2) then y E LP(0, T;E). If T6LP’(O, T); 1/p+ 1/p’=
1 then we see by (2.8.) and (2.9) that y 6 C(0, T; E).

3. Examples. It should be observed that Assumption IV has some severe impli-
cations for system (2.1). In particular if the range R (B) of B is, say, all of E then the
semigroup S(. must be analytic (see e.g. [18, p. 254]). However, this conditions is less
restrictive than it might at first appear to be. We shall see here that it is satisfied in some
notable cases.

Mixed Dirichlet problem. Let be a bounded and open subset of R" with a
sufficiently smooth boundary F.

Consider the boundary control system

Ay f in Q ]0, T[,
0t

(3.1) ylr u for [0, T],

y (x, 0)= yo(x) for x f,

where u E L2(Z)(E Fx]0, T[), yo L2()and fL2(Q).
To formulate this as a boundary control system of the form (2.1) we define

E U1 L2(I)), X H-1/2(F), U2 L2(F), B1 0, B2 - I and

(3.2) D(o.) {y LZ(f); Ay Lz(I)}, o" A.

(H (fl),H (F) are usual Sobolev spaces on f and F.)
The operator is the "trace" operator yoy which is well defined and belongs to

H-/z(F) for each y E D(cr) (see Lions-Magenes [15, vol. 1]). The operator A is given by

(3.3) A=A, D(A) Hao(f) f) H2(f).

Clearly Assumptions I and II are satisfied. To verify III and IV we define the linear
operator B" U2 L2() - LE(F) by Bu Wu where wu L2() is the unique (general-
ized) solution to the Dirichlet boundary-value problem

(3.4)

In other words,

(3.5)

Aw.=0 inf,,

Wu [F U.

In IrWuAO dx U on for all O e H(f) CI HZ(f).
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Here Off/On denotes the outward normal derivative of which is well defined as an
element of H1/2(F). We need the following lemma.

LEMMA 1. For every u H-1/2(F) problem (3.4) has a unique solution Wu
satisfying

(3.6) IIw.ll=(. <--

If u H1/(F) then w H() and

(3.7) IlWull,
Here Ci, 1, 2 are positive constants independent of u.

Proof. Let u H-1/:(F). The existence of w, satisfying (3.5) is well-known (see e.g.
[13, p. 72]). It follows from the fact that the operator with domain H(O) H(O) is
onto on L2(O) and the functional 0 r u OO/On dg is continuous on H(O) H2(O).
Also the uniqueness of such Wu is immediate. On the other hand by "trace" inequality

(3.8)

and by (3.5) we see that

IWu()[ C[[U[[H-’/2(F)[IA-IIH2(O) for all L2()
thereby proving (3.6).

Suppose now that u e H1/2(F). Then again by the "trace" theorem there is
Yu H1() such that ryu u and

(3.9) [lytIu(n)

where C is independent of u. On the other hand, it follows from (3.5) and Green’s
formula that the function z y w satisfies the equation

azOdx=ngradyugradOdx
for all 0 e H(a) H(a). Hence

(3,10) Iz()l clllllll- for all e L(a).

This shows that z e H(f). Hence Wu Hl(l). Furthermore, by (3.9) and (3.10) we get
(3.7) as claimed. This completes the proof of the lemma.

In particular, Lemma 1 shows that Assumption III is satisfied. As regards
Assumption IV, we observe first that by (3.6) and (3.7) it follows that Bu
(L2(), H1(’),))/2 for all u L2(F) and

(3.11) }lBullul/2(n)<-Cllull.2(r) for all u L2(F).

Here (L2(fl),HX(I))I/2 denotes the interpolation space {y(x, 0); y L2(R/; HI(f)),
Oy/Ot L2(R+; L2(f))} (see e.g. [14]).

Inasmuch as the semigroup S(. generated by A is analytic (see e.g. [15, vol. II,
p. 22]) and [19, p. 254] we have

(3.12) IlAS(t)yoil,.(,) <- ct-Xllyoll,.(,)

for all yo L2(’) and > 0.
On the other hand according to an interpolation result due to Lions [14], we have
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for each yoe HI(II),

(3.13) IIAS(t)Yoll,.=(. Ct-3/’lly011(. for > 0.

Thus interpolating between spaces Hl(f) and L2(f) we see by (3.11), (3.12) and
(3.13) that

(3.14) IlmS(t)BullL=(n Ct-7/SllullL=(r

for all u L2(F) and > 0. Here C is a positive constant independent of u and t. In other
words, inequality (2.9) holds with y(t)= Ct-7/8. In particular it follows that for each
p 6[1, o[ the operator yA oS(t-s)Bu(s) ds is continuous from LP(0, T; L2(F)) to
Lp (0, T; L2(f)).

Thus we have shown that system (3.3) satisfies Assumptions I up to IV with A andB
defined by (3.3) and (3.4) respectively.

Remark. In [12] it has been shown by a different approach that estimate (2.9) holds
with y(t) Ct where a > 1/4.

Mixed Neumann problem. Consider the boundary control system

Y-Ay=f inQ=f]O,T[,
Ot

(3 15) 0y
+ay=u inE=F]0, T[,
On

y(0, x) yo(x), x
where yo L2(f),f L2(Q) and u (the boundary control) belongs to L2(F). Here c is a
nonnegative constant.

Define E L2(), U2 X L2(F), B1 0, B2 =/, try hy, D(tr) H2(f) and
ry ay + Oy/On. The operator A is given by

(3.16) Ay =Ay on D(A)= yH2(l))’ay+=0
On

Define the operator B" L2(I") L2() by Bu Zu where zu H1(1) is the solution
to boundary-value problem

(3.17)
zu-Az,=0 inf,,

az+= u inF.
On

Consider on the product space H(I)) H(f) the bilinear functional

(3.18) a(y,q)=Ia(yq+grad y gradq)dX-lr(U-ay)dtr
where u H-/E(F) (the integral r uqdtr must be regarded as the value of u at
Voq H/E(F)). Since a is coercive, there is zH(f)satisfying a(z, q)=0 for all
q H(Iq). In other words, z Bu is the solution to (3.17). From (3.18) we see also
that

(3.19)

In particular, we have shown that Assumption III holds. To verify Assumption IV we
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notice that since the operator -A is self-adjoint and positive, we have
T

(3.20) Io IIAS(t)Y[[2-n dt <= Cl[yoll20_Al,2

for all yoD((-A)I/2)=HI(f). Let be the scalar function defined by

(t) lim inf IIA$(t)[[..,., [0, T],

where A, A (I + n-lA)-I for n 1, 2,. . Obviously,

(3.21) IIAS(t)IILnIn,L2n<-_(t) for ]0, T]

while inequality (3.20) implies that
TIo llms(t)llLnn,t2n dt <- C for all n.

Therefore by Fatou’s lemma it follows that L2(0, T) so that inequality (3.21)
along with (3.19) yields

(3.22) [IAS(t)BuII, <= c(t)llull=r), ]0, T[,

for all u L2(F). Thus Assumption IV is satisfied with some function 3’ C6 L2(O, T).
Remark 2. Estimates (3.14) and (3.21) can be impoved if we take the boundary

control u to be more regular. For instance in the example of (3.1) if U2 Hx/2(F) then
Assumption IV is satisfied with y(t)= Ct-3/4. It should be also emphasized that in
preceding examples the Laplacian A can be replaced by any second order symmetric
elliptic operator A0 on f on the form

Aoy (aii(X)yx,)x,- ao(x)y
i,]=

where aii C() and aoeL(O).

4. Integral convex cost criteria. In this section we consider the following uncon-
strained boundary-distributed control problem" minimize

T

(P) Jo Lo(t, y, Ul, u2) dt +/(y(0), y(T))

in y C(0, T; E), u Lo(0, T; U); 1, 2, subject to state equation (2.1).
Here 2_-<p<oo and Lo’[O,T]xEXUlXUE-R=]-oo,+oo],l’ExER are

given functions which will be made precise later.
From now on we shall assume that the spaces E, U and U2 are reflexive and strictly

convex together with their duals E*, U* and U2*.
We denote by U the product space U1 x U2 and denote by I" (resp. I1" II) the norm in

E (resp. U). The pairing between E, E* and U,. U* will be denoted by (., and (., ,
respectively.

Finally we denote by F" E - E* and E" U U* the duality mapping of E and U,
respectively. It should be recalled (see e.g. [4, p. 13]) that under our assumptions F and.. are single valued, injective and demicontinuous (i.e. strongly-weakly continuous).

We shall assume also that Assumptions I-IV are satisfied and the function 3’ in
condition (2.9) belongs to Lo’(0, T) where

p’=p(p-1)-.
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This condition on control spaces Lp (0, T; Ui) was imposed in order to assure the
continuity of the "mild" solution y to system (2.1) and so to give a meaning to functional
/(y (0), y(T)). If the final value y(T) is not present in problem (P) then p can be chosen
arbitrary in the interval ]1, +[.

As seen in 2, the state system (2.1) can be brought into the form (2.13) where
u=(ul, u2)UlU2=U, II=A-XoI(Xop(A)) and A is given by (2.12). Let
L" [0, T] E U R be defined by

L(t, y, u)= Lo(t, y, ul, U2) for u (u, uz).

Then problem (P) can be equivalently expressed as" minimize
T

(P) fo L(t, y, u) dt +/(y(O), y(T))

in y C(O, T; E) and u LP(O, T; U) subject to

(4.1)
w’ Aw + Au + II-f,

y =Hw.

Here f L (0, T; E) is a given function. The solution of (4.1) must be understood in the
sense of (2.8), i.e.,

(4.1’) y(t)=S(t)y(O)+ IIS(t-s)Au(s)ds+ S(t-s)f(s)ds, O<=t<=T.

We notice that Assumption IV and the condition imposed on p imply that

(4.2) IIIIS(t)Allt,z =< st(t) for ]0, T[

where sr L"’(0, T); lip + lip’= 1.
Beside the above assumptions on E, U, A and B further hypotheses on Lo and

must be imposed.
(A) For each the functions L(t) and are lower semicontinuous and convex on

E x U and E x E, respectively. Furthermore, the following conditions hold.
(a) For each (y, v)Ex U the functions L(t, y, v)" [0, T]R and

J (t, y, v): [0, T]E U are Lebesgue measurable (u >0).
(b) There exist roe L2(0, T; E*), So e L(0, T; U*) and go e L1(0, T) such that for

all (y, u) E U,

L(t, y, u)>=(y, ro(t))+(U, So(t))+go(t), a.e. tel0, T[.

(c) For each yo 6 E there are a neighborhood 6 of yo, the functions ce L"’(0, T),
L" (0, T) and a mapping : [0, T] 7 - U such that

(4.3) L(t, y, (t, y)) a(t) a.e. ]0, T[,

(4.4) I1(/, Y)ll(t) a.e. ]0, T[

for all y .
Here J (t, y, u) (y,,u) denotes the solution to equation (see e.g. [4], p. 41)

(4.5) {F(y y), E(u u)} + u OL(t, y, u,) 0

where OL(t): E U E* U* is the subdifferential of L(t).
We notice that condition (a) implies that L(t, y(t), u(t)) is a Lebesgue measurable

function of whenever y(. and u(. are Lebesgue measurable functions (this may be
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seen from formula (5.4) below). It can be shown that if spaces E and U are separable
then (a) is satisfied iff L is a convex normal integrand in the sense of Rockafellar (see
[18]). If L is independent of then conditions (a) and (b) automatically hold.

As regards (c) it is satisfied in particular if the Hamiltonian associated with L is
finite on E U (other situations are discussed in [6, p. 217]).

An end point pair (y 1, yz) E E is called attainable for problem (P) is there exist
functions y C(0, T; E) and u LP(0, T; U) satisfying system (4.1) and such that

(4.6) L(t, y, u)6Ll(O, T); y(0)=

The set of all attainable pairs will be denoted by
Denote also by D(/) {(yl, yz)eE xE;/(yl, y2)< +oo} the effective domain of I.

Our next assumption is
(B) There is (yl, yz) Cz. fqD(l) such that one of the following two conditions hold

(4.7) y). int {x E; (yl, x)eD(1)},

(4.8) y). int {x E; (y 1, X) eL}.

It might be noticed that in general (4.8) fails for infinite dimensional systems
because it requires the complete controllability.

The main result of this paper, Theorem 1 below may be regarded as a maximum
principle for our boundary-distributed control problem.

THEOREM 1. Suppose that all above hypotheses on system (2.1) and]unctions L, are

satisfied. Then a given pair (yo, Uo) is optimal in problem (P) if and only if there exist the
functions poe C(O, T; E*)f’ILe’(O, T; D(A*II*)) and qoLl(O, T; E*) which satisfy
along with yo and Uo the system

w’o Awo + Auo + II-lf, on[0, T],
(4.9)

y0 IIw0
(4.10) p; -A*po+qo on [0, T]

(4.11) (qo(t), A*II*p0(t))60L(t, yo(t), Uo(t)) a.e. ]0, T[

and transversality conditions

(4.12) (po(O),-po(T)) 01(yo(0), yo(T)).

Here OL(t): E x U - E* x U* and 0l: E x E E* x E* stand for subdifferentials
of L(t) and l, respectively.

Of course (4.9) must be considered in the sense of (4.1’), i.e.,

yo(t) S(t)yo(0) + IIS(t- s)Auo(s) ds + S(t- s)f(s) ds,

while (4.10) is taken in the "mild" sense, i.e.,
T

(4.13) po(t) S*(T- t)po(T)- It S*(s t)qo(s) ds, O<=t<-T,

where S*(. is the semigroup generated by the adjoint A* of A. By A*, II* we have
denoted the adjoints of A and II respectively.

Some insight into the problem and Theorem can be gained from the following
simple example. Minimize

(4.14) Iog(x, y(x, t)) dx dt + I. h(u(o’, t)) dtr dt
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in y C(0, T; L2()) and u L"(0, T; L2()) subject to

(4.15) 0__y_ Ay 0 in Q f [0, T],
Ot

(4.16) y u in F [0, T],

(4.17) y(x, 0)= y(x) x f,

where yO6 L2(). The function g: f R R is continuous and convex in y, measurable
in x and satisfies

Ig(x, Y)I <= ClYl2 + ((x) a.e. x 1, y 6 R

where sr L2(12). As regards the function h:R it will be assumed convex, lower
semicontinuous and cofinite i.e.,

lim h(u)/lul +o.(4.18)
1,1-.

In particular we may take function h as

h(u)=ih(u) u 6 Uo,
otherwise

where ho is a continuous convex function on real axis and Uo is a bounded and closed
interval.

Clearly Assumptions (A) and (B) are satisfied where E L2(II), U U2 L2(F)

L(t, y, u)= Iag(x, y(x)) dx + Irh(u(o’)) do"

and is defined by

l(yl y2)=0 if yl yo o.and =+ ify#y

In this case we have also A=II=A, D(A)=H(I’)fqH2(I) and D=-B where
B" L2(F) --> L2(fl) is defined by (3.4). Then as easily seen by (3.5) the adjoint B* is given
by

B*y nn (A)-IY for all y 6 LE(f)

so that system (4.10), (4.11) becomes

(4.19) Op__o+ Apo qo in Q,
ot

(4.20) qo Oyg(x, yo) in Q,

(4.21)
Opo

-Oh(uo) in ,E
On

while transversality conditions (4.12) reduce to

(4.22) yo(x, 0) y(x), po(x, T) 0 a.e. x s II.

Since condition (2.9) holds with a function 3/s Lr(O, T) where 1 <= r < v, we must
choose p in the control space L"(0, T; L2(F)) where p > 8. Of course in the light of
Remark 1, problem (4.14) can be considered over the class of all "mild" solutions
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yL2(0, T;L2())=L2(O) to system (4.15)--(4.16) and we may choose any
LP(O, T; LE(F); 1 < p <, as space of controls.

Thus by Theorem 1, a given pair (yo, Uo) is optimal in problem (4.14) iff there exist
poC(O, T;L2(f))f’ILP’(O, T;H(f)f’IH2(I))) and qoLl(0, T;LE(f)) satisfying
(4.19)--(4.22).

5. Proof of Theorem 1. Since the sufficiency is straightforward we confine
ourselves to prove the necessity of conditions (4.9)-- (4.12).

Let L, and l,,/x >0, denote the functions (see (1.1) and (1.3))

(5.1)

(5.2)

1 U}L.(t, y, u)=inf -- (]y-37 +llu-allz)+t(t, , a); (37,

IIoL. (t, y, u)llL(t, J (y, u )) +-
/g(Yl, Y2)=inf - (1Y1--371 +1y2-7212)+/(71,972); (71, 72)eExE

l(jl (Yl, Y2))+llz (Yl, y2)ll-.
L, (t) and l, are Gteaux differentiable on E x U andE xE and their differential OL, (t)
and Ol, are given by (see (1.4) and (1.5))

(5.3) OLg(t, y; u) =/x-l(ax(y, u)-J (t, y, u)),

(5.4) Olg(yx, y2) =/.t.-l(a2(yx, y2)-Jl (Yl, Y2))

where G (F, ..) and G2 (F, F) are the duality mappings of E U and E x E,
respectively. By virtue of Assumption (A) L,(t, y(t), u(t)) is a Lebesgue measurable
function of whenever y (.) and u(. are Lebesgue measurable.

Let (yo, u0) be any optimal pair of problem (P) and let Wo- 1-I-lyo. Consider
the approximating problem

T

(5.5) inf{I (L(t,y,u)+p-[lU-Uo[[P)dt+l,(y(O),y(T))+1/2[y(O)-yo(O)[2}
where the infimum is taken over all u LP(0, T; U) and y C(0, T; E) satisfying (4.1’).
By condition (b) in Assumption (A) and by (5.1), (5.3) we see that for all y E and
u U, we have

(5.6) L,(t, y, u)_>- (ro, y)+(So, u)+go a.e. t6]0, T[

where go LI(0, T) is independent of Ix. In particular it follows by (5.6) that problem
(5.5) has for each /x >0 a solution (y,, u,) (unique because U is strictly convex).
Remembering that L, (t), l, and the norms of U and E.are Gteaux differentiable, we
infer that (y,, u,) satisfy

TIo ((OyL,(t, y,, u,), y)

(5.7) +(OuLg(t, y, u.)/llu.-uollO-=(u-uo), u>) dt+(OIg(y,(O), yg(T))

+F(y,(0)-yo(0)), y(0))+ (0/, (y, (0), y.(T)), y(T)) 0

for all u e Lo(0, T; U) and y satisfying (4.1’) with ]’=0. We see by (5.3) and (5.6) that
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OyL,(t, y,, u,) LP(0, T; E*) and O,L,(t, y,, u,)6LP(O, T; U*). Let p, 6 C(0, T; E*)
be defined by

T

(5.8) p,(t)=S*(T-t)p,(T)-It S*(s-t)OyL,(s, y,(s), u,(s)) ds

where

(5.9) -p, (T) O.l, (y, (0), y, (T)).

(021 denotes the differential relative to second argument.) We observe that by (4.2) the
operator A*S*(t)H* is ,continuous from E* to U’for each [0, T] and

[[A*S*(t)H*II<z.,u.> < ((t) for 6 [0, T].

Inasmuch as S*(t)H* H*S*(t) on D(A*) we may infer that

(5.10) IIA*II*S*(t)IIL,,u. <= ((t), [0, T].

In particular, it follows that A*II*p, LP’(0, T; U*). Thus substituting y by (4.1’) in
(5.7) we get after some calculations involving Fubini’s theorem that

(5.11) A*n*p, +lluo-u.ll"-(uo-u.)=O.L.(t, y., u,), a.e. t]O, T[

and using (5.9) we find the transversality equations

(5.12) {p, (0) +F(yo(0)- y, (0)), -p,(T)} O/, (y, (0), y, (T)).

By (5.5) we have
T

fo(t,(t, u,,)/p-Xllu uoll at + 1/2ly,, (0) yo(0)[2/, (y, (0), y,(T)) +
(5.13)

T

-< Jo L(t, Yo, Uo) dt + /(yo(0), yo(T))

because L, _-< L and l, <- for all/x > 0. In particular, it follows that {u,} is bounded in
LP(0, T; U) and by (4.1’) this implies that {y,} is bounded in C(0, T;E). Thus
extracting, a subsequence if necessary, we may assume that

u, t7 weakly in L(0, T; U),

(5.14) y, )7 weak-star in L(0, T; E),

y, (t) 37(t) weakly in E for each e [0, T].

Clearly ()7, tT) C(0, T; E)x L(0, T; U) satisfy (4.1’). On the other hand, we have

T TIo L(t, , ) dt +/(37(0), 7(T))-> Io L(t, Yo, Uo) dt +/(yo(0), yo(T))

and

(5.5)

(5.16)

T T

liminflo.-,o
L"(t’ Y"’ u") dt >= Io L(t, , ) dt

lim inf/.(y, (0), y(T)) >/()7(0), 37(T))
p..-.* O
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which in conjunction with (5.13) and (5.14) imply

(5.17) u,- Uo strongly in LP(0, T; U),

(5.18) y, - yo strongly in C(0, T; E).

The justification of inequalities (5.15), (5.16) is seen by invoking relations (5.1) (5.4)
and the weak lower semicontinuity of on EE and of convex integrand
L(t, y, u) dt on LP(0, T; E) L(0, T; U).

We have in mind to pass to limit in equations (5.8), (5.11) and (5.12). To this
purpose some a priori estimates on p are neceesary. The first is given by

LEMMA 2. (T); 0/ -< 1 is a bounded subset ofE*.
Proof. Since the proof is essentially the same as that of Lemma 2 in [5] (see also [6,

p. 230]) it will be outlined only.
First we assume that condition (4.7) holds i.e., there exist y C(0, T; E) and

u L(O, T; U) satisfying (4.1’) and such that

L(t,y,u)LI(O,T), y(T)int(xE;(y(O),x)D(l)).

Therefore, there is p > 0 and C 0 such that

l(y (0), y (T) + ph) C for all h E, Ihl = 1.

Next by (5.12), we have

(p, (0), yu (0)- y(0))

(S.19) -(p(T), y,.,.(T)-y(T)-ph)+(F(yo(O)-y,(O)), y,(0)- y(0))

-> 1, (y (0), y, (T)) I, (y (0), y (T) + ph)

while by (4.1’), (5.8) and (5.11) we see that

-(p,(0), y,(0)-y(0))+ (p,,(T), y(T)- y(T))
T T

>-- Io (L,(t, y,, u,)+p-llu, -Uoll p) dt- Io (L(t, y, u)+p-llu -Uoll) dt.

Combining the latter with (5.19) we get

(5.20) Ip.(T)l -< C for all/z >0

as claimed. (In the sequel we shall denote by C several positive constants independent
of .)

Let q" E E --> R be the convex function defined by
T

qg(hl, h) inf IJo (Z(t, , u)/p-llull) dr; y(0)= hi, y(T)= h.;

(y, u satisfies (4.1’) }.
Clearly q is lower semicontinuous and its effective domain is the very set C. If
condition (4.8) holds, then there exist y e C(0, T; E) and u LP(0, T; U) satisfying
(4.1’) and such that

q(y(0),y(T)+ph)<-C foralllhl-<l.
Then proceeding as in [5] we find that {]p, (T)I} is bounded.

We continue the proof of the theorem by noticing that by virtue of Assumption (A)
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there exist a LP(0, T), x LP(0, T), p >0 and Vh "[0, T]- U such that
a.e. ]0, T[ and for all h E, lhl 1,

L(t, yo(t)+ph, Vh(t))a(t) a.e. t]0, T[.

Next by (5.11) and definition of OL. we have,

(OyL.(t, y., u.), y. yo-ph)

+ (A*H*p. + E(Uo- u.)l[Uo- u.[-2, u. Vh)

L.(t, y., u.)-a(t), a.e. ]0, T[.

Invoking (5.6) and (5.18) we find the latter yields for a sufficiently small

ladLe(t, y., u.)] c(llull + )(lluo- u.ll
(5.21)

+l[a*n*p.ll)+ (t), a.e. ]0, T[

where 6 L(0, T). We set q, 3yL, (t, y,, u,). Now taking into account Lemma 1 and
(5.8), (5.10), (5.21) we obtain

T

]lA*n*p. (t)[I C((T- t)+ [ (s t)( + Ilu. (s)ll),
(5.22)

([IA*n*p.(s)ll+l[uo(s)-u.(s)ll-) ds + a) for an [0, T].

Next by Young’s inequality we have

(; (,T ((s t)’]u, (s )" "A*H*p, (s )" ds) " dt) /’’

( l(t)O’d lu, (s) {A*H*p, (s)l ds

n(T-O) llA*H*p,(t)ll’d for 0N O N T

where limto n(t) 0. We may therefore conclude from (5.22) that {I_ IA*H*pll’ dr}
is bounded where is some positive constant. By (5.8) we see that {]p (t)l} are uniformly
bounded on [T- , T]. Now reasoning as above with T replaced by T- we get after
some steps that {A*H*p,} is bounded in L’(O, T; U*) and

(5.a) l,(t)l c for e [0, T].

It.should be observed that (5.21) also implies that {q,}c L(0, T; E*) is equibounded
and the measures {O(O)= Io q,(t)dr; 0 measurable subset of [0, T]} are uniformly
absolutely continuous. Then according to Dunford-Pettis criterion in Banach spaces
(see [7]), the set {q,} is weakly compact in L(0, T; E*). Hence there exists a
subsequence (again denoted q,) such that for 0,

(5.24) q, qo weakly in LI(0, T; E*).

Extracting further subsequences, we may also assume that

(5.25) p,(T) opr weakly in E*,

(5.26) p, Po weak-star in L(0, T; E*),

(5.27) A*H*p A*H*po weakly in L’(O, T; U*).
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It follows from (5.25) and (5.8) that for each [0, T],
T

(t) - po(t) S*(T t)pr Jr S*(s t)qo(s) dsP,

in the weak topology of E*.
Since y, (t) - yo(t) uniformly on [0, T] and F is demicontinuous on E we may pass

to limit in (5.12) to obtain

(5.28) (po(0),-po(T)) 0/(yo(0), yo(T)).

The justification of the final assertion is seen by recalling that 0/,(y,(0), y,(T))
Ol(-t.(y(O), y(T))) and the fact that Ol is demiclosed in E E (see e.g. [6, Chapter
II]). To conclude the proof it remains to verify (4.11).

By (5.11) and definition of 0L. we have

L.(t, y., u.)<-L.(t, y, u)+(q., y.-y)

+ (A*II*p. +lluo-u llO-= (uo-u ),
for all u e L(0, T; U) and all y e C(0, T; E).

Integrating over [0, T] and letting tx tend to zero we obtain
T t’T t"T

(5.29) Jo L(t, yo, Uo)dt<= Jo L(t, y, u)dt+ Jo ((qo, yo-y)+(A*l-l*po, Uo-U))dt.

(Here we have used relations (5.15)---(5.18), (5.27) and the demicontinuity of the
duality mapping E.) By (5.29) we may conclude by a standard argument that

(qo(t), A*II*po(/))e OL(t, yo(/), Uo(t)) a.e. 6 ]0, T[

thereby completing the proof.

6. Duality and boundary observation. Given functions L(t) and l, define

(6.1) M(t,p,q)=sup{(p,v)+(q,y)-L(t,y,v);yE,vU} forpeU*,qE*

and

(6.2) m(pl, p2)=sup{(pl, yl)-(p2, y2)-/(yl, y2); yl, y2E} forpl, p2E*.

It is well known that M(t) and m are convex and lower semicontinuous on U* E* and
E* x E*, respectively.

We define the dual of (P) (with f=0) to be the following control problem:
Minimize

T

(P*) Jo M(t, A*l-I*p(t), v(t)) dt + m(p(O), p(T))

over all v LX(0, T; E*) and p C(O, T; E*)f-ILr(O, T; D(A*H*)) subject to

(6.3) p’+A*p v on ]0, T[.

Here r ]1, +oo[ is a fixed number.
To make the formulation rigorous, one needs, besides Assumption (A), to assume
(A’) M(t, q(t), v(t)) is a measurable function of whenever q(t): ]0, T[- U* and

v(t): ]0, T[E* are measurable in t. There exists r/La(0, T)such that

(6.4) M(t, q(t), v(t)) >- rt(t) a.e. e ]0, T[.
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Assumption (A’) implies that the cost expression (P*) is well defined (either a real
number or +c) for every pair (q, v) L (0, T; U*) L (0, T; E*).

The general theory of duality for convex optimization problems leads us to expect
that the coextremal arc po arising in Theorem 1 is a solution to dual problem (P*).

PROPOSITION 1. The functions po6C(O, T;E*)fqL(O, T;D(A*H*)) and qo
LI(0, T; E*) satisfy along with yo and Uo the optimality system (4.9)--(4.12) ifand only
if (po, qo) is an optimal pair in problem (P*) and

(6.5) min P* + min P 0.

Proofi By the conjugacy formulas (6.1) and (6.2) we see that (4.11) and (4.12) are
satisfied if and only if

L(t, yo(t), Uo(t)) + M(t, A*II*po(/), qo(t))

(yo(/), qo(t))+ (Uo(t), A*II*po(t)),

respectively

l(yo(0), yo(T)) + m(po(O), po(T))= (yo(0), po(0))-(yo(T), po(T))

while for arbitrary y C(0, T;E), uLP(O, T; U),p6C(O, T; E*) f)
Lr(O, T; D(A*H*)) and v LI(0, T; E*); it would be true that

L(t, y(t), u(t))+M(t, A*II*p(t), v(t))
(6.6)

>=(v(t), y(t))+(u(t), A*II*p(t))

respectively

(6.7) /(y (0), y(T)) + m(p(O), p(T))_>-(y (0), p(O))-(y(T), p(T)).

Integrating both sides of inequality (6.6) and adding (6.7) we get
T T

o
L(t, y(/), u(t)) dt + Jo M(t, A*H*p(/), v(t)) dt >-_ 0

for all (y, u) and (p, v) satisfying systems (4.1) and (6.3), respectively, with equality if
and only if y, u, p and v satisfy system (4.9) (4.12). This completes the proof.

It should be remarked that like primal problem (P), the dual problem (P*) involves
unbounded observation. In fact (6.3) with the observing operator A’H* may be regarded
as a distributed control system with boundary observation. To be more explicit let us
consider the special case BI-=0 and U1 ={0}. Then the observing operator A’H*
expressed as

(6.8) A*II* (orB-XoB)*-B*(A-XoI)*

is defined from E* to the boundary control space U2*.
Coming back to the example considered in 4 we see that

(6.9) M(t, p, q)= Ia g*(x, q(x)) dx + Ir h*(P(tr)) dtr

and

(6.10) re(p1, p2) (pl, yO) if p2 0; m(pl, p2) + if p2 0.

Here g*(x,. and h*(. are the conjugates of g(x,. and h (.), respectively. On the other
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hand, by (6.8) we see that

A*II* -O/On.

Thus the dual problem to (4.14)---(4.17) is: Minimize

(6.11) Iog*(x, v(x, t)) dx dt+ It. h*(-Op(t, or)/On)dtdcr+ Ip(O, x)y(x)dx

over all p C(0, T; L2(f)) and v LI(0, T; L2(f)) subject to

OP+ Ap v onQ,
ot

(6.12) p =0 onE,

p(T,x)=O forx

This is a distributed control problem with boundary observation p -Op/On. It is well
known (see e.g. [15, vol. II, p. 22]) that if v L2(Q) then the solution p to (6.12) belongs
to L2(0, T; H2() f)H (f)) and therefore Op/On L2(O, T; H1/2(F)) c L2(E).
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FINITE ENERGY APPROXIMATIONS IN STOCHASTIC
AND DETERMINISTIC DIFFERENTIAL GAMES*

EMMANUEL NICHOLAS BARRON

Abstract. By penalizing the players in a differential game of fixed duration for large energy use the game
will always have (i) a value (ii) a saddle point in pure strategies and (iii) a well-formulated Hamilton-Jacobi
equation. Furthermore, under certain regularity conditions, the saddle points can be characterized as the
solution to a system of ordinary differential equations. The case where the control functions can be any
measurable function have none of the properties (i)-(iii) above and are difficult to solve. However, by
considering our finite energy games we can approximate the measureable case. It also seems more realistic to
have an "inertial effect" in the controls. We consider both deterministic and stochastic versions.

Introduction. The concept of a differential game was introduced by R. Isaacs in the
early 1950s and was applied to the solution of various practical problems. In the 1960s,
W. Fleming, A. Friedman, R. Elliott and N. Kalton, and others rigorized the formalism
introduced by Isaacs to present and develop a mathematical theory of differential
games, both deterministic and stochastic. These authors, furthermore, applied the
theory cf differential games to obtain theorems in other mathematical disciplines,
particularly in the global theory of first order, semilinear partial differential equations.
Later, R. Jensen obtained a very nice characterization of the asymptotic behavior of the
solution of a second-order semilinear parabolic equation based on the theory of
stochastic Lipschitz differential games. The theory continues to be developed by these
and other authors and has led tO new results in optimal stopping problems and nonlinear
variational inequalities.

For applications the systematic method of constructing the value function and
optimal strategies consists of solving a minimaximization problem to find the strategies
and then a highly nonlinear first order Cauchy problem by the method of Cauchy
characteristics. Assuming that this local solution is in fact a global solution with strong
regularity then one can show that this is the value function.

To be precise, consider the differential game associated with dynamics

(I.1)

(I.2)

and payoff

d/dr f(r, , rl, (), < r <- T,

c(t) x

T

(1.3) J(r/, ()= I, h(s, , rl, () ds.

Here r is the maximizer, ( is the minimizer. The control sets are Y and Z, respectively.
If the Isaacs’ condition

(I.4)

H+(t, x, r)=min max {r. f(t, x, rl, ()+ h(t, x, r/, ()}
tjZ ne Y

=maxmin{r.f(t,x, n,()+h(t,x,
n Y Z

=H-(t,x,r)
holds, then the game has value V- V(t, x) (i.e., V= V/= V-, V/= upper value,

Received by the editors May 3, 1979.
Bell Laboratories, Inc., Naperville, Illinois 60540.
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V-= lower value). If the functions f and h are sufficiently smooth, V(t, x) satisfies the
Hamilton-Jacobi equation

(1.5) Vt + H/(t, x, Vx V) 0

almost everywhere, with

(I.6) V(T,x)=O.

If there are function r/*(t, x, r) and ’*(t, x, r) attaining the max and rain in (I.4)
which are smooth and V(t, x) is C then the pair (r/*, r*) is a saddle point in pure
strategies. These are obviously very stringent conditions. However, the hardest part of
the above for applications is (i) verifying (I.4) holds; (ii) finding r/*, r* and (iii) solving
(I.5), (I.6). When f and h are linear in rt, r the problem becomes much simpler but then
the model is often less credible.

In an attempt to simplify the problem above we introduced in 1], [2] the restriction
of forcing the players to choose Lipschitz control functions starting at fixed control
positions y and z. We showed that in this case Lipschitz value will always exist even in
the absence of (I.4). The Hamilton-Jacobi equation for this function is much simplified
but still very difficult to solve: if vM’L(t, X, y, Z) is the value then it satisfies a.e.

(1.7) V"L + V"t" .f(t,x, y,z)+MlV’tl-LlVz’Ll+h(t,x, y, z) 0.

Furthermore an approximate saddle point in pure strategies will exist. This is an obvious
improvement over the measurable case but still not entirely satisfactory.

In this paper we will restrict the controls in a different manner. Here they are
required to be absolutely continuous with first derivative square integrable. Thus only
the energy is required to be finite. Without a fixed bound on the energy this results in
identical results as in the measurable case. However if we also force the controls to start
at fixed positions y and z and further penalize the players for large energy uses we arrive
at new, and simpler results. We penalize by taking the new payoff.

T

PM.Z.(rI, )= ) h(s, , q, ) ds

(I.8)

+--
for M, L >0. Call this new game a Sobolev differential game. Then we prove the
following:

(i) The value of a $obolev game always exists even in the absence of the Isaacs
condition. Denote it by WM’(t, x, , z), indicating the dependence on the initial time t,
state x and control positions y and z.

(ii) WM’L satisfies a.e.

(1.9) W"L +W"L f+ M/a[W’L 12-Z/41W"L 12 + h 0.

(iii) If WM’ is Ca the functions r* and (* solving

d/dr f(r, ,f, rt, ), < r <= T,

drt/dz M/2W’ (z, , rl, (),
(I.10)

d(/dz -L/2WY’ (z, ,f, rl, (),

(t) x, r/(t) y, r(t) z
form a saddle point in pure strategies.
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Furthermore, we study the corresponding Sobolev game when the dynamics are
stochastic differential equations and the control functions are perturbed by a Brownian
motion. We show that this game has a value and that a saddle point in pure strategies
always exists.

Finally, to relate Sobolev games with measureable games we consider the behavior
of WM’" as M, L--> oe; that is the penalty terms in (I.8) goes to zero. Then using the
results of Jensen [9] we.show that

lim lim WM’L-- V+, lim lim WM’L= V-,
L--, M--, Mcx3

a result analogous to that obtained in Barron [1] for Lipschitz games.

1. Sobolev gamesmdefinitions and elementary properties. For any positive
integer m, R will denote Euclidean m-space and I" the norm in R m. Let I [0, 1] and
I" denote the cartesian product of I with itself m times.

We are given functions f: [0, T] x R x Ip X Iq - R and h [0, T] x R x Iv x
Iq R 1. Throughout this paper the following assumptions will hold regarding the
functions f and h:

(A) f and h are bounded and uniformly Lipschitz continuous
on [0, T] x R x Iv x Iq.

Consider the system of m ordinary differential equations for the function (.

(1.1) d/dr=f(r,(r), rl,() (O<-t<r<=T)

with initial conditions

(1.2) (t) x, xR

Substituting any pair of measurable functions r/= r/(r) and sr st(r) on 0 _-< -<_ r _-<

T with values a.e. in Iv and Iq, respectively, yields a unique, absolutely continuous
on [t, T]--called the trajectory corresponding to r/(r), sr(r)nwhich satisfies (1.1) almost
everywhere.

Any pair of functions r/(.), ’(.) which yields a unique trajectory will be called
control functions.

Let J be any subinterval of [0, T], Jr--It, T] and A c_ R v, B c_ R q be any sets.
Define the following classes of functions

and

Y(J; A) {7(. ): Y -> AI/(r) (,/l(r), , rip(r)),

is absolutely continuous on or, f 2 (r) dr < oo, 1 =< -<_ p}i(r)

Z(J; B) {so( ): J--> Bier(r) (’I(T), ", q(T)),

is absolutely continuous on J, f: (r) dr < oo, 1 -< ] <_- q},’(-)

where "." denotes d/dr.
For fixed [0, T], y A, z B, let

Y(Z; A)= {n(’) Y(Z; A)In(t)= y}
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and

Zz (L; B) {if(. e z(L; B)lff(t) z}.

Given any functions rt(’) Y(J; Ip) and st(.)e Z(Jt; Iq) let :(.) on It, T] denote
the corresponding trajectory. For given positive constants M and L let P(rt, sr) denote
the corresponding payoff:

Tt’

P(r), )= I. h(s, (s), n(s), ((s)) ds

(1.3) - I(S)l2

ds- I,)(s)l =

Using the function classes Yy (J; A) and Zz (J; B) we can define a differential game
associated with (1.1)-(1.3) in a manner similar to that in Friedman [4], [5] for
measurable games and Barron [1], [2] for Lipschitz games. We will omit the precise
details and simply refer the reader to the above references for clarifications.

To set the notation, for the partition of Jt It,. T] into n subintervals of equal length
6 n-l(T- t) we let Fs, F8 and As, As denote the upper and lower &strategies for the
functions rt and r, respectively. Thus, for example, if (rs, r/s) denotes the outcome of a
pair (As, Fs) then ((.)Zz(J;B) and rtS(.) Yy(J;A).

DEFINITION. The &strategies Fa, Fa for rt and As, As for sr mapping into Yy (J; A)
and Z(J; B), respectively, will be called Sobolev &strategies. Write Fs or Fs e
Yy(J; A) and As or zXa e Zz(Z; B). A &game in which a player chooses a Sobolev
&strategy will be called a Sobolev 8-game or a finite energy &game.

With A Ip and B Iq define the Sobolev upper and lower &values by

sWM,L (t, x, y, z) inf sup p[As, F
A F

and

WS,M,L(t X, y, z) =sup inf P[F,,

respectively. We have indicated the dependence of the &values on the initial time
[0, T], the initial state x R" and the initial control positions y e I" and z 61q.
Remarks. a) The defining term "Sobolev" is used to point up the fact that we are

taking our control functions out of the well-known Sobolev space W1’2 of functions with
first derivative square integrable. In a "measurable" differential game the controls are
allowed to be any measurable functions. Thus in a Sobolev game we consider a much
smaller class of functions.

b) It follows from Gronwall’s inequality that the set of all trajectories (r)
determined by control functions from Yy and Zz is a uniformly bounded set.

In what follOws we shall need to extend the Sobolev &values defined above on

[0, T] x R x I x Iq to the entire strip [0, T] x R" x R x R q. We do this as follows.
Define F(t, x, y, z) and H(t, x, y, z) on [0, T]x R R t R as the even, periodic

(period 2) extensions of the functions f(t, x,. ,. and h (t, x, .,. ), respectively, in the y
and z coordinates. Thus, F and H are of period 2 in y and z separately and, for any
yR’,zRq

g(t, x, y, z)= g(t, x, +/-y, +/-z),

g(t, x, y, z)= g(t, x, y, 2-z)
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and

g(t, x, y, z)= g(t, x, 2- y, z)

holds for both g F and g H. Obviously, F andH are uniformly Lipschitz continuous
in (t, x, y, z) and are bounded with the same constants as those for f and h. Furthermore
F(t, x, y, z) f(t, x, y, z) and H(t, x, y, z) h(t, x, y, z) on [O, T] x R" x IP x Iq.

Given a pair of Sobolev 6-strategies (A,F) with AZz(Jt; R q) and F
Yy (Jt; R P) we define the extended Sobolev upper 6-value associated with the dynamics
(1.1)-(1.2) with f replaced by F and payoff (1.3) with h replaced by H and denote this
extended -value by - )W,(t, x, y, z). Note that the outcome unctions ((, asso-
ciated with (A, F) satisfy ((’) Z(L; R) and (.) Yy(L; R).

Denote by P(, (), the payoff (1.3) with h replaced by H. P(, ()= P(, () when
(z) Ip and ((z) I for all z Jr.

Similarly we define the extended Sobolev lower 6-value associated with (1.1)-(1.3)
(with F and H) and denote it by ,,(t,x, y,z). Here a pair (F,A) satisfies
Fs Yy(Jt; R) and A sZ(Jt; R).

Notation. In the remainder of this paper we write Yy Yy(Jt;R ) (y 6 R) and

r Yy(Jt;I) (y 6 I’). Similarly Z Z(Jt;R) (z 6R) and Z Z(Jt;I) (z

To show that W, and ,, actually extend W, and W,, we present the
following

LEMMA 1.1. For any 6 [O, T], x 6 R , y 6 Ip, z 6 I" and all 6 > O
(i) W, (t, x, y, z) (t, );WM. X, y, Z

(ii) W,,(t, x, y, z)= W,,(t, x, y, z).
Proof. We only prove (i); (ii) is similar.
For y I and z I we will show that

W, (t, x, y, z) inf sup P[A, F]
AZz F Yy

(1.4) inf sup p[A,,F]
AeZqz F’s

Wt,L(t,x, y,z)

for all [0, T], x R’. The difficulty occurs in the fact that the control functions
determined by a pair (, F) may leave the cubes I and I. However, even should the
controls leave these cubes we can achieve a similar effect through using controls which
remain in the cubes. To see this we will take for simplicity p =q 1.

By considering classes of control functions we clearly have

(1.5) inf sup P[, F] W, inflz sup P[, F].
AZFY A FYy

Given e > 0, by (1.5) there is an extended Sobolev upper -strategy * Yy for
the player so that

(1.6) W*. (t,x, y, z) < P[(, (()] +e=

for every control (. ) Z
For a given (. ) ZI define the Sobolev upper 8-strategy *Fa yly as follows"
Let a() a(?)(), T. Then, since a yy is an extended Sobolev 8-

strategy, a(t) y and a(.) yy yy(y; R). If a() i1 =E0, lfor all define
*Fa(?)() a() andwe are done. If a()leaves[0, 1 at some time , t<< T then
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we reflect back into [0, 1] with respect to the line of crossing (either y 0 or y 1). If
this reflected function then again crosses y 0 or y 1 we reflect back into [0, 1] again.
Continue this process up to time T. See Fig. 1. Denote the function just defined by
*riB(z). Then by the definition, *r/8(t) y (since y [0, 1]) and *r8(r) I1 [0, 1] for
all r art.

FIG.

Furthermore, for every z at which 8 (.) is differentiable other than those r’s at which
(r) leaves an interval [n,n + 1], we have, by definition that *r/(.) will also be
differentiable at these z’s and */ts(r)=+/-8(r). The + sign will hold on the even
numbered reflections or when 8(r)6[0, 1] and the sign will hold on the odd
numbered reflections.

Since r 8 (r) is an absolutely continuous function, * rt
8 (r) will cross the boundary of

[0, 1] at most a countable number of times, namely the reflection times. At these times
r 8 may not have a derivative even though 8 may. Hence, altogether * r/8 will not have

a derivative on a subset E of [0, T] of Lebesgue measure zero. The set E consists of the
reflection times and the times at which 8 is not ditterentiable.

8Taking these properties of *r/ into account, it follows from the fact that 8 6 yy
that

(1.7) Ir,*:ls(s)2 ds= Ij,\E * (s) ds I (s)- ds < +oo

and so *r/8 e y1y.
Define *F8 (sr)(r) -- * r/ (r), r J.
Since F and H are even 2-periodic functions in y, we have from the definition of

r/8 that

(1.8) F(r, ", (I 8 (r), ((r)) f(z, "., * rl
8 (r), ((r))

and

(1.9) H(r, ., 8(r), (r))= h(r, *’1 (), ((r))

for r e J and any st(r) e Z az.
Let g8 be the trajectory corresponding to (r 8, ’), that is, the solution of (1.1), (1.2)

with r/= 8 and f replaced by F. Let .:8 be the solution of (1.1), (1.2) corresponding to

(*r/8, st). Then, it follows from (1.8) and the uniqueness of solutions that *8(r) 8(r)
for all r J. Furthermore, from (1.7) and (1.9) we have that

(1.10) e(.r/8, st) e[., .r8 (()] =/5[., [.8 (st) =/5(} 8, st).

Using (1.10) in (1.6) and taking infazl supry gives that

WM.t. (t, x, y, z) --< inf sup P[As, Fs] WM.C (t, X, y, Z)
AZz rn Y
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by the fact that e was arbitrary. The opposite inequality is proved similarly using the first
inequality in (1.5). This completes the proof.

LEMMA 1.2. As a ]:unction of y and z, ff.SM.L (t, X, y, Z) and IfVs.M.L (t, X, y, Z) are
even periodic functions (in y and z separately) o]’period 2.

Proof. Take p =q 1. Given any y R and a control function rt(r) Yy
Yy(Jt;R1), define (r) Y_(Jt;R ) as the reflection of (r) about y=0. Then,
clearly, (r) -(r) for almost every r Jt. Hence, using the evenness of F and H and
the fact that ,2(r) dr=,(z)dz it is easy to see that (t,x,y,z)

(t, x, );u. -y, z that s, WM. IS an even function in y. The remaining definitions of
even 2-periodic in y are also easily seen to hold and we leave these to the reader.
Similarly, W, is an even 2-periodic function of z.

Remark. It follows from Lemma 1.2 that the study of M.L(t, X, y, Z) and
.M,L(t, X, y, Z) may be restricted to the study of these functions for y I and z I.

2. The equivalent L2-diterential game. In this section we formulate a differential
game in which the control functions are allowed to be any L2 functions. This game will
be shown to be equivalent to the Sobolev game presented in 1; however, it is much
easier to work with and makes the theorems more readily apparent.

Denote by L2(A) the Lebesgue space of square integrable functions on Jt with
values in the subset A of some Euclidean space.

Consider the system of m +p + q ordinary differential equations for the functions
(r), r/(r) and ((r) on Jr:

(2.1) dUdr F(r, ((r), rt(r), ((r)),

(2.2) drl/dr u (r),

(2.3) d(/dr=v(r)

with initial conditions

(2.4) (t) x 6 R ", r/(t) y 6 R p, ’(t) z R q.

Here u(r)=(ul(r),’..,up(r)) and v(r)=(vl(r),"’,vq(r)) are measurable
functions with u L2(R), v L2(RO).

Consider the L2-differential game as defined in Friedman [4, Chap. 7] associated
with the dynamics (2.1)-(2.4) and the payoff

T

K(u, v)= I H(s, (s), rl(s), ((s)) ds

(2.5)

+ Iv(s)l ds--- lu(s)l ds.

The players in this game are u and v, with u the maximizer of K and v the
minimizer of K; u is any function in L2(R) and v is any function in L2(Rq). Note that
for any pair (u, v), there is a unique solution (sc, r/, sr) of (2.1)-(2.4) and hence K is
well-defined.

Denote by KS(t, x, y, z) and K(t, x, y, z) the upper and lower 8-values, respec-
tively, of the L2 game defined above and denote the upper and lower 8-strategies for the
players u and v by s, s and s, e, respectively.

The following lemma is readily seen.
LEMMA 2 1 KS(t, x, y, z) s=- Wt.L (t, X, y, Z) and Ks(t, x, y, z) ]’rS,M,L(t, X, y, 2:)

for any [0, T], x R’, y R and z R, ]:or all 6 n-l(T t) > O.
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We omit the proof of Lemma 2.1 since it is similar to the proof of Lemma 2.1 in
Barron [2]. The lemma establishes the equivalence of the Lz and Sobolev differential
games.

Our next lemma shows that in computing Ks and Ks we can restrict ourselves to
looking at &strategies which will keep the trajectoris r/and r in the cubes Ip and Iq if
the initial trajectory positions are in these cubes. To be precise we make the following

DEFINITION. We define the following classes of L2 6-strategies.

As {q% for v; V(I)s for u, if (vs, u s) is the outcome of (q%, s) and (:, r/, st) the
corresponding solution of (2.1)-(2.4), then r(r) e Iq, 7" Jt},

.Es {s for u; vqs for v, if (vs, u s) is the outcome of (grs, s) and (, r/, r) the
corresponding solution of (2.1)-(2.4), then r/(r) Ip, r Jt}.

Similarly we define As (for s) and Zs (for (I)s). Note that, for example As if z Iq.
LEMMA 2.2. For [0, T], x R ", y I, z Iq and all 6 > 0
(i) Ks (t, x, y, z) inf.A sup,x,% K[s,
(ii) Ks(t, x, y, z)= sup.x inf,%A K[s,
Proof. We will only prove (i).
Since As. is a proper subset of the class of all s strategies for v we have

(2.6) KS(t, x, y, z)<= inf sup K[s,
8A8

Given e > 0 there is an upper 6-strategy s for u such that

(2.7) Ks _-< K[s,]+ e

for every s
Given s6As, let (vs, a s) denote the outcome of (qs, s) and let

denote the corresponding solution of (2.1)-(2.4). As shown in the proof of Lemma 1.2,
given s (.), there is a function which can be constructed by reflection, call it s (.) on Jt
so that ts(r)I for all rJt and s(r)=+s(r) for almost every rJt. By the
properties of F and H in the y and z variables we have

F(r, 1 s (r), s(r)) V(r, S (r), (s(r)) and
(2.8)

H(r,., s(r), (s(r))= H(r, ", Ors(r),
Define ti s (t) 0 and t s (r) Os (r), < r <= T. Set s(vs)(r) a s (r). Since s is an

L2 &strategy, t7 s (.) L2(R). Also, by the definition of s we have

s {s; if (vs, u s) is the outcome of (q%, s) and s A then the r/solution of
(2.1)-(2.4) has image in I

Since A s
_

y_,s, we have s 6

It follows from (2.8) and the fact r s (r) +/s (r) a.e. that if (s, s, srs) denotes the
solution of (2.1)-(2.4) corresponding to (q%, s) then ,Ts (s and as a consequence

From (2.6) and (2.7) we then have

Ks(t, x, y, z)-- inf sup K[s,(I)s]
qA

<- inf sup K[s,

Similarly we prove the reverse inequality. This completes the proof.
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To apply the theorems of Friedman [4], [5] we need bounded control sets. Thus we
introduce another class of games. Let r and s be given positive integers. Let

(2.9) ={u6RP;lul-<-r} and W’={vR;Ivl<=s}
The sets r and s will be called control sets.

Consider the differential game associated with dynamics (2.1)-(2.4) and payoff
(2.5) when the control functions u and v are allowed to be any measurable functions
with values almost everywhere in r and o//,s, respectively. Denote the upper and lower
6-values for this game by K ar,s (t, x, y, z) and K (t, x, y, z) respectively.

Since the control functions u and v appear linearly in the dynamics and separated
in the payoff, it follows from Friedman [4, Thm. 2.3.1] that this game has a value which
we will denote by Kr’s(t, x, y, z). That is,

(2.10)

Kr’s(t,x, y,z)=-K+r,s(t,x, y,z)=-limK,s(t,x, y,z)
0

lim K (t, x, y, z) =-- Kr-,s (t, x, y, z).

Furthermore, by Friedman [4, Thms. 2.6.3, 4.2.1] we have that K"(t,x, y,z) is
uniformly Lipschitz continuous in (t, x, y, z), has a total derivative at almost all
(t, x, y, z) and satisfies the Hamilton-Jacobi-Isaacs equation at points of differen-
tiability:

(2.11)

and

(2.12) Kr’s(r, x, y, z)--0.

3. Sobolev differential games associated with Ito differential equations. In this
section we develop the stochastic counterpart of the differential games introduced in

1 and 2. The utility in doing so, apart from interest in white noise perturbed control
systems, allows us to apply powerful partial differential equations techniques to our
games.

Consider the system of m +p +q stochastic Ito differential equations for the
processes (X(r), Y(r), Z(r)) on 0_<-t< r_< T

(3.1) dX F(’r, X(’r), Y(’r), Z(’r)) dr + e dWl(T),

(3.2) dY u(r) dr + e dw2(’r),
(3.3) dZ v(z) dr + e. dw3(z)

with deterministic initial conditions

(3.4) X(t) X E R m, Y(t) y R p, Z(t) Z R q.

Here e > 0 is given and w(r) (Wl(r), w2(r), w3(r)) is a standard rn + p + q-dimensional
Brownian motion on [t, T]. For each u(r)L2(R) and v(r)L2(R q) the form of
(3.1)-(3.4) with our assumptions on F implies by a minor modification of the arguments
in Gikhman and Skorohod [8] (see also Fleming and Rishel [3, Thms. 4.1 and 10.3]) that
there is a unique solution (X, Y, Z) of (3.1)-(3.4) with probability one.
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Corresponding to a pair u(r) L2 and v(z) L2 we compute the number 2{(u, v)
from the conditioned expectation

T

fir(U, U) Et,x,y,z{ I H(s, X(s), Y(s), Z(s)) ds

I (s)l2ds- lu(s)l2as

In an obvious way we can define the stochastic Sobolev (or L2) 6-games associated
with the dynamics (3.1)-(3.4) and payoff (3.5). Let

(3.6)

Y{(t,x, y, z)- inf sup Y{[,

Y{(t, x, y, z) sup inf Y{’[, ]

denote the upper and lower 6-values, respectively. Here, as in 2, , are L2

6-strategies for u and , are L2 8-strategies for v.
The next theorem states that there is a saddle point in pure strategies for the L2

game associated with (3.1)-(3.5).
THEOREM 3.1. There exists a pair of functions (u*, v*) with u* E LZ(R t’) and

v * LZ(R q) satisfying

(3.7) Y{(u, v*) <= Y{(u*, v*) <- Y{(u*, v)

]:or any u L2, v L2.
Remark. Any pair of functions (u*, v*) satisfying (3.7) is called a saddle point in

pure strategies, or a Nash equilibrium pair.
Proof of Theorem 3.1. Let L denote the second-order backward parabolic

differential operator

(3.8) = a/at + (e2/2)ax, y.z,

where

(3.9)
Laplacian in x, y, z of k.

It follows from Ladyzenskaja-Solonnikov-Ural’ceva [10, V Thm. 8.1] that there
exists a unique solution U(t, x, y, z) of the backward semilinear Cauchy problem

U+VxU.F(t,x, y,z)+M/41VyUI
(3.10)

-L/41VzUI + H(t, x, y, z) 0

and

(3.11) U(T,x,y,z)=O.

Furthermore, U(t, x, y, z) is at least twice continuously differentiable in (x, y, z) and
O U/Ot is at least continuous.

For this function U(t, x, y, z) let ((*, r/*, (*)(-) denote the unique solution of the
system of deterministic ordinary differential equations

(3.12) dj/dr FCr, , rl, () (0 <= < r <- r),
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(3.13)

(3.14)

with initial conditions

dq/dr M/2VyU(r, s, r/, r),

d(/dr =-L/2VU(r, , q, )

(3.15) (t) x, n(t) y, ((t) z.

That (sc*, r/*, st*) exists follows from the properties of the solution U and standard
existence theorems in the theory of o.d.e.s.

Define the functions u*(r), v*(r) by

(3.16)
u*(r) M/2VyU(r, *(r), n*(r), r*(r)),

v*(r) =-L/2VU(r, ,5*(r), rt*(r), r*(r)).

Then by [10, V Thm. 8.1], u* e L2(RP), v* L2(Rq).
Now, for any u(r) L2(Rp), v(r) L2(R q) if we denote Yg(u, v) given in (3.5) by

O(t, x, y, z), then g, satisfies

(3.17)
1 1 12&+Vx6"F+Vy6"u +VO’v +H-lul2+lv =0

and

(3.18) O(T,x,y,z)=O.

The argument in 4’, F and H is (t,x, y, z). The proof is a minor modification of
Fleming-Rishel [3, pp. 128 and 148].

Then g,*(t, x, y, z) =- Y{(u*, v*) satisfies 0*(T, x, y, z)=0 and

(3.19)
g,* + V,,g,*. F + Vy4,*. M/2VyU + V4,*. (-L/2VzU)

1 12 1
+ H-IM/2VyU +--I(-L/2VzUll2=0

with the argument of g,*, F, H and U being (t, x, y, z). Y{(u*, v*) is the payoff of the
game (3.1)-(3.4) with u u*, v v*.

Consider now (3.10) for U; it can be written as

(3.20)
U+VU F +VyU (M/2VyU)-M/41VUI

+VU. (-L/2VU)+ L/41V=UI2 +H O.

Comparing (3.20) with (3.19) we see that g,* and U satisfy the same equation
(3.10). Since also U(T, x, y, z)= 6*(T, x, y, z)=0 we have by uniqueness

(3.21) U(t, x, y, z)=- g,*(t, x, y, z)= Y((u*, v*).

Given any v(r) L2(Rq), let &(t, x, y, z) solve &(T, x, y, z) 0 and

’,;b + Vx,;b’ F + V,,;b u* + V2’ ;U

(3.22) 1 1 I- lu*l +/4 o,

where u* is given by (3.16) and is u*(t) in (3.22). For the function U(t, x, y, z) defined as



256 EMMANUEL N. BARRON

the solution of (3.10)-(3.11) we have for any v EL2

1 12 1
,zU + VxU" F + VU" u* + VzU" v --Iu* +-ilvl2 + H

1
(3.23) =U+VxU.F+M/41VyUI2-L/4]VzUI2+-Iv+L/2VzU]2+H

1

Since also U(T, x, y, z)=(T, x, y,z)=0, by the maximum principle for parabolic
equations [10] we have from (3.22) and (3.23) that

(3.24) U(t,x, y,z)<-(t,x, y,z) (t,x, y, z)e [0, T]R’RxR.
Given v e L2, let Y{’(u*, v) denote the payoff (3.5) for the stochastic L2 game with

dynamics (3.1)-(3.4) with u replaced by u* given in (3.16). Let *(t, x, y, z)-- o%(u*, v).
Then by (3.17) we see that * satisfies (3.22) and *(T, x, y, z)=0. By uniqueness we
have that * ---. Then combining (3.21) with (3.24) and using the fact that 4’* we
have shown that for any e L2

Y(u*, v*) <- Y(u*, v).

In a similar manner we see that for any u e L2

Ye(u*, v*) >- Ye(u, v*);

that is

Y{(u, v*) <- 2(u*, v*) <= 2(u*, v)

for any u L2(RP), v L2(Rq). This completes the proof.
Since any game having a saddle point has a value we immediately deduce the

following corollary (c.f. Friedman [4, Thm. 1.6.2]).
COROLLARY 3.2. Forany (t,x, y, z)E[0, T]xRmxRPR

lim Y{(t, x, y, z)= lim Y{’ (t, x, y, z)=- Y{’(t, x, y, z).
80 8-0

Furthermore Y{(t, x, y, z)= Y{(u*, v*).
DEFINITION. The function YE(t, x, y, z) is called the L2-value of the stochastic

game associated with (3.1)-(3.5). Corollary 3.2 implies that L2-value exists whenever
condition (A) holds even for nonlinear games and in the absence of the Isaacs condi-
tion [5 ].

Regarding the properties of the function Y{’(t, x, y, z) we have the following
THEOREM 3.3. YF(t, X, y, Z) is the unique solution of the backward, semilinear,

parabolic Cauchy problem

(3.25) Y{t + eZ/2Ax.y.z)7{ + VxY{ F + M/4IVyYE] L/41Vz:Tg] +H O,

(3.26) Y{(T, x, y, z) 0.

Furthermore Y[(t, x, y, z) is an even periodic function in y and z ofperiod 2.

Proof. The first assertion is immediate from Corollary 3.2 and the proof of
Theorem 3.1.

Let y (yl, , Yv), -Y (yl, -Yi, Yv) for any 1 =< =< p. The function
Y{(t, x, -y, z) also satisfies the problems (3.25), (3.26) by the fact that F and H are even
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in y. By uniqueness of(t, x, -y, z) 2g’(t, x, y, z) and hence 2f is even in y. The remaining
assertions are shown similarly.

4. The Hamilton-Jacobi-lsaacs equation for deterministic Sobolev games. In this
section we use our results developed in 3 and further results developed below
regarding stochastic games to determine some facts regarding the deterministic case.

For r and s given positive integers let 0 and 7/s be the control sets given in (2.9);
i.e., 0?/r is the ball of radius r in R p and 7/"s is the ball of radius s in R q.

Consider the stochastic (measurable) differential game associated with the
dynamics (3.1)-(3.4) and payoff (3.5). Here u is allowed to be any measurable function
with values a.e. in U and v is any measurable function with values a.e. in Vs. See
Friedman [5], ]-6] for the definition of such games.

Since the functions u and v appear linearly in the dynamics (3.1)-(3.4) and
separated in the payoff (3.5), this game has a value by Friedman [5], [6] which we denote
by 7/Fr’ (t, x, y, z). Furthermore 7"’ is the unique solution of the Cauchy problem

(4.1)

(4.2)

/4’ + e 2A,,,yT" + min max VxT" F +H + VyT///"’ .u
Ivl<-_s lul<=r

112 1

7f’S(T, x, y, z)= O.

See Friedman [5, Lemma 3.5] for the proof.
The argument of tTM, F and H in (4.1) is (t, x, y, z). Since these functions are

independent of u and v (4.1) can be simplified and rewritten in a more useful form as

(4.3)

7’;’" + e 2ZXx.y=lTM + Vxt/’r’s F +H +M/41Vy74/"*12- t/4lV=/"*12
1 1
max lv + L/2VzTlr’sl2+L Ivl=<s - min lu -M/2VyT/l/’r’s]2= O.

THEOREM 4.1. There is a constant C, independent of r, s, e, M and L so that

Ivr’*(t,x, y,z)IC and Ivz’*(t,x, y,z)lC.

Proof. The proof can be given using the maximum principle as in Jensen [9] or

Friedman [7]. However, we present a proof based on differential games. We will prove
only the first inequality.

For simplicity we take p =q 1.
Let the initial position y for Y be in [0, 1] and denote by (X, Y, Z) the solution

of (3.1)-(3.4) given control functions u(. and v(. a.e. valued in 0?/r and 7/", respec-
tively. Also for y’ e [0, 1], y’ y, denote by (Xy’, YY’, Z y’) the solution of (3.1)-(3.4)
with y replaced by y’ but using the same control functions u and v. Denote the
corresponding payoffs given by (3.5) as Y{’Y (y, v) and Y{Y’(u, v).

Then, from (3.1)-(3.3)in integrated form, we immediately conclude from standard
estimates in stochastic differential equations that

El Y()- Y’()I= ly y’l 2
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and from the Lipschitz continuity of F that

(4.4) EI(X y, YY, Z)(z)-(X’, Y’, Z’)(’)I: <-Aly y’],

where A is a constant depending only on F and is independent of u, v, and e, r, s, M and
L.

From (4.4) and the uniform Lipschitz continuity of H(t,.,., it follows from (3.5)
that

(4.5) ]Y (y, v)--’(u,

with A’ independent of e, r, s, M and L since we use the same control functions y and v
in computing both payoffs.

By (4.5) we have from Friedman 1-5, Lemma 3.5, pp. 18 and 21] that

[tr’s(t, X, y, z)- ]r’s(t, X, y, z)l <= Cly Y’I
and hence

(4.6) [/ay tl/’r’s(t, X, y, Z) <= C
with C independent of e, r, s, M and L, for all y 6 [0, 1]. Finally from the form of the
parabolic equation (4.3) and the even 2-periodicity properties of F and H we have that
Wr’s (t, x, y, z) is also an even 2-periodic function of y. The minimum will be attained at
different functions u but.the equation remains the same for both //Vr’s (t, x, y, z) and
74/’r’ t, X, y, Z). Hence the properties of /vr’ as a function of y are determined by
y e [0, 1] and thus by (4.6) the theorem follows.

From Theorem 4.1 we immediately have from (4.3) that for any r >= to, s >= So where

M L
(4.7) ro -C, So -C
the function 7"r’ (t, x, y, z) satisfies

o[/[/,,s + e
2/2Zx, y, OkC/.r,s + Okl/,r,s F +H

(4.8)
J,J/’r’s 2 t/4 V J/J/’r’s 2 0+M/4IVy

with 7d/’’’ (T, x, y, z) 0. By uniqueness we have 7d/"r’ 7d/"’’’s’ for r, r’ >= ro, s, s’ >- So.
Since by Theorem 3.3, Y{(t, x, y, z), the value of the stochastic L: game also satisfies

(4.8) with Y{(T, x, y, z)= 0 we have shown by uniqueness of solutions the following
theorem.

THEOREM 4.2. For any r>-ro, s>-so, 7dd’(t,x, y,z) Y{(t,x, y,z) and hence the
stochastic (measurable) differential game has the value Y{(t, x, y, z) whenever r >=ro,
s>=so.

COROLt.AR 4.3. There exists an equilibrium pair (u*, v*) for the stochastic
measurable game when r >= to, s >= So given by

u*(t, x, y, z) M/2rYd(t, x, y, z), v*(t, x, y, z)= -L/2VzY{(t, x, y, z).

This equilibrium pair is a Nash point in feedback strategies.
Now denote o///.r., the solution of (4.1), (4.2) by o/.s. Of course as seen above, when

r => ro, s >- So, o///..s satisfies (4.8). We will investigate the behavior of W’ as e 0.
THEOREM 4.3. Let W’ (t, x, y, z) be as defined above and let K’ (t, x, y, z) be the

value function for the deterministic differential game associated with dynamics (2.1)-
(2.4) and payoff (2.5). For this function K’ which satisfies the first order backward
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Cauchy problem (2.11), (2.12) for any r=>0, s ->0, we have

(4.9) lim 7#’’s (t, x, y, z)= Kr’s(t, x, y, z)

uniformly on compact subsets. Furthermore there is a constant C Cis the same constant as
in Theorem 4.1) so that IVyK r’ <--_ C and IVzK r.[ <_ C for almost every (t, x, y, z).

Proof. The proof is immediate from Friedman [7, Thms. 4.1 and 4.2, pp. 37-38].
COROLLARY 4.4. When r>= ro, s >= So, Kr’S(t, x, y, z) satisfies, almost everywhere,

the equation

(4.10) K;’" + VxK ’s F + m/4lVyKr’s]2- L/4IVK’[= +H o

and

(4.11) K’ (T, x, y, z) 0 everywhere.

Remark. Since o/g,,, 7g,r’,s’ for r, r’>_-- ro and s, s’>_- So we also have K’s K’’’ for
r, rro, s, s rS0.

Let Y{ (t, x, y, z) denote the value of the stochastic L2 game (we previously denoted
it simply by Y’). Let Y{ denote the upper &value and Yg,s denote the lower &value. Let
Ks (t, x, y, z) and Ks(t, x, y, z) denote the upper and lower &values for the deterministic
LZ-game as presented in 2.

THEOREM 4.5. (i) lY{’ (t, x, y, z) K (t, x, y, z)[--- Ce
(ii) [?T{..s(t, x, y, z)-Ks(t, x, y, z)] <- Ce for some constant Cindependent of 3, e, and

(t,x,y,z).
Proof. We only prove (i); (ii) is similar.
Since Y{ inf, sup,x, Y’ [s, cI)S] and Ks infa, sup K[s, cI)S] where Y{ is the

payoff (3.5) and K is the payoff (2.5) it suffices to show that

(4.12) ]Y((u, v)-K(u, v)[ _-< Ce

with C independent of u, v.
Given u, v L2, let (X, Y, Z)(z) denote the solution of (3.1)-(3.4) and let (:,

’)(r) denote the solution of (2.1)-(2. 4). Then by the properties of a (standard)
Brownian motion w(r) we easily see that

(4.13) El(X, Y, Z)(z)- (, rl, ()(z)l2 =< Ce 2(z t).

Further, since we are using the same controls u and v we have from (4.13) the inequality
(4.12).

COROLLARY 4.6. (i) K(t, x, y, z)=-lims_o KS(t, x, y, z)= lims_o Ka(t, x, y,z) with
the limits existing.

(ii) K(t, x, y, z) lim_o Y((t, x, y, z).
Proof. (i)[KS-Ks[<-[KS-Ya[+[Y-Y.,s[+]Y.,s-Ks[. The middle term goes to

zero with 3 by Corollary 3.2. The other terms go to zero with 3 by the theorem.
(ii) immediate from Theorem 4.5.
COROLLARY 4.7. K(I x, y z) i$ a uniformly Lipschitz continuous function which

satisfies almost everywhere the Hamilton-Yacobi-Isaacs equation

(4.14) Kt +VK F+M/4[VyKIa-L/4IVzKIZ +H O

with

(4.15) K(T, x, y, z) 0 everywhere.
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Remark. The function K is called the L2-value of the L2 differential game.
Corollary 4.6 states that the LZ-value exists even for nonlinear F and H.

Remark. It immediately follows from Lemma 2.1 that the extended Sobolev game
has value WM,t,(t, X, y, Z) K(t, x, y, z) and from Lemma 1.1 that if y [0, 1], z [0, 1]
then the Sobolev game defined in 1 has value WM.L(t, X, y, Z) WM,L(t, X, y, Z).
Furthermore WM,L also satisfies the problem (4.14), (4.15) at points of differentiability.

5. Saddle points in pure strategies for Sobolev games. Assume WM,L(t, x, y, z)
K(t, x, y, z) is a twice continuously differentiable solution of the problem (4.14), (4.15).
Denote by (so*, r/*, sr*) the unique solution of the system of ordinary differential
equations

(5.1)

(5.2)

(5.3)

(5.4)

THEOREM 5.1. With P(q, () given by (1.3) with f, h replaced by F, Hfor (t, x, y, z)
[0, T] R" R p R q we have WM,L(t, X, y, Z) P(r/*, st*).

Proof. Note that (*, rt*, sr*) is well-defined by our assumption that M.L is C2.
If a(r)= M,L(r, *(r), n*(r), (*(r))+H(s, (*(s), n*(s), (*(s)) ds-(1/M)

ff (*(s))2 ds +(l/L) If (*(s))2 ds then

da
0 WM,L/Or + Vx WM.L" F + M/4lVyM,]2- L/4IVM,LI2 +m O.

dr

So a(r)= constant. Hence a(t)= a(T) and the theorem is proved.
Given any function ((r) Z(L; R), let (, ) denote the unique solution of

(5.5) a/d F(r, , , () (0 < T),

(5.6)

(5.7) ()=x, (t)=.

Also for any n(r) Yy(L; R P), let (, ) denote the unique solution of

(5.10)

Then our saddle point theorem becomes
THEOREM 5.2. For any n(r) Yy(L; RP), ((r)6 Z(L; R) we have

That is, (*, (*) is an equilibrium point for the Sobolev differential game.
Proof. For r[t, T]and (Zz(L; R q) let

T

b() ,(, (), (), ()) +

+ (s)l2 ds+ (s)2 ds
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with (sc, r) as in (5.5)-(5.7). Then

(5.11)

db= Ot,L/Or + Vx’VC’t,L F(r, , , r)+ Vy lg/t,. (M/2Vyff/t,)
dr

dsr 1 ]dKI2+VzWt’t’-r+H(r’ g fi’ sr)+ r
Rewriting (5.11) we have by (4.14)

db 1 dsr+ 12+H+Edr
c3WM,L/Or+VxWt, F+M/41Vy- 2 L/2Vff’t

=- -r+L/27zWt, >-_0.

Hence b(t)<-b(T) and so by the definition of b and (4.15)

Wt.i.(t,x, y, z)-< P(,}, st).

Using Theorem 5.1 we obtain the second part of the inequality in the assertion of the
theorem. We similarly obtain the first part and the theorem follows.

Remark. By Lemma 1.2 the value functions Wt,L(t, x, y, z) K(t, x, y, z) are
even 2-periodic functions in y and z. Hence, the properties of the function Wt,
holding for (y, z) [0, 1] [0, 1] will hold for all y and z. Intuitively, therefore, one
would expect that the equilibrium pair of functions (r/*, r*) achieving the value Wt,/
(and which are optimal) might as well remain in [0, 1] [0, 1] for all time r, assuming, of
course, that they start in [0, 1] [0, 1]. This is the content of our next theorem. For
simplicity, we take p =q 1.

THEOREM 5.3. Suppose y[0, 1]. Then given any ’(r)Zz(J; R 1) the function
(r) given in (5.5)-(5.7) satisfies (r) [0, 1 for all <- r <= T. Similarly if z [0, 1 ], for

any q(r) Yy(Jt; R 1) the function {(r) given in (5.8)-(5.10) satisfies ((r) e [0, 1]for all
t<r<_T.

Proof. We will only prove the first assertion.
Suppose, for example that (cr) 0 at some time T>r>=t. Then (r)=>0 for all

o-<= r =< T. Now suppose this is not the case. Then we can find a neighborhood of cr

satisfying: (i) there is acro in this neighborhood, Cro> or, so that (or0) < 0; (ii) there exists

ro [or, ero] with I(ro)l => I(r)l for all r [r, ro]; (iii) ro satisfies (to- r) < 2/MC, where
C is a Lipschitz constant for O Wt,c/Oy as a function of y. Note that ro>r since
r} (o’)= 0. Then by (5.5)-(5.7) we have

r}(ro) fi(cr) + M/2OWt.c(s, , fi, ’)/cgy ds

M/2 [0 Wt.L(s, , (I, ()/Oy 0 Wt.(s, , O, ()/Oy] ds.

The second equality follows from the fact that Wt,(t, x, y, z) Wt,t(t, x, -y, z)
implies that 0 Wt,(t, x, O, z)/Oy 0 for all (t, x, z). Hence by the definition of ro

] l(ro)l<=CM/2 I,(s)l ds<-CM/2(ro-cr)lfi(ro)l<lgl(ro)l

a contradiction.
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Similarly we show that (o-)= 1, for some T>>-t, implies (z) <- 1 for all
o" -< - =< T. Here we use the fact that W,/(t, x, y, z) W,t(t, x, 2- y, z) implies
0 W,t(t, x, l, Z)/Oy 0. This completes the proof.

Remark. The theorem implies that the equilibrium pair (B*, sr*) given by (5.1)-
(5.4) satisfy n*(z), (*() [0, 1]for all rJ if y,z [0, 1]. In view of Lemma 2.2, the
theorem states that the "constant" lower 8-strategies for st* and for
has range {sr*} and has range {*} for all 8 > 0, satisfy A and

6. Convergence as M andL oo. In this section we denote the stochastic L:-value
function Y(t,x, y,z) by Y{,L(t,X, y,z) to indicate the dependence of Y/" on the
constants e, M, L > 0. We investigate the asymptotic behavior of Y/’. as M, L- c.

By Theorem 3.3, Y{.L(t, X, y, Z) is the unique solution of

(6.1)

(6.2) Y{(T, x, y, z)= O,

where :RpR and :RqR are given by

(6.3) O(y) lYl 2, ’(z) Izl 2.
Let V (t, x) denote, respectively, the unique solutions of the problems

2/ g H:(6.4) V: + e 2Ax + (t, x, VxV+) 0,

(6.5) V+/-(T,x)=O.

where the Hamiltonians H+(t, x, r) are given by

(6.6) H+(t, x, r) min max {r. F(t, x, y, z) + (t, x, y, z)}
ZEI yE1

and

(6.7) H-(t,x,r)=maxmin{r.F(t,x, y,z)+H(t,x, y,z)}
yE1 zEI

with reR m, x eR n, tel0, T].
Note the regions over which we maximize and minimize. By the definitions of F

and H as extensions of f and h as in 1, we may substitute f, h for F, H.
THEOREM 6.1. (i) limL-o limM- Y(M,L(t, X, y, Z)= V+ (t, x);
(ii) limM_, limL- Y(M.L(t, X, y, Z)= V- (t, x) uniformly in e.

Proof. By the definitions of and T in (6.3) we have (0)= D(0)= 0, T(0)=
D(0) 0 and D2(0), O2xI’(0) are positive definite. These are exactly the conditions
on the nonlinearity in the parabolic equation required to apply Theorem 1.2 of Jensen
[9]. The conclusions of Jensen’s theorem are exactly the conclusions of Theorem 6.1.
This completes the proof.

Next, let KM.L denote the value of the (deterministic) L2 differential game
associated with dynamics (2.1)-(2.4) and payoff (2.5). Let V+(t, x) denote the upper
and lower values of the "measurable" differential game of fixed duration associated
with the dynamics

(6.8) ds/d f(r, s, rt, (),

(6.9) (t) =x
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and payoff
T

(6.10) Y(r/, sr) J, h(s, , q, () ds.

The measurable functions r/and sr are the control functions; r/is the maximizer and
sr is the minimizer of J. The control set for r/is Ip and I is the control set for sr. Then we
have

THEOREM 6.2, (i) limt limu KM,L V+,
(ii) limM. limL. KM,L V-.

VProof of (i) By Lemma 3.2 of Friedman [5], V - as e - 0. By Theorem 4.5
O,L KM,L as e - 0. Using these facts and Theorem 6.1, (i) is immediate.

COROLLARY 6.3. The value of the differential game (6.8)-(6.10) exists if and only
if limL, limu KM,L limM limL KM,L.

The proof is by definition of the existence of value [4], [5] and Theorem 6.2.
Remarks. (i) When there is only one player, say , the maximizer, in our Sobolev

and L2 games, then the differential game is an optimal control problem. The results of
this paper apply. In particular, if AM (t, X, y) denotes the optimal cost, then AM satisfies
the equation

(6.11) AY+A.F(t,x, y)+M/4IA12+H=O.
According to Tamburro [11] and the references given there, there is a generalized
solution of (6.11) in the sense of Kruzkov. This solution is unique in the class Kruzkov
considers (c.f. [11, p. 250]). The reason for this is the strict convexity of F(t, x, y, r, x)
r. F(t, x, y) + H(t, x, y) + M/41sl2 in s and linearity of F in r. We cannot apply this result
to the Sobolev game because the Hamiltonian is convex-concave; that is, uniqueness
will not hold in general in the game problem.

(ii) The results of this paper hold for more general payoffs than that considered
here. In particular we may take ghe payoff P(r/, sr) g((T))+tT h(s, (s), n(s), ((s)) ds
which includes a terminal part g((T)).

Aeknow|edgment. I would like to thank Robert Jensen for many helpful dis-
cussions, and in particular for the proof of Theorem 5.3.
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A CUTTING-PLANE GAME
FOR FACIAL DISJUNCTIVE PROGRAMS*

ROBERT G. JEROSLOWt

Abstract. Balas’ characterization, of the convex span of feasible solutions to a system of facial
constraints, is generalized through the device of first viewing the characterization as a two person "game" on a

polytope, and then enlarging the class of "moves" open to one of the "players." Both primal and dual
cutting-plane algorithms are presented for facial constraint systems, and are then proven finitely-convergent
by use of our generalization of Balas’ result.

Introduction. We obtain an extension of Balas’ characterization (Balas (1974)) of
the convex hull of feasible solutions for a bounded system of "facial constraints" (in the
terminology of Balas), by viewing the characterization as a two-person "game" on
polytopes, and then enlarging the class of moves open to one of the players. We then
illustrate how this "game" can be used to develop cutting-plane algorithms, of both a
primal and dual nature, which optimize a linear form subject to facial constraints.

The scope of practical problems which can be modeled by bounded facial con-
straints is essentially that of the bounded integer program, though the scope is different
when the facial constraints may be unbounded. In the bounded case, an important
distinction can be made between the modeling via facial constraints and that via integer
variables; details are given in Appendix A.

The game we consider here is played on a polytope P by two players, the
"indicating player" (Player 1) and the "cutting player" (Player 2). Certain of the
extreme points of P are "essential" and certain are "inessential;" the "essential"
extreme points are those which satisfy the facial constraints, and all other extreme
points are "inessential."

Each round of the game is as follows. Player 1 indicates a nonessential extreme
point, if he wishes to and can find one; if he indicates no point the game terminates and
Player 2 wins.

Assuming that Player 1 indicates a nonessential point, Player 2 must produce a
"cutting plane" (i.e., valid linear inequality for the facial constraints) which is not
satisfied by this point, but which is satisfied by every essential extreme point. The game
then continues on the polytope P’ obtained by adjoining the cut to P. There is a
restriction on the cutting-planes available to Player 2, which we will next discuss. Player
1 wins if the game continues indefinitely.

Any nonessential extreme point violates at least one, and usually several, of the
logical conditions of the facial constraints system. Player 2 must choose only one of
these violated conditions, and the cutting-plane he produces must depend only on this
one condition; i.e. must be valid even if the other violated logical constraints were
omitted.

From the nature of the game when Player 1 uses all available nonessential points,
Player 2 wins exactly if, after adding finitely many cuts, the convex hull of the essential
extreme points is obtained. Hence, if there were no restrictions on Player 2, he will
always win, by adding a defining inequality for this convex hull at each round. However,
typically a defining inequality depends on several logical conditions being violated,
hence Player 2 cannot follow this strategem.

* Received by the editors August 11, 1977, and in revised form August 17, 1979.

" College of Industrial Management, Georgia Institute of Technology, Atlanta, Georgia 30332.
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Nevertheless, our main result (Theorem G of 2) is that Player 2 can always win.
This is true, despite the fact that the addition of a cutting-plane often increases the
number of nonessential points. The method of proof is to have Player 2 guided by a
sequence of "partial convex hulls" and their defining inequalities. Since no linear form
need increase or decrease, and no lexicographic vector need increase or decrease, as
Player 1 freely chooses nonessential points to be cut away, this is a fundamentally
different method of obtaining finite convergence than the earlier methods. Neverthe-
less, there are lexicographic aspects in the changes of state (see 1 below) and hence the
reasoning by which we prove finiteness.

This game yields finitely-convergent dual algorithms, by viewing the next extreme
point found by dual simplex re-optimization, after a cutting-plane has been added, as
the point indicated by Player 1, when it does not satisfy the facial constraints. Obtaining
primal algorithms can also be done. Both primal and dual algorithms will be discussed in

2. While our result can be extended to the case of an unbounded feasible region, by
means of adjoining an infinite quantity as we did in Jeroslow (1976), this extension does
not appear to be computationally promising, because of the high order of arithmetic
operations needed to perform pivot steps in the field extension.

The restriction on Player 2, that his cuts must depend only on one logical condition,
corresponds computationally to obtaining the cuts as extreme points of certain linear
programs which are defined in 1. Pivoting proceeds until an extreme point is found, at
which a linear form, that is determined by the point to be cut off, becomes positive. In all
cases, the linear form can be made positive. A "Phase 1" for the pivoting procedure can
be avoided by use of a starting basis described in Appendix B, which often produces a
cut that makes some problem constraint redundant.

The algorithms here do not have the rigorous upper bounds on the number of cuts
to be retained, which one finds for the lexicographic methods. There are nevertheless
many instances in which cuts can be dropped; we discuss this matter in 2.

1. Terminology and basic lemmas. Throughout the paper, we shall consider
constraint sets of the form"

(la) Ax >=b

and

(lb) for each h 1,..., there is at least one Sh for which dix >= do.
Constraint sets of this very general nature were studied by Balas (1974). As (1)
incorporates both logical and linear restrictions on x (Xl, , xr), the set of feasible
points need not be convex, in fact, it often is discrete. In (1 a) and (1 b), of course, A is an
m x r real matrix, b an m x 1 real vector, each d is a 1 by r real vector, and d[ is a real
scalar. The Sh (h 1,..., t) are sets of indices, which can be assumed disjoint.

An important special case of Balas (1974) is the generalized linear complementarity
problem:

(GLC) Gy + Hz >= h y, z >= O; y.z--0.

In GLC, y (yl, , y,), z (z1, Zs), G and H are rn x s and h is rn x 1. To see
that GLC can be converted into the format (1), first put A [G H], x (y, z). Next,

s+i ..is+iput t=S, Sh={i,s+i}, and let dx>-doresp, d x >,,o be -yi-->0 resp. -zi_->
0 (i 1, , s). Since y, z >_- 0 are among the constraints of GLC, if dx >- d holds for
some Sh, we have yiz 0; hence if such holds for all h 1, , then y z 0, and
(1) is equivalent to (GLC).
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Another special case of (1) is the constraint set of the bivalent integer program’

(BIP) Dx>=d and xj=0or 1 forj=l,...,r.

in (BIP), it is understood that Dx>-d includes the constraints O<=x<=e,e
(1, 1,.. 1). Here r, Sh={f,r+f},dix>dio= is -x.>0= and dr+ix >Ar+j=.O is x.->_
1 (]= 1,..., r).

The constraint set (1) is called .facial (Balas (1974)) if for all h 1,..., and all
ieSh,

(FAC) {xldix d, Ax >= b} is a face of {xlAx b}.

The face described in (FAC) may, of course, be empty.
We assume that (1) is facial throughout the paper. We also assume that {x lAx >= b } is

nonempty and bounded.
Both (GLC) and (BIP) are facial. For example, {(y, z)l--yg _-> 0, Gy + Hz >= h; y, z >=

0} {(y, z)[yi 0, Gy + Hz >= h; y, z >= 0} is a face of {(y, z)lGy +Hz >= h; y, z >= 0} since
the inequality yi -> 0 is included among those of (GLC). These two examples serve to
motivate our interest in facial constraint sets of the form (1).

For facial constraints, all extreme points of the convex span of the feasible solutions
to (1) (which clearly must themselves be feasible) are extreme points of {xlAx >= b} (see
Balas (1974) for this and related results on facial constraints). However, {xlAx >= b} may
(and often does) have other extreme points, and this paper is concerned with methods
for "cutting" the "unwanted" extreme points away, in order to reveal portions of the
convex span of the feasible points. We now begin the technical developments that are
needed to accomplish this goal.

A 20-tuple (h(1), T1, h(2), T2,". ,h(O), To) of integers h(]), l<=h(f)<=t, and
nonempty sets T. of real linear inequalities, will be called a state if certain requirements
(to be described next) are met, and the length of such a state is 0. To each initial segment
(h(1), Tx, h(2), T2,’", h(i- 1), Ti-1, h(i)) of a state (h(1), T1, h(2), T2,’",
h(O), To)(i >= 1) will be assigned a finite set F/of real linear inequalities, and we shall
require that

(2) Ti_Fi fori=l,...,0.

The set Fi =Fi(h(1), T1,..., h(i-1), Ti-1, h(i)) is a function of the initial segment,
although this fact is suppressed in our notation.

LEMMA 1. For any integer 0 >-0, there are finitely many states of length not
exceeding 0.

Proof. Trivial, as each set F is finite. Q.E.D.
The sets Fi we shall use will be of a very particular nature, and to describe them we

shall need some preliminary discussion.
The next result is an easy adaptation of a consequence of results in Blair and

Jeroslow 1978).
In what follows, conv(S) resp. clconv(S) denotes the convex hull resp. closed

convex hull of S; notation is from Rockafellar (1970). We put conv (;) clconv ()

PROPOSITXON 2. Suppose that {xlDkx >= 0}= {0} ]:or k 1,..., z.
Then the linear inequality

(3) 7rx _-> 7to
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is valid for the set

(4) CH clconv (
k=l

if and only if there are vectors of multipliers A k >_ 0 with

(5a)

(5b)

Proof. Note that (3) is valid for the set (4) if and only if (3) is valid for each of the
sets

(6) P {xlDkx >= d}.
Clearly, if (5) holds, (3) is valid for each P, hence valid for (4). We need only prove

that, if (3) is valid for each P, then (5) holds.
If P # , since ro is a lower bound on the value of the bounded and consistent

linear program rain {rrxlDx >- dk}, it is also a lower bound on the dual linear program
max {AdIAD rr, A >= O.zr, A _-> 0}, and hence there is , k with A kdk > 7tO, A kDk k

If Pk----, there is some vector fk such that P’k ={xlDkx >=fk} . By the
hypothesis, rx is bounded on P. Hence, as before, there is a vector 0 k 20 with
okD k k > 0 with k Tkdkr. But as Pk , there is a vector 3’ ykD 0, > 0. Then for the
real scalar p > 0 sufficiently large, and h k O k + pyk, we have h kDk 7r and h kdk >= fro.

Since k was arbitrary, (5) holds. Q.E.D.
We remark that the hypothesis {x[Dkx >= 0} {0} (h 1, , r) can be dropped if

{xlDx >= d} (R) for all h 1,. , . However, Proposition 2 is more useful, stated as
it is, because in many applications below one does not wish to test if {xlDx >- d}
in order to discard inconsistent systems. In contrast, the condition {xlDkx >=0} {0}
turns Out to be easier to insure.

According to Proposition 2, all valid inequalities (3) for the set (4) arise as
projections on to the (Tr, zr0)-coordinates of solutions (h 1,..., h , 7r, zro) to the homo-
geneous linear system

(7a) hkD k kdk-zr=0, A -zro_->0, A k-_>0 fork=l,...,r.

If (4) is not R r, (7a) will have nontrivial solution i.e., either r # 0 or 7r 0 and
7ro > 0 (in fact 7r # 0, except if CH in (4)). In this case, we choose to "normalize"
the system (7a) by adding the inhomogeneous constraint

(7b) A/=I
k=l i=1

where Dk has mk rows, and A is the ith component of A k. Let Q denote the polyhedron
of all points (A1,... ,A,, zr, zro) that are described by (7a), (7b), the last (r+ 1)
coordinates of these points being (, o).

LEMMA 3. Suppose that (4) is not R r, and that {xlDkx 0} {0} for k 1,. , .
Then Q and Q has (up to positive multiples) exactly one nonzero direction of

recession, given by (A 1,..., A ", , o)= (0,. , 0, 0,- 1).
For any valid inequality (3) for CHof (4) such that either 0 or 0 and o> O,

there is a valid inequality

(8) vXo
and a scalar B > O, with both B and o Bo, having the property that (, o) is a
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convex combination of the projections of extreme points of 0 on their last (r + 1)
coordinates. Moreover, such projections of extreme points of 0 yield valid inequalities
for (4).

Proof. We have already seen that O , since there are valid inequalities (3) for
CH with 0, which requires that 0 =2= 2=aI >0, hence 0 1 for a suitable
positive multiple of (3).

Clearly, (0, , 0, 0, 1) is a direction of recession for O. If ( , , ", ,. o) is a
direction of recession, it must satisfy p 2h= 2=a I 0. Since all I > 0, we obtain
all 0, hence r 0 also. Then since 0 N d ro -o, we have o N 0. If o 0,
we may take o =-1 up to a positive multiple.

Next, suppose (3) is a nontrivial valid inequality for CH. Since 0 or 0 and
o> 0, we must have at least one I 0 in (7a). Therefore p > 0, and, up to a positive
multiple B, we may take O 1. By the finite Basis Theorem for a pointed polyhedron
(see e.g. Rockafellar (1970)), there is a convex combination (I,..., 1c, y, o) of the
extreme points of O and a multiple N 0 of the direction of recession (0, , 0, 0, -1)
of O with

(9) (a’, , ", flfr, flrro) (, a 3,, 3,0) + a (0,.. O, O, 1).

Then (3,, yo) is a convex combination of the projection of extreme points of O on
their last (r + 1) coordinates,/3jr 3’ and/3fro <- 3’0.

As we remarked before, the projection of any point of O on its last (r+ 1)
coordinates is a valid inequality for CH. O.E.D.

Suppose that a point x* is given which is not in CH. Since frx* < fro for some valid
inequality (3) for CH, and either fr 0 or fr 0 and fro > 0, by Lemma 3 we may find
such a (jr, fro) among the projection of extreme points of O on its last (r+l)-
coordinates. To find (jr, fro), one may use the simplex algorithm on (7) to maximize the
linear form (0,. , 0, -x*, 1) (h 1,..., h 7, Jr, fro) fro- frx*, and stop when any
extreme point is reached having fro-frx*> 0.

Although several extreme points (, 1,..., , 7, Jr, fro) of O may have the same
projection (jr, fro), all give the same criterion value fro-frx*, so that no two points with
the same projection will be encounted during Phase II pivoting (of course, the same
degenerate extreme point may be repeated via different basis representations). When
many points x* are to be given, and cut off as in frx* < fro, it may be of value to tabulate
the (jr, fro)-projection of several of the extreme points encounted during pivoting.
Obviously, the natural place to begin pivoting for the successive x* is from the extreme
point where pivoting terminated for the last x* given. A "Phase I" for this procedure is
described in Appendix B.

We can now describe the sets Fi assigned to the initial segment (h (1), T1 , h(i
1), Ti-a, h(i)) of the state (h(1), T1,.’’, h(O), To). Let A(i)x >-b (i) be the conjunction
of the linear inequalities in T. For each k 1,..., r-lSh(i)l, take, as the set of
inequalities Dkx >= d of (4), the inequalities

(10) Ax >-_ b, A(I}x >-b (, A(i-l}x > b (i-1, d(x > dg(

In (10), p isa 1-1 function from {1, , r} onto Sh(i. Thus, all thesystemsDkx >-_ do are
identical, except for the very last inequality d(}x >-dg(k. Finally, F is the set of all
(jr, fr0)-projections of extreme point solutions to (7).

Note that our hypothesis, that {x lAx -> b} is nonempty and bounded, gives {x lax >-

0}={0} hence also {xlDkx >-_0}={0} for all k- 1,..., r.
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LEMMA 4. Fi is finite. If x* is not in the set

clconv(
k=l

then there is (rr, fro) Fi with rrx* < fro.
Should the system (7) be employed in connection with (10) as Dkx >--_ d k, and then

employed again at a later point of computation with the inequality sets A (i)x _-> b (), ]
1, , i- 1 enlarged (by addition of cutting-planes between uses of (7)), note that one
needs only add new nonbasic columns to (7) that correspond to the added inequalities.
In particular, the last used feasible basis for (7) remains a feasible basis, from which
pivoting can be renewed to obtain more cutting-planes. The system (7) can be
constructed, when needed, from the state (which is always known), and reconstructing
the starting solution requires a knowledge of the indices of the columns of the last used
basis.

Our next result gives a sufficient condition for x* not to be in CH of (4), hence for
some basic feasible solution of (7) to "cut off" x*, under the hypotheses of Lemma 3.

PROPOSITION 5. Suppose that {xlDkx-->0} ={0} for k 1,..., r. Let x* be an
extreme point of a convex set C which contains the set CH of (4).

If x* does not satisfy any of the conditions Dkx >--d k for any k 1,..., z, then
x* g CH. In particular, the (rr, rro)-pro]ection ofsome extreme point of (7) gives rx* < fro.

Proof. If x*e CH, then for certain points x (1), x(z) with Dkx (k)>= d k (k
1, , r) and multipliers h 1, , ,, ->- 0 we have

(12) x*= ,kx (k) ,k 1
k=l k=l

Each x (k) x* and, as C
_
CH, we have each x (k) C. From (12), x* is not an extreme

point of C, a contradiction. Q.E.D.
Let us say that a point x* fails condition h, with respect to (1), if x* does not satisfy

any of the inequalities dix > do, for iESh.
To motivate our intended use of Proposition 5, suppose that the current state is

(h(1) T,, h(O), To), where U- T. represents the cutting-planes (i.e valid
linear inequalities) which have been appended thus far to Ax >= b. Let x* be an extreme
point of the set C of all points satisfying

(13) Ax >-_ b, A(1)x b (1) A()x > b ()

and suppose that x* fails condition h.
We can now apply Proposition 5, taking Dkx >--d k to be

(14) Ax >-b, A(I)x >-b (1), A()x > b (), d(k)x >dg(k)

where p is a 1-1 function from {1, , ISal} onto Sa, for certainly C contains CH of (4).
Thus we obtain a valid inequality rrx _-> fro for (1) with rx* < fro. However, adding this
inequality to those of (13) may not result in a state if h {h(1),. , h(0)}. In fact, if
h h(i) for some 1, , 0 we are permitted to obtain (rr, fro) only from (10) used as
Dkx >-d k, or else we violate the technical definition of a "state." The system (14) is
typically much larger than (10).

The obvious tack to reduce the systems (14) and still maintain x*g CH, is to
remove from (13) those inequalities which are slack at x*, for x* will still be an extreme
point of the resulting inequality system. However, this may still leave some inequalities
in A()x -> b (), j -> i, and thus appending 7rx _-> zro may fail to yield a state. Yet, by a more
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careful analysis, some of the "tight" (i.e., nonslack) constraints can also be removed, so
that zrx => zro can be added retaining a state, if h is such that k is largest among {klx* fails
condition h (k)}.

Of course, these technical issues present no problem in the "easy case" that
hg{h(1),..., h(0)}. One can then use the entire system (14) as Dkx >-d k, by setting
h(O + 1) h and giving, as the next state, (h(1), T1," ", h(O), To, h, T0+l) with To+l
(,, o).

Similarly, if one is willing to increase the length of the state, the same device can be
used for h {h (1),. , h (6)}, since two h (/’) for different/" are permitted to be equal.

PROPOSITION 6. Suppose that x* is an extreme point of the set C of all points
satisfying (13) with state (h(1), T1,’’’, h(O), To), and put:

(15) F {/" {1,..., 0}Ix* fails condition h (/’)}.

Then x* is also an extreme point of the polyhedron C’ of all points satisfying Ax >= b
together with all the inequalities

(16) A(i)x >-_ b (i for all j F.

Remark. A slightly stronger version of Proposition 6 is false. Specifically, if x* is
an extreme point minimizing the linear form (say) cx subject to (13), then x* need not
also minimize cx subject to Ax >= b and (16).

In simplex terminology, some of the constraints A(ix >= b for some jgF may
provide a nonbasic slack variable relative to x*, and the removal of this nonbasic
variable (by a basic variable at a zero level) may allow some reduced cost to change sign.

Proof. Put S ={h(1),..., h(O)}f’lF’, where F’={h(f)lfgF}. Then for each h S
there is k(h)Sh such that dk(h)x*>=dko (h).

Since (1) is facial, x* lies in the face P of C which is described by the inequalities
(13) together with

(17) dk(h)x >- do (h) for all h S.

Consequently, x* is an extreme point of P.
To complete our proof, it suffices to show that P has an alternate description in

terms of all points satisfying Ax >- b, (16) and (17). For if this were the case, P is also a
face of the polyhedron C’. Since x* is an extreme point of the extreme set P of C’, x*
would be an extreme point of C’. (Here we use the facial nature of the constraints (1)).

To establish this alternate description Ax >= b, (16), (17), for P, it suffices to show
that, if o-x _-> tro is any inequality in A(x >-_ b( for any h(j) S, then the addition of
crx _-> tro to Ax _-> b, (16), and (17) leaves the set of solutions unchanged. This is done by
induction on 1,..., 0, but the "ground case" and "induction case" are essentially
the same argument.

By induction, the set of all points satisfying (17) and

(18) Ax >= b, A(1)X --> b (1), A(i-X)x :> b (i-1)

is the same as the set of points satisfying Ax -> b, (17), and

(19) A (i)x b (i) for all/’ 1, , 1 with/" 6 F.

We need only advance the index from (i- 1) to i, for the case 0 gives the desired
result. Without loss of generality, we may assume h(i) $.

However, (r, ro) Fi, which in particular implies that rx >= o’0 is valid for all points
satisfying (18) and dkx >- do for some k Sh(i). Therefore, rx =>ro is valid for all points
satisfying (17) and (18), since dk(h(i))x >= do (h(i)), for all such points x (including x x*).
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By the induction hypothesis, o’x -> tro is valid for all po!nts satisfying Ax >-_ b, (17) and
(19). This completes the inductive step. Q.E.D.

Propositions 5 and 6 have the following consequence.
LEMMA 7. Suppose thatx* is an extreme point ofthe set Cofall points satisfying (13)

with state (h(1), T1," , h(0), To), and that the set F of (15) is nonempty. Let be the
largest index F.

Then there exists (zr, Zro) Fg with zrx* < zro.
Proof. From Proposition 6, x* is also an extreme point of the set of points satisfying

(20) Ax >-_ b, A(I)x b (1) A(i-1)x > b (i-1), A(i)x > b (i)

as/’F for/" > i. By Proposition 5, taking Dkx >--d to be (20) together with

(21) d(’)x>-_d

where O is a 1-1 function from {1,. , r [Sh(i)[}, onto S h(i), there is a valid inequality
(3) for CH with 7rx* < 7to.

To insure that one may take (Tr, ro) Fi, it suffices to show that

(22) {x[Dx >- d} {x[D’x >- d’}

for k 1,..., z, where D’x >-_ d’ is the set of all points satisfying

(20)’ Ax >-_ b, A(1)X b (1), A(i-1)x > b (i-1)

together with (21). For (22), it in turn suffices to show that, if rx_->ro occurs in
A(i)x b (i), then trx > ro is satisfied by any solution to (20)’ and (21).

As (h(1), Ta,. , h(0), To) is a state, (o-, O’o) Fi, and hence o-x _->Cro is valid for all
points x which satisfy (20)’ together with dkx >--dko for at least one k Sh(g). However,
p(k)Sh(i), hence indeed trx_->Cro is valid for all points which satisfy (20)’ and
(21). Q.E.D.

From Lemma 7, one may "cut away" a point x* (as described there), by
transforming from state (h (1), T1, , h (i), Tg, h (i + 1), T+I, , h (0), To) to
(h(1),T1,’",h(i),TU{(zr, zro)},...,h(j),T.) for any j>=i+l, or to
(h (1), T1, , h(i), Ti {(zr, zro)}). The latter is a state for, as one easily checks (with F,
denoting the set F for the latter) we have F, F for k 1,..., and F,

_
F for

k=i+l,...,j. Then we retain T/_F forj=l,...,0.
We call such changes of state a change, and is called the index of the change. We

also include, under the conception of a change, the "easy case" in which transition is
made from state (h(1),T,...,h(0),T0) to state (h(1),Ta,...,h(0),T0, h(0+
1), To+x ), To+x {(zr, zro)} by increasing the length of the state. The index of the latter
kind of change is (0 + 1).

Our next result is essential to later proofs of finite convergence.
LEMMA 8. There does not exist an infinite sequence of changes of bounded index.
Proof. Suppose that there were an infinite sequence of changes, involving (in

2order) the states o- o- , such that all indices of changes do not exceed M, where M
is some integer. Then there are integers -<M such that is the index of infinitely many
changes; let i* be the least such i.

k k+lFor sufficiently large k, all indices of changes in the sequence of states r
are not less than i*. Consequently, all r for l>-k, have the same elements
h(1),..., h(i*) and T1, T*-I. The set T* in such o"v changes infinitely often, by
increasing in size. This contradicts Lemma 1 for 0 i*. Q.E.D.
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2. Main results. We continue use of the terminology and notation of 1, as well as
the standing assumptions, that {x lAx >-b} is nonempty and bounded and that (1) is
facial. When we discuss algorithms below, it is also assumed that x -> 0 is among the
constraints Ax >-b, so that the usual equivalence of extreme points and basic feasible
solutions holds.

We next describe a game. Put P0 {x lAx _-> b}. We use the convention that the
empty polytope has no extreme points (which is, in any case, implied by standard usage).

The game proceeds in rounds/" 0, 1, and has two players. In round j, Player 1
either names Player 2 as the winner (and the game terminates), or Player 1 indicates an
extreme point x* of P. which does not satisfy (lb). Player 2 then produces a vector
(Tr, 7r0) satisfying:

(23a) 7rx* < 7to

(23b)

where h* V. and

7rx >= rr0 is a valid inequality for

]thereisatleastoneiSh,}P. Iq x
such that dix >- do

(24) V {hldix * < d[, for all Sh}.

Then we set P+ P f-I {x[Trx >= 7to},/" j + 1, and another round is entered.
THFORFM G. Player 2 will win the game, regardless of the choices ofPlayer 1, if he

uses the following method to determine (Tr, fro):
Initially he sets the current state r= .
If the current state is o" (h(1), T, h(O), To) and ifF of (15) is nonempty

with the largest index in F then he puts h*= h(i) and he selects (-, ro)sFi
satisfying (23a) and makes the state change

(25a) o’+1 (h(1), T1,’’., h(i), TiU{(Tr, fro)}).

Putj =] + 1.

If the current state is r (h(1), rl," , h(O), To) and ifFof (15) is empty, then
he selects any h* V. and he sets

(25b) o-i+= (h(1), T1, , h(O), To, h*, {(Tr, fro)})

where (Tr, 7to) satisfies (23).
Putj=]+ 1.

Proof. It is possible for Player 2 to use the above method, by Proposition 5 and
Lemma 7. Note that the length of all o- does not exceed t. The result follows by Lemma
8. Q.E.D.

Note that Theorem G still holds if (25a) is replaced by

(25a)’ cri+a (h(1), T1,"’", h(i), T/U {(Tr, 7to)},’’’, h(O), To).

While (25a) allows for removal of accumulated cutting-planes, in dual algorithms this
can cause the criterion function to deteriorate in value. The removal indicated in (25a)
requires that, if a cut is removed, having currently a nonbasic slack, the slack must be
first pivoted into the basis, retaining primal feasibility. In the primal algorithm discussed
below, one easily checks that such a slack is pivoted in by a degenerate pivot, so the
current solution does not change.



A CUTTING-PLANE GAME 273

As a compromise between (25a) and (25a)’, when < 0 one may select an element
(rr’, rro To and put

(25a)" ri+’ (h(1), T1, h(i), Ti U {(rr, fro)}, , h(O), To\{(rr’, rr)}).

The choice of (rr’, rr) can be done heuristically e.g. one may choose a (rr’, rr) To with
rr’x*- fro large, or several of them. In this way, one cut has been added and one (or
several) removed, hence the total number of cuts has not increased.

Thus, the only time the number of cuts must increase is if 0 or one uses (25b).
The latter cannot occur more than (t-0) successive times. Thus the main cause of cut
accumulation, if it occurs, is many repetitions of (25a) with 0. When this occurs, and
it is viewed that the size of To would exceed desirable bounds, in dual algorithms a
branch-and-bound approach can be used, with dix >= do for some So enforced on
each subproblem. The state of each subproblem is then (h(1), T1," h(O- 1)T0-1 ),
and the method resumes on each.

We now discuss algorithms. These are obtained by using various strategies for
Player 1.

The problem to be resolved by the algorithms, denoted OP, is the optimization
problem of minimizing a linear form cx subject to (1), where c (Cl,’’ ", Cr) is a
specified criterion vector.

DUAL ALGORITHM. Choose as x* any extreme point found after dual simplex
re-optimization upon adding the cutting-plane rrx => fro, if x* fails (lb). If inconsistency
results or x* satisfies (1), declare Player 2 the winner.

It is immediate from Theorem G that Player 2 wins, i.e., the algorithm is
finitely-convergent when one uses the procedure discussed in Theorem G.

We next discuss the primal algorithm, which consists of several applications of the
primal subroutine.

The primal subroutine requires that a current solution is given. is to be a solution
to (1) which is also an extreme point of the closed convex hull of solutions to (1). By
Balas (1974), a? will then be an extreme point of {xlAx >-_ b}, hence there is a basic
feasible representation for . It is assumed that one has such a representing basis in
terms of the inequalities of Ax >= b and the cuts so far appended.

Primal Subroutine. If reduced costs show that is optimal, Player 2 wins. Other-
wise, choose any non-basic variable to enter the basis with reduced cost for decreasing
criterion value. Determine the point x* obtained if this variable enters the basis under
lexicographic pivoting.

--If x* .f, repeat this procedure.
--If x* and x* satisfies (1), Player 2 wins.
---If x* : and x* does not satisfy (1), then indicate x* to Player 2.
The primal subroutine cannot be repeated infinitely often due to x* f, since no

cuts are added, and the simplex method will either find an improving solution or
indicate optimality of f. Hence if optimality is not indicated, the case x* f arises. By
Theorem G, Player 2 wins, hence if optimality is not indicated during the game, an
x* f is found which satisfies (1). Since it is an extreme point of some P., and P. contains
the convex hull of solutions to (1), x * is an extreme point of that convex hull. Hence x * is
also an extreme point of {x lAx >-_ b}. Also, one has at hand a representation of x* as a
basic feasible solution to Pi.

For the primal algorithm, an initial current solution f x (o) is given and first j 0.
PRIMAL ALGORITHM. If the optimality of x C) is indicated, stop. Otherwise, let x*

be the point found by the Primal Subroutine, which satisfies (1). Put x (/1 =x*,
j ] + 1, and repeat.
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The primal algorithm clearly is finite, since each x () is an extreme point of
{x lAx => b} and cx o) > cx(l) >....

To obtain x( (y(O, z(O) for (GLC) when x( is not otherwise available (say, from
complementary pivoting), the following "Phase I" procedure can be used. Let I’ be a
diagonal matrix of size m by m, with i-th diagonal entry + 1(-1) if hi => 0 (hi < 0). (GLC)
is consistent if and only if the following program has optimal value zero"

(26a) min Y. Wk
h=l

(26b) subject to Gy +Hz + I’w >- h, y, z, w >= O

and

(26c) y z 0.
(o) is hi(-hi) if hi >A starting solution for (24) is (y, z, w)=(0, 0, w() where w

0 (hi < 0), and w(= (wl, w (), An extreme point (y(o), z(O, 0) of (26b) clearly
corresponds to an extreme point x(= (yO, z(O) of GLC, and when (y(O), z(O, 0) is
obtained, a basic representation for x(= (y(O, z(O) is available once the basic Wh-
variables (which are at value zero) are pivoted out of the basis and the variables of
(GLC) (including possibly slack variables) are pivoted in to replace them.

We now relate Theorem G to Balas’ result (Balas (1974), Corollary 5.3.1). (A
similar analysis can be done for (Balas (1974), Theorem 5.3)).

We put inductively:

(27a) Ko {xlAx >- b}

(27b) Kh+l clconv/ t..J (Kh f"l {x Idix >= dio })/, 0 _-< h _-<t- 1.
iSh

COROLLARY (Balas (1974)). K is the closed, convex span of the points feasible
in (1).

Proof. Let Player 1 use the following strategy. In the order h 1,. , t, Player 1
indicates an extreme point x* of P., if any, such that dx* dio for all Sh. If there are
none, Player 2 sets h h + 1 for h (and does not return to h 1, h 2, etc.) and
stops if h t.

By Theorem G, eventually h and Player 2 wins. Let the state held by Player 2 at
this time be o-* (1, TI,’’’, t, T) and let the polytope be P.

Suppose there is an extreme point x* ofP and an index h* such that dx* dio for
S, and without loss of generality, h* is as large as possible. By Proposition 6, x*

is also an extreme point of polytope P., corresponding to the state o-’=
(h(1), T1," ", h(h*), T.). Hence earlier in the game Player 1 indicated it to Player 2,
and it was cut away. This is a contradiction. Q.E.D.

Theorem G generalizes the corollary, in that Player 1 need not be restricted to the
order h 1,..., in indicating points, as done in the proof of the corollary. This
generalization is necessary to obtain algorithms which always make progress on the
optimization problem. For instance, after re-optimization in a dual algorithm, the
violated constraint of index h may not be violated by the next solution. If one is required
still to add cutting-planes that are based on the h-th constraint, all these would first have
to be added before progress could result on the problem at hand.

We now relate Theorem G to our earlier characterization of the valid cutting-
planes for (GLC) (Jeroslow (1978)). We showed that these were obtained by repeatedly
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applying two kinds of rules. One was taking nonnegative combinations of given
inequalities (possibly lowering the r.h.s.). The second rules for j 1,..., had this
form"

"If one has already obtained both

(28a) alYl+" "+Uyi+" "+asYs+lZl+" "+VZi+" "+sZsaO
and

(28b) OlYl +" + u’y +" + Ol.sYs + IZ1 +" + U’Z] +" + sZs Ol.o

then one may obtain

(28c) celYl+""" +uyi+" "+CesYs+lZl+" "+V’Zi+" "+sZs>=Ceo.’’

Let the current state of a problem (GLC) be cr=(h(1), TI,’’’, h(O), To) and
suppose one has an extreme point (y*, z*) with yz > 0. Further, suppose h(i) =/" and

is the largest index having this property. Player 2 cuts away (y*, z*) by the following
means. He utilizes the system (7) to obtain a cutting-plane with (following (10)) r 2.
Vlx >= d is

A()x > b (1) A(i-1)x > b (i-)..., -z>-O,(29a) Ax >-_ b,

and OZx >= d2 is

(29b) Ax >=b, A()x >-_, b (x), A(-)x > b (i-1) -yi>O.--

The inequality (zrx _-> zr0) obtained from (7), which cuts off x*, is simultaneously a
nonnegative combination of the inequalities of (29a), and a nonnegative combination of
the inequalities of (29b), by (Ta), except that the constant terms may differ. Let (28a)
denote that part of the nonnegative combination from (29a) which is contributed by the
inequalities in Ax >-_ b, A(1)x -> b (1), A(i-1)x > b (i-1). Hence zrx > zr0 is

(30a) OlYl +" + uyi +" + asy, +/IZ1 +" +(V -1- O)Zj +" + sZs
for some nonpositive scalar 0. Similarly, let the inequality from (29b) be denoted

(30b) OlYl+’’’+(u’+O’)yi+’’’+aPsYs+t lZI +.. .--[.-l)’Z.i-+-...--[-t sZs Og O.

Since these inequalities are the same, except possibly for constants, we have

(31a) ak=a: fork#/,

(31b) flk =/3, for k #j,

(32) u=u’+O’ and v’=v+O.

Without loss of generality, ao min {ao, a;}. Hence both (28a) and (28b) will be
valid for the current polytope P., and obtainable as nonnegative combinations of its
defining inequalities. Also, zrx _-> zr0 is simply (28c). In brief, our algorithms do proceed
by taking nonnegative combinations, and using the rule (28) of our earlier paper.

An interesting question, which our analysis above does not answer, is this one"

Question. Suppose that Player 1 can indicate, not only x*, but also the index
h* e V. to be used in (23). Does Player 2 still necessarily have a winning strategy?
Blair (1979) answers this question affirmatively and, in the process, provides new

methods for establishing finite convergence. That paper also gives an example of
nonconvergence when certain seemingly strong cuts are used, which happen to be the
"wrong ones."



276 ROBERT G. JEROSLOW

(33a)

3. An example. We shall work the following example:

minimize x + 4x2 + x3 + 2x4
subject to 2x1-3x2-x3+7x4>=20

X1 +4X2+ 2X3 -+- X4 <- 10

X1, X2, X3, X4 > 0

and

(33b) X1 =< 0 or x2 => 2.5 and X4 <= 0 or x3 => 5.

The logical conditions in (33b) are facial, due to the second constraint in (33a) and the
nonnegativities; the second constraint forces x2 -< 2.5 and x3 =< 5.

This example is actually inconsistent, as we shall see. Upon solving (33a) alone, we
obtain the solution (Xl, x2, x3, x4)= (0, 0, 0, 2.857).

To implement a dual cutting-plane algorithm, we generate a cut from the condition
in (33b), that "-x4=>0 or x3 -> 5." (Recall all constraints are in "=>" format.) In the
notation of equations (7) above, we have r 2,

(34a) D

2 -3 -1 7

-1 -4 -2 -1

1 0 0 0

0 1 0 0

0 0 1 0

O, 0 0 1

0 0 0 -1

and

(34b) d1= [20,-10, 0, 0, 0, 0, 0]tr,
where the superscript "tr" denotes transpose; also we have

(35a)

2

-1

1

D2=

and

-3 -1 7

-4 -2 -1

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

(35b) d= [20,-10, 0, 0, 0, 0, 5]tr.
(The large identity matrices in D and D of course are due to the nonnegativity
constraints in (33a)). The cut obtained in this manner is

(36) .0879x -.1319xz +. 1758x3-.0330x4 ->_ .8790.
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When the cut (36) is added to the constraints of (33a), and the resulting linear
program is solved, we obtain the solution (x, x2, x3, x4)= (10, 0, 0, 0). We then mini-
mized x subject to (33a) plus (36), and got the same solution. This solution is therefore
the unique solution to (33a) plus (36), since the second row in (33a) is constraining.

The solution (xl, X2, X3, X4) (10, 0, 0, 0) violates the requirement "xl <_- 0 or

x2 _-> 2.5" of (33b). We again used (7), applied to the system of (33a) plus (36), and the
cited disjunction, and we obtained the cut (up to a positive multiple)

(37) Xl<=0.

Of course, when this cut (37) was appended to (33a) plus (36), the resulting linear
program proved to be inconsistent.

Appendix A. Some modeling issues.
A.1. Faithful modeling. Often relations on a vector u of variables are modeled by

adding in additional variables z and linear inequalities in u and z. The variables u and z
are constrained in some special way, e.g. by integrality or by facial requirements.

The modeling is called "faithful" if, whenever the given relation does hold of u, and
z is such that it satisfies the added linear inequalities in u and z, then z automatically
also satisfies the special requirements.

For example, consider the relation

(A.1) b/I’"/2I, Ul0, U20 and either Ul’--0 or u2=0.

This relation is easily modeled by adding the facial constraint U lU2 0 in place of the
logical condition. The modeling is clearly faithful, for if u 0 or u2 0 does hold, so
does u u2 0.

The same relation can be modeled with binary variables as follows. One must know
an upper bound M on u and u2, and (A.1) is modeled as

Ul+Uz-->l, Ul -0, //2 - 0

(A.2) Ul <--MZl, u2 <=Mz2, z + z2 1,

2"1, Z2 are zero or one.

This modeling is not faithful, as one sees by the solution u 0, //2 1, Z Z2 1/2, which
is in fact an extreme point of the linear inequalities of (A.2) for M 2.

If the cited solution of (A.2) causes computation to proceed merely to make z and
z2 binary, no progress is made toward the problem that is modeled. In branch-and-
bound codes, provisions can be entered to avoid arbitrating fractional variables when
the relation they were introduced to model already holds. In cutting-plane algorithms
however, the rules may require that e.g. Z is employed to generate a cut, as when a
definite lexicographic ordering is used to insure finiteness of convergence.

A facial modeling need not be faithful; see Example 4 in A.2 below. However, it is
faithful in many of the common situations, and an integer modeling is not faithful in
most of these.

The issue of the faithfulness of an integer modeling does not arise in cases where
the relation to be modeled itself stipulates integers, as e.g. a (whole) number of buses to
run on a route. But as one easily shows, any binary-integer modeling can be constructed
faithfully as a facial modeling. Thus (BIP) is equivalent to:

(BIP)’
>0Dx >= d, x + x l, x and x

and x.x/=O for/’=l,...,r.
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A.2. Examples of modeling. We choose four more-or-less typical examples"
many more can be given. An examination of these examples will show, that whatever is
modeled by a bounded integer program can be modeled by facial constraints.

Example 1. Fixed charge problems. The relation to be modeled is

a+bx, if x>0
Y= 0, ifx=0(A.3)
x__>0.

Here we assume a, b _-> 0, that y is not otherwise constrained, and that +y appears
as a term in a linear criterion function to be minimized.

A modeling for (A.3) is

(A.4) y+z=a+bx, x.z=O, x->0, y->0, z_->0.

It is faithful.
Interestingly enough, in the unbounded case, (A.4) is still a model of (A.3), but

Meyer has shown that there is no integer modeling for (A.3) when no bound on x is
known, if one uses rational quantities (Meyer (1975)).

Example 2. Separable programming. The relation is

(A.5)

p

y a + SiXi, Xi t- l)i di for 1, , p
i=l

xi >- O, vi >-0; and also" ifxj+l>0thenx.=d.fori=l,...,p.

Here a, Si and di are scalars with di > O. (A.5) represents a piecewise-linear approxima-
tion to a function of one variable.

The modeling for (1.5) is obtained by dropping the logical restriction and putting in
its place Xi+lVi 0 for 1, , p 1. This modeling is faithful.

Example 3. Minima and maxima; absolute values. The relation to be modeled is

(A.6) y =min {Wl, W2,""", Wp}

where each Wi may be a linear affine form.
The modeling is

(A.7) y -I- Zi Wi and Zi >- 0 for 1, , p, and Z1Z2 Zp O.

It is faithful.
Maxima of several affine forms can be handled similarly, and the process can be

iterated when e.g. the wi are maxima of affine forms, etc. Since [xl max {x., -x.}, one
may consider problems with constraints of the type Ix ll-lx2]+ 31x3[ 5, and similar
objective functions.

Example 4. Disjunctive value; bounded integers. The relation is

(A.8) y W1 or y W2 or or y wp

where the W are affine forms.
The modeling is accomplished by

(1) (2) (1) (2)

(A.9)
yi+zi=wi, zi=zi -zi vi=zi +zi

{2)>0, fori=lZ (1)i > 0, Z

and ZI1)" Z/(2) =0, 1, , p, V 1/)2 /-)p 0.

Note that (A.8)is equivalent to 13i [zil lYi- wil, SO the modeling is correct. However,
it is not faithful, since y= w can hold without vi =[zil holding (the constraint

(1) (2)z z 0 is not among the linear constraints).
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By taking the linear affine form to be integers (e.g. wi (i 1)), one thus obtains a
bounded integer-constrained variable y.

Appendix B. Starting solutions for (GLC); producing redundancy. Suppose that
the formula (25b) is to be used. We want a method which is likely to find the desired
(Tr, fro) in a relatively small number of pivots. This method is also available if one simply
desires a valid cutting-plane that removes x*, and one is not concerned with issues of
finite convergence. For simplicity, we treat the case (GLC).

Let Gx >-g, with x (y, z), denote those inequalities of Pi whose slacks are
nonbasic. G is r by r and nonsingular and x* is the unique solution to Gx g. Let the
ith row of G be denoted (g(i))T and the ith component of g be denoted gi.

PROPOSITION 9. The following matrix B is a feasible basis ]:or (7), where the
negative unit column *--es+h corresponds to the constraint -z’ <= 0 olD 1, and in (7) (with
the Dk as in (10)) we view that r 2 and the rowsfor k 1 are listed above those for k 2:

(B.1) B

s+h

gl 0

1 1

g(1) g(2) g(r)

gl g2 gr

1 1 1

-L+I

-L+I

In the corresponding basic feasible solution, the variables for the first and third
1/2g(1)columns equal 1/2, zr and ro -1/2gx, and all other variables are zero.

Proof. In (B.1) the L matrix contained in the upper left corner of each L+
corresponds to the columns for zr (Zrl, , zr), and the last column of B is the column
of zro.

The solution described is clearly feasible, and all of its positive columns are in B. It
suffices to show that B is invertible.

Let (a (), ill, a (:), f12, ) be a vector of row multiples which gives row sum zero,
with a(1) and a

(:) r-vectors and ill, f12 and scalars. We will show that this vector is
zero.

From the first column of B, we have

(B.2) a (1)g(1) +/lgl + h 0

and from the third .column we get

(B.3) a(:Z)g() + 2g1 + A 0.

Also from columns r + 3 to 2r + 3 we obtain

(B.4a) a
(2).__

--O
(1)

(B.4b) /32 -/31.

Substituting (B.4) in (B.3) and then adding (B.2) we obtain 2, 0, so A 0.
Now columns 3 through r + 2 give

(B.5) a (Z)g(i) -2gi, 1, , r.

If [2 0, then from (B.5) and the nonsingularity of G, a (2) 0. Then, (B.4) give a (1) 0
and/31 0, and we are done.
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Suppose now/32 0. Then since x* is the unique solution to Gx g, (B.5) gives
(1) . 0, and then with (B.4a) wex* -a (2)//32. The second column of B now gives

find x*s/h* Z 0. However, by the choice of h* for (25b), z > 0. This is a contradic-
tion. Q.E.D.

The basic feasible solution of Proposition 9 has 7to-rrx*= 0, and so, unless the
degeneracy of the solution is a serious problem, one expects to obtain 7r0- 7rx* > 0 in a
few pivots.

In regard to the basic (B. 1) for (7), it is particularly worthwhile to test if the vector

(B.6)

can be brought into the basis to make 7ro-Trx* > 0. If this can be done and (GLC)
permits z+ > 0, then the first and second columns of (AII. 1)remain basic, and so by (7)
there is a multiplier 0 _-> 0 with

(B.7a)

(B.7b)

(B.7c)

(1) ,
7ri vg C h

(1)rr < Ogh,

0 Ogl.

By (B.7), 7rx _>- r0 makes the problem constraint g(1)x >- ga redundant.
If one is not concerned with finite convergence, it is often of value to produce

redundant constraints, in the sense of (B.7), wherever possible, since this corresponds to
"tightening" a problem constraint instead of "adding" a cutting-plane.

Geometrically, creating redundancy, by the method just described, involves
"rotating" the constraint g()x gl about its intersection with z 0, the rotation being
toward the feasible set. This appears to account for most of the redundancies in
cutting-planes observed in connection with (GLC). Of course, such a rotation is not
always possible.

It is also worth noting that the "tightening" constraint rx-> 7r0 of (B.7) has the
same nonzero components as the problem constraint g(1)x ;h, 0, and it has

,.(1)only one more nonzero component if h, 0. Thus, sparseness is preserved.
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EFFICIENT ALGORITHMS FOR A SELECTION PROBLEM WITH
NESTED CONSTRAINTS AND ITS APPLICATION TO

A PRODUCTION-SALES PLANNING MODEL*

ARIE TAMIR"

Abstract. The following problem is considered. Given positive integers (nx,"’ ", n,,) and an n,, m
matrix D with the property that the n,, elements in each column form a monotone sequence, find a set A of
elements of D whose sum is maximum, and such that for any/’, 1, , m, not more than n elements are
chosen from columns 1, 2,...,/’. An algorithm, solving the above problem in time O(m log n,,) is
presented. The algorithm is applicable to a production-sales planning model with concave utilities. It is also
demonstrated that the special case of equal columns is solvable in O(m z) time.

1. Introduction. A manufacturer producing a single, indivisible, product is faced
with the following planning problem. Given the finite horizon [0, T], items of the
product can be sold only at m given times 0 < tl < t2, , <t, T. The utility of selling
k items at time t/., j 1, , m is a monotone nondecreasing concave function denoted
by U/.(k). It is assumed that (i) the production rate is constant and time independent with
a denoting the time to produce one item; (ii) no inventory costs are incurred; and (iii) no
initial stock is available. The problem is to find the production-sales scheme that
maximizes the total utility over the given horizon. Using the above assumptions we
focus only on production schedules that begin at 0 and are not idle until the last unit
is produced.

Let x/. be the integer number of units sold at time t/., j 1, , m, then consider the
following formulation,

Problem 1.

Maximize U/.(x/.) subject to

(1)
/’=1

a Y x _-< t, x. _-> 0 integer,/" 1, , m.
i=1

Using [y] to de.note the largest integer less than or equal to y, we define n/. [tJa]. The
feasible set becomes

(2) P x (x," ", Xm)IX/. >- 0 integer, 2 xi <- n/., ] 1,. , m
i=1

where n <-_ n2 <-. <-_ nm. We assume that n >-_ 1. The well known problem of optimiz-
ing the distribution of effort [1], [2], [3], [5], [6], [7], [8] is obtained as a special case
when n n. nm, since then the inequalities [= x _<- n/., ] 1, , m 1, are
implied by the one corresponding to /" rn. Following the dynamic programming
procedure in [6], [8] for solving the above special case, one can easily extend it to solve
Problem 1. However, this dynamic programming routine, which takes O(mn) effort,
i.e. O(mn) comparisons and function evaluations, does not use the concavity proper-
ties of the utilities. The goal of this study, which is applicable only to the concave case, is
to derive solution procedures which are more efficient than the above bound for the case
when n,, the total effort, is significantly larger than rn.

Our study is based on the observation that the above problem is equivalent to the
following restricted selection problem.
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Define the matrix D (dij), where dii U.(i)- U.(i- 1), j 1,. , m,
1,

Problem 2. Find a set, A, of n,, elements of the matrix D whose sum is maximum,
and such that for any j, j 1,..., m, not more than n. elements are chosen from
columns 1, 2,. , j.

In the context of Problem 1, dii is the marginal contribution of the ith unit sold at
time ti. In particular, U.(x.)-Ui(O) is the sum of the first xi entries in column j of D.

The idea of using incremental analysis for solving Problem 1 is taken from [1], [3],
where the same approach is used for solving the special case when n rt2 rtm.
We have the following theorem, motivating Problem 2.

THEOREM 1. X (X 1, ", X,,) is an optimal solution to Problem 1 if and only if an
optimal solution to Problem 2 is defined by choosing xi entries in column j of D, j
1,...,m.

Two efficient algorithms of polynomial time complexity are presented. The first
method is of time O(mn,,) while the second procedure which is much more complex and
utilizes the sophisticated technique (for the unrestricted selection problem) given in [2],
yields the bound O(m 2 log2 nm). The latter procedure, being sublinearly bounded in
is recommended in those circumstances where n,, is significantly larger than m.

The organization of the paper is as follows. In the next section we prove the
equivalence of Problems 1-2 and investigate properties of optimal solutions. In 3 the
above mentioned algorithms are presented, while 4 treats the special case where the
utility functions U.(x.), j 1,..., m, are all identical. This special case is solved in
O(m 2) time.

2. Properties of optimal solutions. We start by proving Theorem 1.
First, note that the concavity of the functions U.(x.) implies dii>--di+l,i for all

/" 1, , m and 1, , n,, 1. Hence, one may assume that if xi entries are chosen
from column ] in an optimal solution to Problem 2, these are the first x. entries in this
column. In particular, the sum of these x. elements is U.(x.)- U.(0). Furthermore, the
constraints stating that for any j no more than ni elements are chosen from columns
1, 2,. ,/’ are exactly the constraints of Problem 1 as expressed by (2). Problem 2 is
now to find x (xl," , x,) in the set P defined by (2) such that %1 (U.(x.) U.(0)) is
maximized. The latter is clearly equivalent to Problem 1, and the proof of Theorem 1 is
complete.

As a corollary of Theorem 1 we see that the special case of nl n2 n,, is
solved by finding the largest n,,, elements in D.

We use the following definitions and notation.
LetA __. {(i, i)li l,. , n, j 1,. , m} be a set of cells and let x. be the number

of elements in A with right index/’. We consider only those sets, A, such that
(i) A {(i, ])[i 1,. , xi; ] 1,. , m}. A is said to be feasible if
(ii) x (xl,’’’, x,) is in the set P defined by (2).
A feasible set A is optimal if x (xl,’’’, x,) solves Problem 1. Similarly, given

x =(xl,"" ,x,) in P, we say that it consists of the cells A ={(i,j)[i= 1,...,xj;
j 1, , m }. A set of cells B is said to be contained in the feasible solution x if B

_
A.

A set of cells, A, is p-largest if it consists of p cells and the (multi) set d(A)=
{diil(i, j) A} is a set of p largest elements of D. (Note that due to possible ties a p-largest
set is not necessarily unique).

Given a p-largest set A, let w be a smallest element in d(A). Define r(A)=
(rl,""", r,,), where ri, (/" 1,..., m), is given by r; I{i1(i, ]) A, dii W}]. a is p-
lexicolargest if r(A) is lexicographically larger than r(B) for all p-largest sets B, B A.
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((Ul,""", Urn) is lexicographically larger than ()1,""", /An) if for some j v. < ui and
v u for all k > j.) Given an integer p, a p-lexicolargest set is unique, and is denoted
by A,.

Solving Problems 1-2 now amounts to finding a feasible set A such that (g,’)A di is
maximum.

Feasible p-largest, and p-lexicolargest sets play a key role in deriving our
algorithm. Following are several of their properties.

PROPOSITION 1. Given Problems 1-2 with a matrix D (d) and the set of bounds
(n, n2, , n,,), na _-< na -<n,,, let dxi be a first row entry which is a largest element of
the matrix D. If ni >- 1, then there exists an optimal solution containing the cell (1, ]).

Proof. Let x be an optimal solution and suppose that (1, ]) is not part of this
solution. Hence xi 0. If xg _-> 1 for some < define the solution y by y x, k
i, , y xi-1 and y. 1. dxi being a largest element yields the optimality of y for
Problem 1. Thus assume x 0, <=/’, and let >/" be the smallest index such that x, >_- 1.
Define the solution y by y x, k /’, t, yt xt- 1 and y. 1. Again, the feasibility and
optimality of y is easily observed.

PROPOSITION 2. Given Problems 1-2 with a matrix D (di) and the set of bounds
(nx, n2, ,nm), nx <= n2 <- n,,, let A be a feasible p-largest set. Then there exists an
optimal solution containing the set A.

Proof. Suppose that the claim is true for feasible (p 1)-largest sets of all matrices
D and bounds (nx, n2, nm). Proposition I ensures its validity for p 1. Let dli be a
largest element in d (A). By Proposition 1 there exists an optimal solution x that utilizes
the cell (1,/’). Thus, due to the separability of Problem 1, the existence of the above x
implies the sufficiency of solving Problems 1-2 with D’= (dl,) and (n 1, n2, , n,,),
where d’g=di for v/’,di=dg+x,, for i_->1 and n,=n-l,k_->/’,n._x-

(n/-x ni_z) n =min (n’min(n.,ni_l),ni_2 min z, n 1). It is clearly observed that

a’= {(i, v)[(i, v)e A, v /’} U {(i,/’)1(i + 1,/’) e A, _-> 1}

is a feasible p 1 largest set for the problem defined by D’ and (n’1, n 2,""", n ,,). Thus,
applying the induction hypothesis yields an optimal solution containing A’ and the
proposition follows.

Since a p-largest set is not necessarily unique one can easily construct examples
where both feasible and infeasible p-largest sets are present. For our purposes this
difficulty is resolved by the next proposition.

PROPOSITION 3. Given D (di) and (nl, n,,), n <- rt2 <- n,,, if there exists
a feasible p-largest set, then the p-lexicolargest set is feasible.

Proof. Let x- (x1,’", x,,) be a feasible solution corresponding to a feasible
p-largest set A and let z (Zx,’’’, z,,) be the vector corresponding to the p-lexico-
largest set. Let re(x) be the number of indices such that zg x. Our proof is by
induction on m(x). Let j be such that zj > x. and Xk Z,, k >j. Since Y’.7’= xi 27=1 zi,

there exists u such that zu <Xu. Moreover, since both x and z correspond to sets
containing p-largest elements it follows that dry. dqu for xi < r <= zi, z < q <- Xu. Define a
solution y corresponding to a set of p-largest elements by the following Yk Xk, k
u, ], Yu x a and y. xj + a, where a min (z. xi, x, z). It is easily verified that
m (y) -< m (x) 1 and that y is feasible for Problem 1. By the induction hypothesis our
proof is now complete.

3. The Algorithms. Proposition 1 validates the following algorithm.
ALGORITHM 1.
Step 1. Set xi 0, ] 1, , m. LetAC {1, , m} be the set of active columns;

then set E {dl.[/" AC}. Also set r 0.
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Step 2. Find the largest element in E, say dii, an element from column j. Increase x.
by 1.

Step 3. For every k_->] decrease nk by 1. Starting with n._, replace nt by
min (nt, nt+l), ]- 1, ]-2,’’ ", r + 1.

Step 4. If nr+l --> 1 go to Step 5. Let r be the largest index such that nr O. If r m
terminate, otherwise delete the indices in AC which are smaller or equal to r.

Step 5. If ] <_-r go to Step 2, otherwise replace d0 in E by di+,, and go to Step 2.
It is easily verified that the time of the algorithm is determined in Step 3, which

consumes O(m) time per iteration. Since n, iterations are performed the algorithm
takes O(n,m) time. It should be remarked that several steps (Step 3 not included) of the
algorithm can be improved upon to save time. But this does not affect the complexity
bound. For example, in Step 2 we may start by first sorting all the elements in the first
row of the matrix D (using only O(m log m) time). Then every time an element is
replaced in E, (Step 5), the sorted set is updated in O(log m) time. Since the bound
O(n,,m) is not reduced we prefer to avoid further elaboration and present the second
algorithm which is sublinearly bounded in n,.

We use Propositions 2-3 to derive an algorithm whose time complexity is sublinear
in n,. We assume n, > m, since otherwise Algorithm 1 will have a better asymptotic
bound.

Start by finding the largest integer r <= nm such that the r-lexicolargest set Ar is
feasible. By Proposition 2 there exists an optimal solution to Problems 1-2 that contains
the cells of Ar. The maximality of r also implies that for some f the equality holds in the
constraint Y{= xi <= nj. (Consider the largest index with this property). Since, otherwise,
if the strict inequality holds for all/’, one more cell can be augmented to the solution to
yield a feasible (r + 1) largest set. Proposition 3 then yields the contradiction. Thus the
first /" columns of D can be omitted from further consideration and xi, i<=j, is
determined by the number of cells in Ar, whose column index is i. Then, subtract ni from
nk for all k >/’, and find the largest index r-< n,-n, such that the r-lexicolargest
elements in {d,v lu 1, , n, n., v =/" + 1, , m} satisfy the constraints

(3) xi<-nv-n, v=]+l,...,m.
i=1+1

The process is then continued with the above index ] now being replaced by the (largest)
index v such that equality holds in (3). The entire procedure is repeated until finally n,
elements are chosen. We label the above algorithm as Algorithm 2.

To compute the complexity of this algorithm we first see that the above procedure
is not iterated more than m times. This is implied by the fact that at each iteration we
omit at least one additional column of D from further consideration. To evaluate the
computational effort spent at each iteration we focus on the first one first.

Given q =< n,, and ]-< m, we denote by f(q, ]) the time of finding the q-largest
element in a matrix with q rows and/’ columns. (Monotonicity in the columns of the
matrix is assumed). To compute the largest r =< n, required in the first iteration, we find
the nmolexicolargest elements of D, and then apply a binary search on this set of
elements to find r. Given a q-largest element of D, it takes O(m log q) to construct the
set of q-lexicolargest elements of D. Since we compute at most log n,, lexicolargest sets
and perform a feasibility test requiring only O(m) time, for each one of them, the time
complexity of the first iteration amounts to O(f(n,,,, m) log n,, + m log2 n,). (Note that
finding the largest index ] for which equality holds in the ]th constraint is included in
the feasibility test.) A similar analysis shows that in the second iteration the bound
reduces to O(f(n,-ni, m-j) log (n,,-n)+(m -j) log2 (nn-ni)), where ]_-> 1 has
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been found in the first iteration. Now, recalling that the number of iterations is bounded
by m, we conclude that performing the algorithm takes time O(m (f(n,, m) log n,, +
m log2 n,,)). Finally, to evaluate a q-largest element of a matrix with column mono-
tonicity (and hence the q-lexicolargest set) we suggest the selection algorithm of [2],
which has f(q, j) O (j log q ). This yields the bound of O(m21og2n,,) for our
algorithm. Note that this bound is expressed in terms of function evaluations when
applied to Problem 1.

Remark. Considering the first iteration of Algorithm 2, it is pointed out that only n.
of the r-lexicolargest elements are used. Thus, if the remaining r-nj elements are
recorded, some computational effort can be saved when we compute the lexicolargest
set corresponding to the second iteration. This routine may be repeated at any iteration,
but the complexity bound, being based on the worst possible case, is not improved.

4. The symmetric case. In this section we elaborate on the case when the utility
functions U.(x) are equal, i.e. the matrix D has equal columns, and present a procedure
to solve Problem 1 in time which is independent of n,. Specifically the problem is solved
in time O(m2). The procedure is motivated by Proposition 2, which suggests the
construction of feasible p-largest sets as a possible direction for solution.

We start by introducing a routine to reduce the set of feasible solutions defined in
(2). Given (n 1,"’, n,,) we assume that hi->_ 1,/’= 1,..., m. (Otherwise omit the
columns k 1, , j from further consideration and set Xk O, k 1, , j.) Suppose
that for some/’, nj is less than the number of variables appearing in the/’th constraint, i.e.

n. < j. Hence at most nj variables in the set {x 1,’’’, xi} can take on positive integer
values. Since the matrix D has equal columns, and due to the nested structure of the set
in (2), we assume with no loss of generality that X x2 xi_n 0, thus reducing
the original m-variable problem into a (m-/’ + n.)-variable one. Proceed in the same
way with the reduced problems until no further reductions are possible. Since we can
have at most m reductions the reduction routine terminates in time O(m).

The following algorithm is applicable for the symmetric case. Note that it depends
only on the equality of the columns but not on the specific values of the elements in D.

ALGORITHM 3.
Step O. Let (n 1, , n,,) be given and set xi 0,/" 1, , m.
Step 1. Apply the reduction routine to the current problem. If the/’th variable is set

to zero in this process, no further elements of D are selected in the/’th column. Let
{v + 1,. ., m} be the indices of the remaining columns. (Stop if no columns remain).

Step 2. Let k be such that

--nk min n. ",/’ v + 1, m and define => 1.
k-v k-v

Step 3. For j v + 1,. , m increase x by t.
Step 4. For j v + 1,.. , m subtract (j-v)t from ni and go to Step 1.
The validity of the above procedure is ensured by Proposition 2 and the equality of

the columns of D. Also note that due to the reduction routine it is not necessary to
maintain the monotonicity of the sequence {ni}, as is done in Algorithm 1.

To find the time complexity of the procedure we first bound the number of
iterations. We show that at each iteration at least one additional column is dropped
from further consideration. Consider the index k defined in Step 2. If nk/(k--v) is
integer then the updating performed in Step 4 yields nk 0, which in turn implies that
the columns indexed v + 1,..., k are omitted. Thus suppose that nk/(k-v) is not
integer. Then in Step 4 nk is replaced by n’k=nk--(k--v)[nk/(k--v)]<
nk -(k --v)(nk/(k --v)-- 1) k -v. Therefore, the reduction routine is applied for j k
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since n /(k- v)< 1, and at least one more column is omitted from further discussion.
Steps 1-4 are of time O(m) and thus the entire procedure is of time complexity O(m2).

A comment is in order. Although it is not directly related to Problem 1, we point
out that the integer vector (xl, ’, x,), generated by Algorithm 3 is majorized (in the
sense of Hardy, Littlewood, Polya [4]) by any other integer vector in the set defined by
(2). In fact, this claim is implied by the independence of the algorithm on the specific
values taken by the common utility.

Note added in proof. We have recently found another way to apply the algorithm in
[2] to solve Problem 1. This application yields the bound O(m2 log n,).
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NONSINGULAR FACTORS OF POLYNOMIAL MATRICES AND
(A, B)-INVARIANT SUBSPACES*

E. EMRE-

Abstract. Given a polynomial matrix B (s), we consider the class of nonsingular polynomial matrices L(s)
such that B(s)= R(s)L(s) for some polynomial matrix R(s). It is shown that finding such factorizations is
equivalent to finding (A,/3)-invariant subspaces in the kernel of C where A,/3, C are linear maps determined
by/3(s). In particular, the results yield, as a corollary, a method to determine simultaneously a row proper
greatest right divisor of a left invertible polynomial matrix as well as the resulting polynomial matrix whose
greatest right divisors are unimodular.

The results also relate, the same way, such subspaces of constant systems (, A, B) where (C, A) is
observable, to the nonsingular right factors of the numerator polynomial matrices in factorizations of the form
D-l(s)B(s) of their transfer matrices.

1. Introduction. Factorization of a polynomial matrix B(s) has been a subject of
several authors both in mathematics and system theory literature [1]-[3-1, [8]-[14]. In
[12]-[14], B(s) has been assumed to be square and monic (i.e., highest degree
coefficient matrix is unit matrix), and only monic factors of B(s) have been considered.

In [1]-[3], [8]-[11], B(s) has been taken to be a left invertible polynomial matrix
[1]-[3] and the main purpose has been the extraction of a greatest right divisor and
obtaining the remaining factor as a polynomial matrix with all unity invariant factors
[3-[33.

In this paper, we consider a general polynomial matrix B (s) with coefficients of its
entries in a field, and its nonsingular right polynomial divisors (NRD) L(s) (i.e.,
factorizations of the form B(s)= R(s)L(s) for some polynomial matrix R(s) such that
det (L(s)) 0). Motivated by the results of [4] on exact matching, it is shown in 2 that
such factorizations are equivalent to finding (A, B) invariant subspaces in the kernel of
C [5]-[7-1, where A, B, C are linear maps determined by B(s). Every NRD yields such a
subspace and, once such a subspace is found, it is shown that corresponding L(s) can be
found (in row proper form [1]-[3]). In particular, the results of the paper yield a method
to determine a row proper greatest right divisor of a left invertible polynomial matrix as
well as a resulting polynomial matrix which is a left factor whose invariant factors are all
unity. Here we consider only the case of right factors because the case of nonsingular
left factors can be approached by duality.

Finally, it is shown that if (A, B, C) is any observable system, then the NRD’s of
B(s) in a factorization [1]-[3] of (SI--)-lJ as D-(s)B(s) are related in the same
way to (A, B)-invariant subspaces in the kernel of C.

The notation is such that the maps and their matrix representations are denoted by
the same symbols and for a matrix R, {R } denotes the span of the columns of R. If A is a
linear map and g, is an A-invariant subspace, A g," g, - g, denotes the restriction of A to
g,. By a basis matrix for a subspace g, we mean a matrix R whose columns are a basis for
g,. Ker C denotes the kernel of the mapping C.

2. Nonsingular right factors and (A, B)-invariant subspaces. Let B(s) be an f x r
polynomial matrix.

DEFINrrION 1. An r r polynomial matrix L(s) is said to be a nonsingular right
divisor of B(s) (NRD) iff

* Received by the editors June 3, 1978, and in revised form August 7, 1979.
t Center for Mathematical System Theory, Department of Electrical Engineering, University of Florida,

Gainesville, Florida 32611. This research was supported in part by the Department of Mathematics of
Eindhoven University of Technology.
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(1) det (L(s)) is nonzero, and
(2) there exists an " x r polynomial matrix R (s) such that

B(s)=R(s)L(s).

PROPOSITION 1 [1]-[3]. I]L(s) is an r x r nonsingularpolynomial matrix, then there
exists a unimodular polynomial M(s) and a row proper matrix L(s) such that

(1) M(s)L(s)=L(s).

In general the polynomial matrices M(s) and L(s) satisfying (1) are not necessarily
unique.

However, if vi is the degree ofthe.i-th row ofan L(s) as in (1), then the set {Vl," , vr}
is the same (modulo the ordering of vi’s) ]:or every L(s) as in (1).

It follows from Definition 1 and Proposition 1 that, if L(s) is a NRD of B(s), then
the elements of the set

SL {M(s)L(s)IM(s) is a unimodular polynomial matrix}

are all NRD’s of B(s). Further each SL contains at least one element whose highest
degree row coefficient matrix is nonsingular.

Another result that we use is the following:
LEMMA 1 [1]-[3]. IlL(s) is an r x rrow propermatrix with the i-th row degree vi, then

L-l(s) is a proper rational matrix. If vi >- 1, 1, , r, then L-(s) is strictly proper.
Now motivated by the approach in [4] to the exact model matching, we have the

following theorems characterizing NRD’s of a polynomial matrix B(s), where we
assume, without loss of generality, that B (s) has no zero rows. Let the ith row of B (s) be

A

b(s) Z bis =1,... ,f,
/=0

where bi.’s are constant row vectors, Ai->0, and bx, # 0, 1,..., ]’. Let

Bi B=

is (/i -[-" 1) X (/i -1-1) if hi 1 and

Pi =0 if Ai--’0;

A= \\ C/=[1 0

C= \\

0] is 1X(ii-[-1),
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THEOREM 1. Let L(s) be a row properNRD orB(s) with the i-th row degree vi and
let (A1, B1, C1, DI) be a minimal realization of L-a(s), i.e.,

(2) L-a(s) CI(sI-A1)-aB1 +D1.

Then the following hold:
(1) There exists a subspace O, of dimension less than or equal to

n
i=1

satisfying

(3) AO=O+{B}, 0c Ker C.

(2) There exists a matrix X such that 0 {X}, and the matrices X, A a, Ca satisfy

(4) AX XA -- BC.(Thus in case dim r and X is a basis matrix, there exists a feedback map F such that
(A +BF) , and (A + BF) O is represented by A [5]--[6].)

Proof. If L(s) is as in hypothesis, then (1) holds for some f x r polynomial matrix
R(s), or

(5) B(s)CI(sI-AI)-IBI R(s)-B(s)DI.

Then considering the formal power series expansion of L-(a(s) and equating the
coefficients in (5), row by row, we obtain

[b, bio] [CxAiBx" C1A’+lB
=[o o

Bi [.. CI"B1 c1a 1B1

or

(6) B, [B1 A1B1 [0 0 ].

(9)

(8)

or, letting

0(s)=
L0islJ

B(s)C1 O(s)(sI-A1).

But, since (A1, B1) is reachable,

(7) Bi =0, 1,...,f.

But (7) shows that the polynomial matrix bi(s)Ca is right divisible by (sI-A a) [15], i.e.,
there exists a 1 x r polynomial matrix Oi(s) such that

bi(s)C1 Oi(s)(sI-A1)
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From (8) it follows that degree (0;(s))< A;. Now let

Ai--1
Oi(S) iS

]=0

Thn (9) yild (), i.., i 0- {X}, v la

POO+{B}.

CX 0 is clear and hence
Remark 1. Note that we have

R (s) (s)Ul -I- B(s)D1.

Also note that if vi >_- 1, 1, , r, D1 is zero.
Remark 2. In case B(s) is left invertible from (9) it is seen that X in (10) has full

column rank in which case dim 0 ti and A1 always represents A +BFI where F is
such that (A + BF)q c t).

THEOREM 2. LetO be a subspace satisfying (3). LetXbe a basis matrixforO. LetA 1,

C1 be matrices satisfying (4). Also, suppose that C1 has full low rank. Then the following
hold:

(1) (A 1, C1) is observable,
(2) there exists a unique matrix Ba such that (A1, Bx) is reachable and such that

L(s) [C, (sI A

is a NRD which is row proper with the ith row degree, Vi being >- 1, 1, 2, , r.

Proof. With the same notation as before, defining 0(s) as in (10) we see that (9)
holds.

Now since

B(s)CI(sI-A1)-1 O(s),

and X has full column rank, (C1, A 1) is observable. Then since C1 has full row rank, the
observability indices vi of (CI, A) are ->1. Then there exists a nonsingular constant
matrix i" such that

CI(SI-A 1)-1 Z-(s) W(s)

where L(s) is an r r row proper polynomial matrix with row degrees being equal to vi

[1]-[3] and

W(s) -.
W(s

where

Wi(s) [s v’- ].
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Thus if we let

\

0
0

we have

CI(S[-A1)-IB1 t-l(s).

Since W(s)TB1 Ir is coprime with L(s), (A1, B1) is reachable [1]-[3]. Then

B(s)L-l(s) 0(s)B1 R(s)

and

B(s) R(s)L(s). 71

Remark 3. In Theorem 2, if C1 does not have full row rank, let T be any
nonsingular matrix such that

where C1 has full row rank Then we again have

B(s)C1 O(s)(sI-A1)

with (C1, A1) observable, and

0
--O(s)(sI-A1)

with (C1, A 1) observable.
Let B(s)"-1 [BI(S) B2(s)]. Then ifwe choose BI as in Theorem 2 for (-1, A1),

the resulting L(s) will satisfy

BI(S)L-I(s) O(s)B1 (s).
Then

B(s)-I[L(s)
l 0

=[R(s) Bz(s)]=R(s)

or
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yields

I 0

as a row proper NRD of B(s).
Now we have the following corollary which yields a method to find a greatest

common right divisor [1]-[3] of two polynomial matrices V(s), T(s), where T(s) is
nonsingular, as well as the resulting coprime pair simultaneously. It is clear that this is
equivalent to finding a greatest right divisor [1]-[3] of

T(s) lB(sl=[v(s)"
COROLLARY 1. Let B(s) be an f r polynomial matrix with f>= r, which is left

invertible (i.e., no zeros among the diagonal entries of its Smith form).
Let max be the maximal dimensional subspace satisfying (3). LetX, A 1, C be as in

Theorem 2. IfC has full row rank let B1 be as in Theorem 2 and g C1 does not have full
row rank let C1 andB be as in Remark 3. Then the resulting NRD, L(s), is a row proper
greatest right factor ofB (s).

Proof. Suppose that L(s) is not a greatest right divisor. Let L(s) be a greatest row
proper right divisor. Then by Theorem 1 and Remark 2, there exists a subspace $
satisfying (3) with dim $ degree (det L(s)).

But then degree (det L(s))>degree (det L(s)). However, degree (det L(s)) is
dimension of $max by Theorem 2 and Remark 3. This is a contradiction. Thus L(s) is a
row proper greatest right divisor of B(s).

Remark 4. There are several methods to find a maximal (A, B)-invariant subspace
max in Ker C [5]-[7].

Once we have found a basis matrix, Xmax, for max, the corresponding 6(s) is
already available.

Then applying Theorem 2 and Remark 3, we have both a row proper greatest right
divisor as well as the resulting polynomial matrix whose only polynomial right divisors
are unimodular polynomial matrices. Now the following corollary is immediate.

COROLLARY 2. Anf r (f r) left invertible polynomial matrix B (s) has only unity
invariant factors iff

Based on Theorems 1 and 2 we also have the following result.
THEOREM 3. Let (A, B, C) be a system such that (C, A) is observable. Let

(s[-)-’ D-(s)g(s)

be a coprime factorization such that D(s) is row proper with the highest degree row

coefficient matrix being the unit matrix (this can be always achieved by a nonsingular
constant output transformation) and let B (s) := S(s)B have no zero rows. Then in regard
to the nonsingular right factors orB(s), Theorems 1 and 2 hold with (A, B, C) replacing
(A, B, C) as defined previously.

Proof. Let the observability indices of (C, A) be V, i= 1,..., f. Since G(s) is
strictly proper and B(s) has no zero rows, V => 1, 1,. ., f [1]-[3]. Since (C, A) is
observable, there exist matrices K, T (T being nonsingular) such that

(11) ’(X +K)7-’ X, (f-’
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[1]-[3], where

Xi is a I7"i x 17"i matrix given as

if I9 > 1 and X 0 if 2i 1.

Ci is the 1 x V matrix given as

1 0. 0
o

0 Oo

,=[ o o].

Such a pair (A, ) is usually referred to as Brunovsky’s canonical form. Then, since
D-l(s)B(s) is strictly proper and D(s) is row proper, Ai < 17"i, 1,..., f. Now let

L-)-J
Now we will show that Ji is a 17"g x r matrix given as

Bi Bi
1," f

([1]-[3]) where Bi is related to B(s) as at the beginning of 2.
From the definition of D(s) and S(s) we obtain

(’12) D(s) +g(s)-l(sI-X)-1 O.

Define

W(s):=

0 IS Qt’-I

Then there exists a constant matrix K such that

D(s)=diag (sQ’)+ W(s)I.
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Thus we can write (12) as

(13) diag (s ’)( + W(s)I( + ,(s)-l(sI-)"-1 =0.

On the other hand we have the identity

(14) diag (s ’) + W(s)(sI--g)"-1 =0.

Subtracting (14) from (13) we get

[g(s)7-1- W(s)]’(sI- fi,)-1 + W(s)[K" + K’] 0

which implies that

Thus,

W(s) (S)’-1 and / -7K.

B(s) S(s)B W(s)B.

Hence, Bi are as defined at the beginning of 2. Now, since the subspaces p satisfying
AO c 4’ +{B}, c Ker C are independent of the type of transformations occurring in
(11) which are invertible, they are the same as the subspaces satisfying

(15) + {/}, Ker (.

But the subspaces satisfying (15) are the same as the subspaces 0 satisfying

A + {B}, c Ker C

embedded into a larger dimensional vector space. Also the matrices A 1, C1 satisfying

where O {X}, satisfy

and thus they satisfy

AX XA1 +BC1

AX XA1 +BC1

for someX such that {X} 0 which is the same as 0 (modulo embedding 0 into a larger
vector space). Then, by Theorems 1 and 2 the proof follows. ]

Remark 5. Theorem 3 shows that any given NRD, L(s), of B(s), in G(s)=
D-l(s)B(s) which is a factorization of (sI-)-l with (t, ) being observable
(equivalently the set SL), there corresponds a unique (A,B)-invariant subspace in
Ker C. Also, given any such subspace, there corresponds at least one NRD of B (s).

3. Conclusion. We have given a characterization of NRD’s of a polynomial matrix
in terms of (A, B)-invariant subspaces in Ker C. The results in particular yield a method
to obtain simultaneously a row proper greatest right divisor of a left invertible
polynomials matrix as well as the resulting polynomial matrix whose greatest right
divisors are unimodular polynomial matrices. The results also yield a characterization
of the NRD’s of the numerator polynomial matrix in a factorization of a transfer matrix
in terms of (A, B) invariant subspaces in Ker C where (A, B, C) is an observable
realization of the transfer matrix.
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FIXED AND VARIABLE CONSTRAINTS IN SENSITIVITY ANALYSIS*

J. E. SPINGARNt

Abstract. Sufficient conditions are obtained for the _C dependence on a parameter of a local minimizer
and associated Lagrange multipliers for parametrized families of nonlinear programming problems in which
some constraints do not vary with the parameter. A class of sets, called "cyrtohedra" with properties suitable
for the representation of fixed constraint sets is discussed.

Introduction. Let f, gi(i el), and hi(jJ) be real-valued twice continuously
differentiable functions on R p, where I and J are finite index sets and P c R is
open. Let C c R n, and consider the family of nonlinear programming problems

minf(x,p) inx subject to gi(x,p)<=O
(QP)

hi(x,p)=O Vj and xC.

The "variable" constraints gi(x, p)<=O and hi(x, p)=0 which depend on p, and the
"structural", or "fixed" constraints represented by the set C, play fundamentally
different roles in our analysis.

In the case where no fixed constraints are present (that is, where C Rn), Fiacco
[2] showed that if is a local minimizer for (Q0) and vectors )7 R + and R exist
with (Y,)7, z) satisfying the ".strong second-order conditions" (see below), then _C
functions x(p), y(p), and z(p) may be defined on a neighborhood of/ such that
x(/) , y(/) )7, z(/) ., and for all p, x(p) is a local minimizer for (Q) with unique
multiplier vectors y(p) and z(p) and such that (x(p), y(p), z(p)) again satisfies the
strong second-order conditions for (Qo). The triple (, 37, _) R" R + R satisfies the
strong second-order conditions for the problem

(Q) minf(x) subject to g. (x) <= O /i, hi(x) O lj, x R

provided that (letting/+= {i el" gi(Y) 0} and L(x, y, z)=f(x)+iYigi(x)+jzihi(x))

(A) (i) Y is feasible for (Q);

(ii) VxL(Y, 37, z-) 0;

(iii) 37i > 0 if and only if gi(Y) 0;

(iv) {Vgi(.f)" 1+} LI {hi(Y)" j J} is a linearly

independent set.

(v) If 0 sr 6 R" satisfies (. Vgi(Y) 0 (/i I+),

and (. 7hi(Y)= 0 (/] J), then sr. Hsr > 0, where

H 72xL(., 37,

In case fixed constraints are present, it may well be that the set C itself is
expressible as the set of points satisfying a finite number of "variable" type constraints,
the dependence on p being trivial. If so, the set C could be eliminated, and the family

* Received by the editors November 7, 1978, and in revised form July 25, 1979.
Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332. This research

was supported in part by the Air Force Office of Scientific Research, Air Force Systems Command, under
Grant 77-3204.

297



298 J, E. SPINGARN

(Qp) could be reformulated in an equivalent way involving only variable constraints.
However, the trouble with this approach (and hence our reason here for segregating the
two types of constraints) is that the conditions (A) for the new form of the problem (the
hypothesis for Fiacco’s result) may be too strong to satisfy, even though the conclusion
of Fiacco’s theorem is actually valid. This obstacle arises even in the simple case where
the fixed constraints are linear. We overcome this difficulty (for a certain class of fixed
sets C) by showing that the weaker conditions introduced in 3 are sufficient to
establish the desired extension of Fiacco’s theorem. These new conditions are then
shown to be the weakest possible ones which give such a result.

In 2, a class of sets, called "cyrtohedra", is described. These sets possess
properties which make them suitable to represent the fixed set C. In [11], [12], this same
class of sets will play a central role in our analysis of the "generic" necessity of the strong
second-order conditions for optimality in (Qp), generalizing results obtained in [14].

In 3, the strong second-order conditions (A) are modified to obtain new condi-
tions. The modified conditions depend on the set C, and reduce to the old conditions (A)
when C R n.

In 4, the tools developed in 2 and 3 are applied to obtain the generalization
(4.2) of Fiacco’s result, as well as a converse (4.10) which shows that the extended
conditions are the weakest which imply the conclusion of (4.2).

1. Preliminaries. Let R denote n-dimensional Euclidean space with the inner
product x y ,E xiyi. For any finite set I, R x denotes Euclidean space of dimension II[.
If J c I then R J is regarded, in the natural way, as a subspace of R x R t and R t

+ ++ arethe
nonnegative and (strictly) positive orthants in R .

For any set S c R ", "rank S" denotes the dimension of the linear subspace
"span S" generated by S. "co S" is the convex hull of S, and "relint S" is the interior
of S relative to the affine subspace generated by S. Also define Sz=
{r R r. 0, Vsc S}. If h is a function whose domain contains S, "hiS" denotes the
restriction of h to S.

Let U c R and V R be open sets. A function h" U V is o[ class _C (r _-> 1) if
all of its partial derivatives of order _->r exist and are continuous. If X R k and Y R
are arbitrary subsets, then h" X Y is o’class _C if for each x X there is an open set
U c R containing x and a C_ function H" U - R such that h lU fq X HI U fq X. A
C_ diffeomorphism (r >-_ 1) h" X Y is a homeomorphism for which both h and h- are
of class _C (X and Y are always given the inherited topologies).
M c R" is a k-dimensional C_ submanifold (r => 1) if for each x eM there is an

open set U c R k and a _C diffeomorphism 4 mapping U onto a neighborhood of x in
M. The map 4 is a localparametrization for M. Let Jg(v) be the Jacobian of & at v. The
range of Jrb(v) is a k-dimensional subspace of R called the tangent space to M at
x &(v), denoted by "M". It does not depend on the choice of b (cf. Milnor [8]).

Let M c R be a k-dimensional _C submanifold, h" M R a _C function. For
each x M, there is a unique Vh (x) e M, the gradient of h at x, such that for any " e Mx,
if r/" (-1,1)M is a differentiable curve with r/(0)=x and r/’(0)=r then
d/dtl=o h(n(t)) Vh(x). (. If Vh(x) 0 then x is a critical point for h.

When M and h are of class _C2 and x &(v) is a critical point for h, we define a
symmetric bilinear function Vh(x) on M, the Hessian of h at x, by setting

VZh(x)(u, w) [VZ(h &)(v)](a, ff) (u, w 6Mx),

where u Jb(v)ti, Jcb(v)v, and where VZ(h )(t) denotes the usual Hessian of
h b at v. This definition does not depend on the choice of & [6]; x is termed a
nondegenerate critical point for h if the matrix V2(h b)(v) is invertible.
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We will frequently be dealing with the situation where h =HIM for some
H" R R. In this case, it is important not to confuse Vh(x) with VH(x). (Here VH(x)
is the ordinary gradient of H at x). If r’ RnMx is orthogonal projection, then

(1.1) Vh(x) zr(VH(x)).

If x is a critical point for h, we will say that x is a critical pointforHon M. Similarly, it is
important not to confuse VEH(x) with V2h(x). If M is affine, then the two bilinear
functions agree on Mx.

Let X and Y be topological spaces. If S(x) is a subset of Y for each x X, we will
say that S’X- Y is a multifunction. S has closed graph if the set Gr(S)=
{(x, y)" y S(x)} is closed in X x Y.

2. Cyrtohedra. The assumptions we will need to make about the fixed set C have
been incorporated into the definition of "cyrtohedron". These sets have a local
structure similar to polyhedra, except that their "faces" are locally the intersection of
zero sets of nonlinear functions.

Throughout this article, we let UcR" be an open set, and G, a A, and
H,/3 B, finite collections of differentiable functions on U. For any Ao A and x 6 U,
define

F(x, A0) {VG (x)" a 6 Ao} U {VHt (x)"/3 6 B},

Z(ao) {y U’ 0 O (y) H(y) Vc ao, k//3 e B}.

A nonempty connected set C c R is a cyrtohedron of class _ck(k => 1) if for every
$ e C there are _C functions G, a e A, and H,/3 e B (for finite index sets A and B)
defined on a neighborhood U c R of $ such that $ e Z(A) and

for all x e U, x e C if and only if
(2.1a)

G(x)<-_O /a cA and Ho(x) 0 /fl B;

if Y a,,VG(Y) +Y’. bVH(Y) 0 for some
A B

(2.1b)
a6R+AandbR thena=0andb-0"

for each Ao A there is an integer s (Ao)
(2.1c)

such that rank F(x, A0) s(Ao) for all x U.

(The sets A and B will both be empty precisely when x belongs to the interior of C
relative to Rn). Condition (b) is the Mangasarian-Fromovitz constraint qualification. It
is known [3, Corollary 2.10] to imply

if aVG(x)+Y, bVH(x)=O for some
(2.1b’) A B

x U, a R a+, and b 6 R n, then a 0 and b 0

if U is sufficiently small. Condition (2.1c) implies, by an argument using the implicit
function theorem (cf. Auslander and MacKenzie [1, p. 32]), that U can be chosen so
that also

for all Ao A, Z(Ao) is a connected (n -s(Ao))-
(2.1d)

dimensional submanifold.

Similarly, it follows from (2.1c) that if U is taken small enough, one also has

(2.1c’) if Ao c A1 c A and s(Ao) s(A) then Z(Ao)=Z(A).
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We will say that (G(a cA), Ha( e B), U), or more briefly (G, Ha, U), is a local
representation (l.r.) for the cyrtohedron C if Z(A) and (2.1a), (2.1b’), (2.1c’) and
(2.1d) hold. It is clear from the above that we have

PROPOSITION 2.2. If C c R" is a cyrtohedron and x e C, then there is a l.r.
G, Ha, U) ]’or C such that x e Z(A ).

Examples of cyrtohedra 2.3. (a) A differentiable submanifold in R" is a cyrto-
hedron for which the set A in (2.1) may always be taken to be empty.

(b) Cyrtohedra for which the set A in (2.1) may always be taken either empty or of
cardinality one are submanifolds with boundary (cf. Milnor [8, p. 12]).

(c) A polyhedral convex set is the intersection of a finite number of closed
half-spaces in R" (el. Griinbaum [4]).

(d) Sets that can be expressed as C {x e R " gi(x) <-- O, 1, , m, and hi(x)
0, f 1, , p}, where the functions gi and hi are of class _C k and have the property that
for every x e C, {Vgi(x)" eI+(x)}U{Vhi(x)’j 1,..., p} is linearly independent,
where l+(x) {i" g(x) 0}.

Let (G, Ha, U) be any l.r. for C. It can easily be demonstrated that for any Ao c A,

(2.4)

the multifunctions x span F(x, A0) and

X-’)’{ZAo aVG(x)+,BbaVHa(x)" a eRA+ and beRn},
defined for x e U, have closed graph;

the multifunctions x F(x, Ao) +/- and

(2.5) x {sr eR"’r. VG,,(x) =< 0 and r. VHa(x)= 0

defined for x e Z(Ao), have closed graph.

Let C c R be a cyrtohedron, x e C, (G, Ha, U) a 1.r. such that x e U. The tangent
cone to C at x is

Tc(x) {( e R n" 7G,(x) <= 0 ftx e A+(x), (. VHa (x) 0 V/3 e B},

where A+(x)= {a e A.: G,,(x)= 0}. The symbol "Lc(x)" will denote the largest linear
subspaee contained in Tc(x). Thus, Lc(x)= F(x, A+(x))-. Equivalently, Lc(x) is the
tangent space to the (n-s(A+(x)))-dimensional submanifold Z(A+(x)) at x. The
definitions of Tc(x) and Lc(x) do not depend on the local representation (G, Ha, U).
To see this, let _A(x, sr) denote the set of all _C ares b" (-1, 1) U such that b(0)= x
and b’(0)= (, and note that

Tc(x)={(: 49 e _A(x, () with 4,(t) e C Vt_-> 0},
(2.6)

Lc(x) {(: B4, e _A(x, () with 4,(t) e C Vt}.

The normal cone to C at x is the set

Nc(x)= { . a,VG,(x)+ ., baVHa(x)" a eRA+
ozeA+(x) aeB

which is the polar of the tangent cone. Note that

(2.7) span No(x) Lc(x)- span F(x, A+(x)).

Every polyhedral set P has the property that each x e P belongs to the relative
interior of exactly one face of P, where a "face" is defined to be the intersection ofP with
a supporting hyperplane to P [4]. We now define an analogous concept for cyrtohedra.
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For any x, y C, define the equivalence relation by specifying x---y if and only if
there exists a sequence x x0, x1,.’., x, =y in C such that for each pair (xi, Xi/l)
(i=0,...,p-1), there exists a 1.r. (G,H,U) such that Z(A){xi, xi+l}. The
equivalence classes under this relation are the faces of C.

A few examples help to clarify the definition:
(a) The faces of a polyhedral convex set are the relative interiors of the "faces" in

the sense of [4].
(b) A submanifold C c R" has only one face.
(c) If C is the hemisphere C {x (Xl,. , x,) R " Ix I_<- 1 and x, -> 0}, then C

has four faces, corresponding to the choices of equality or strict inequality in the
definition of C.

For any 1.r. (G, H, U) for C and any x Z(A), Lc(x) is the tangent space at x to
the (n- s(A))-dimensional submanifold Z(A), and hence dim Lc(x)= n-s(A). For
each pair (xi, Xi/l) in the definition of "face" it follows that dim Lc(xi) dim Lc(Xg/l),
so for any face F of C and any x F we may define dim F dim Lc(x).

It will now be shown that the faces of C are submanifolds. Let F be a face of
C, F, and let (G, Ht, U) be any 1.r. for C such that $ Z(A) (cf. Proposition 2.2). It
is enough to show that F fq U Z(A), since Z(A) is a submanifold of dimension
n-s(A) (cf. (2.1d)). Clearly Z(A)c F by the definition of "face". If x U\Z(A) then
s(A/(x))<s(A), since otherwise (2.1c’) would imply xZ(A). Thus dimLc(x)=
n-s(A/(x))>n-s(A)=dimLc(). But dimLc(.) is constant on F, so xF. Then
F U Z(A), as desired. Note also that each face of C is a connected set. This follows
from (2.1d) and the definition of "face". We summarize by the following theorem.

THEOREM 2.8. Let C R be a cyrtohedron ofclass C_ (r >= 1), x C. Then x lies on
a uniquefaceFofC, andFis a connected _Crsubmanifold ofR n. The tangent space Fx toF
at x is Lc (x). There exists a local representation (G, H, U) for C such that x Z(A),
and for any such representation, one has Z(A) F U, dim F dim Lc(x) n s(A),
dim Nc(x)= s(A), and dim Tc(x)= n

From (2.4) and (2.5), the next theorem follows immediately.
TIEOREM 2.9. Let C R be a cyrtohedron. Then x Lc(x) +/- and x- Nc(x)

define multifunctions: C R having closed graphs. IfFis any face ofC then x--Lc(x)
and x Tc(x) define multifunctions: F R with closed graphs.

The following will be needed in the proof of Theorem 4.2.
PROPOSITION 2.10. Let C R be a cyrtohedron, Y. C, and let F be the face of C

containing . If( relint Nc (), then there are neighborhoods V Cof and W R of
such.that: for any x V and W, ( Nc(x) implies x F.

The proof of Proposition 2.10 will require
LEMMa 2.11. Let C R be a cyrtohedron, (G, Ho, U) a l.r., A’ A, and
Z(A). Then either
(a) there exists R such that sc. VG, () . VH() 0, /a A’, B, and
7G() < 0 ta A\A’, or
(b) there is a neighborhood V U of such that no x V satisfies

O G(x) Ht(x) Ia A’ V B,
(2.12)

G(x) < 0 la A\A’.

Proof of Proposition 2.10. Assume Lemma 2.11 for the moment and suppose
Proposition 2.10 to be false. Then for some .fF and r6relintNc(Y), there are
sequences (x) and (r) such that

(2.13) x - Y, , x C\F, & Nc(x).
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Let (G, H, U) be a 1.r. for C such that 2 Z(A) (cf. Proposition 2.2). Assume (as we
may) that Xk U for all k, and define A/(Xk)= {a A" G,(Xk)= 0}. By Theorem 2.8,
Z(A)=Ff3 U, so xkF implies A/(Xk)A. Passing to a subsequence, it may be
assumed for some A’ A that A/(Xk) A’ for all k. For this A’, one of the alternatives
of Lemma 2.11 must hold. However, x Xk satisfies (2.12) for every k, so alternative (b)
is false.

Let satisfy (a). Then sc Tc(). Pick aoA\A’ and for tR, define ((t)=
r + tVGo()" By choice of r, ((t) Nc() for all in a neighborhood of 0. For each
k, (k span F(xk, A’) by (2.7) and (2.13). By (2.4) and (2.13), this implies r
span F(,A’). So for t<0, sc. ((t)=t(sc. VGo())>0, and hence ((t)Tc(Y)=
Nc(Y), a contradiction. [3

Proof of Lemma 2.11. If A’- then (a) holds by (2.1b’). Suppose, then, that
A’ and neither (a) nor (b) holds. LetM Z(A’), and let 7r" R" -M be projection
onto the tangent space to M at . By (2.1c, d), M span F(Y, A’). Since (a) is false,
there exists no see Me such that . zr(VG(2))< 0 /a 6A\A’, or equivalently, 06
co {zr(VG ())" a A\A’}. Hence there is a subset A" A\A’ such that

(2.14) 0 e relint co {rr(VG(2))" a e A"}.

Let L Z(A’LA A"). Then L cM and by (2.1c, d) (letting m dim M and
dim L),

(2.15)
m rank F(2, A’ (A A") rank F(2, A’)

rank {r(VG(2)): a e A"}.

Let VI and V,,_t denote the subspaces of R consisting of all m-tuples whose last m
and whose first coordinates, respectively, are zero. Let " WM be a local
parametrization for M, 0 W c R", &(0)= , and (V W)= L (3 (W). For each
a A", define g G . Then

(2.16) V (3 W {q W: g,(q) 0 /a A"}.

By (2.14), 0erelintco({Vg,(0):aA"}), and by (2.15),
a a"}). Hence,

V,_ span ({Vg (0):

(2.17) if 0 r/ Win-l, then r/ Vg (0)> 0 for some a A".

Since (b) is false, there is a sequence (Xk) in U converging to such that each xk satisfies
(2.12). For all k, xk M, and xk (W) for k sufficiently large, so we may define
qk -l(xk). Then qk 0 and, since A" A\A’, g,(qk) < 0 for all a s A" and all k. Each
qk may be written as qk Uk + Vk, Uk VI, Vk V,,,-I, and by (2.16), vk 0. Thus, passing
to a subsequence, it can be assumed that

By (2.17), there exists aoA" such that rt" Vgo(0)>0. For each k, the mean-value
theorem for functions of m -l variables may be invoked to write

go,o(Uk, Vk) go,o(Uk, Vk)-- go,o(Uk, O)= V,go,o(Uk, OkVk) Vk

for some 0 < Ok < 1. Then

go(U, v) vo> Vvg(Uk’ OkVk).
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Taking the limit as k

0 _>-- n Vgo(0)= n Vgo(0)

(since / Vm-a), a contradiction.
PROPOSITION 2.18. Let C R be a cyrtohedron, F a face,

L {(x, () R2" x F, ( Lc(x)+/-}, and

M {(x, sr) L" r relint Nc(x)}.

Then M is open relative to L.
Proof. Let (x,(i) be a sequence in L\M converging to some (y,r)6L.

(irelint Nc(x) implies, by definition of "normal cone" and a separation argument
10, 11.3 that there exists We R" such that t , x x, and r r satisfy

(2.19) 1, rt Tc(x)VlLc(x) +/-, rt" (>=0.

Passing to a subsequence, it may be assumed that rti- . By Theorem 2.9, rt
and r sr satisfy (2.19), implying that sr’relint Nc(Y), and hence

3. The strong second-order conditions. Suppose henceforth that f, gi, and hi are of
class C_ on R , and that C g is a cyrtohedron of class C_. Let r n + III + IJI and let

I JC C R + R R For w (x, y, z 6 Rr, define L. R R and-.R-Rby

L(w) f(x) + , yigi(x) + Y’, zihi(x),
I J

r(w) (VxL(w), -VyL(w), -VzL(w)).

In this section, first- and second-order conditions will be studied. Theorem 3.3
gives first-order conditions of Kuhn-Tucker type which are necessary under a con-
straint qualification called the "independence criterion". In Lemma 3.1, these condi-
tions are shown to correspond to solutions w to 0s r(w)+Ne(w) as observed by
Robinson [9] when C R". New conditions (SSOC) are introduced which generalize
(A), and in Theorem 3.5 the new conditions are further characterized. Theorem 3.5 will
be useful in our study of sensitivity analysis, as well as in [11], [12], where we will show
that for certain classes of problems, the conditions (SSOC) are "generically" necessary
for optimality.

LEMMA. ’ is a cyrtohedron in R of class C_2. For any w (x, y, z)
INd(w) Nc(x) x {t -R+" tiyi 0, Vi 6 I} x {0}.

Proof. If K c R and K’ c R S’ are cyrtohedra, it is easy to show that K x K’ is a
cyrtohedron in RsxR s’ and that for any (x,x’)KxK’,NzK,(x,x’)=
NK (x) x Nr’(x’). 71

LEMMA 3.1. For any ff (, f, Y. (,
(a) -r(ff) Nd (if,) if and only if is feasible/’or (Q) and

-VxL() Nc(X)

i I if > 0 then g(Y) O;

(b) -’() relint N() if and only if Y is feasible for (Q) and

-VL() relint,. Nc(Y)

i I, > 0 if and only if gi(Y) O.

(c) r() L,()+/- //and only if VL() L()+/-.
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Proof. By the previous lemma, -z() Ne() if and only if
-VxL(#)Nc(),

VyL(#) {t -R/" ti)Ti =0, Vi

VzL() 0,
so (a) follows from

(3.2)
VyL() (..., gi(),...)

VzL() (... ,hi(x),...).
The proof of (b) is similar. We have

VwL() (VxL(), VyL(6), VzL(6)),

r(#) (VxL(#),-VyL(#),-VzL(#)),

Lc?(#)+/- Lc() LRI(y)-X LR,() +/-

from which (c) follows.
The independence criterion is satisfied for (Q) at the feasible point if, for any

a R+ and b RJ,
(IC) Y. aVg()+YbjVhi()Lc()" implies a =Oandb=O.

I+ J

It is trivially satisfied if I+ J . If F is the face of C containing , then (IC) holds at
if and only if {V(gi[F)(): /+} U {V(hjlF)(): j J} is a linearly independent subset of
Fx Lc().

From (2.1b’) and by the definition of Lc(), it follows easily that if (IC) is satisfied
for (Q) at , then for any 1.r. (G, Ht, U) with U, the Mangasarian-Fromovitz
constraint qualification [5, 4.10.4] is satisfied at for the problem

(Q’)
minf(x) subject to xU, gi(x)<=O

hi(x)=O Vj, G(x)<-O Va, H(x)=O

If happens to be a local minimizer for (Q), and hence also for (Q’), then by the
Lagrange multiplier rule [5, 4.2.1] there exist multiplier vectors such that the standard
first-order conditions hold at for the problem (Q’). By the definition of Nc(), this
implies

THEOREM 3.3. If is a local minimizer for (Q) and if (IC) for (Q) is satisfied at ,
then there exists (;, . R + R such that

(i) -VxL(, ;, Y. Nc();
(ii) Vi I, if > 0 then gi() O.
Let (, 37, z7) C. Then will be said to satisfy the strong second-order condi-

tions for (Q) provided that

(ssoc) (i) is feasible for (Q);

(ii) -VxL( ff) relint Nc();

(iii) Vi L i > 0 if and only if g() 0;

(iv)

(v)

condition (IC) holds for (Q) at ;
(V2(LIF)())(sr,x sr) > 0 for all sr R satisfying

0 # ( Lc(), (" Vg,($) sr. Vh.() 0 Vi /+, j J.
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In (v), F is the face of C containing . The Hessian in (v) is well-defined since ff is a
critical point for L on F by (i), (ii), (iii), and (3.1c).

Let us remark on the relationship between (A) and (SSOC). Fix (G, H, U), a 1.r.
I A J Bwith $Z(A), and let (Q’) be as before. If ($, y, a, , b)R xR/xR/ xR R

satisfies (A) for (Q’), then it is easily checked that (,)7, z) satisfies (SSOC) for (Q). If
I J(, 17, z) R R + x R satisfies (SSOC) for (Q), then it is possible to find d R A+ and

/7R n such that (x, y, a, z,/7) satisfies (Ai, ii, iii) and for any such d and/, (Av) will
automatically hold for (O’). However, (Aiv) may fail, except in the special case where C
is of the form (2.3d). If, for example, C is a four-sided pyramid in R 3 with apex 2?, then
(Aiv) can never be satisfied for (O’) because no set of four vectors in R 3 can be linearly
independent. In this case Lc() {0}, so (, 17, ) satisfies (SSOC) for (Q) if and only if
is feasible for (Q), I/ J , and -Vf($) relint Nc($). Of course, if C R (i.e.,
there are no fixed constraints), then (SSOC) is equivalent to (A).

Remark 3.4. Conditions (SSOC) implies is a local minimizer for (Q). To see this,
observe that (SSOC) implies the second-order sufficient conmtions [7, Thm. 6] for (Q’)
at .. Thus, . is an isolated local minimizer for (Q’), and hence also for (O).

For any face F of C (QF) will denote the restriction of (Q) to F, namely

(QF) min f(x) subject to x F, gi(x) <- 0 Vi, hi(x) 0 j.

If &" U F is a local parametrization for F, (Q) will denote the problem

min f(&(q)) subject to q U, gi(&(q)) <- 0 Vi,
(Q6)

hi(6(q)) 0 Vj.

THEOREM 3.5. Let if; (, ;, . , letFbe the face ofCcontaining, the face of
containing vP. Then the following three conditions are equivalent:

(3.6) satisfies (SSOC) for (Q);

(3.7a)

(3.7b)

-z() relint NC (if),

ff is a nondegenerate critical point ]’or L on G,

(3.7c) Y is a local minimizer for (QF);

(3.8a) -r(#) relint Nd(v),

(3.8b) if 0 is a local parametrization for F, and 2 4)(),
then (gl, ;, ) satisfies (A) for (Q6).

Proof. By Lemma 3.1, --(#) e relint Ne (if) if and only if (SSOCi, ii, iii) hold, So
assume these equivalent conditions hold. It must then be shown that # satisfies
(SSOCiv, v)=> (3.7b, c)=>(3.8b).

I+ JNote that (SSOCiii) implies t=FxR++ x R. Let O" U-F be a local
parametrization for F, where U c R (e dim F) is open and &() for some t] U.

I+ R JThe dimension of t is c e + ILl + IJI. Define U x R ++ x c R and for an.y
v (q, y, z)e , let 4;(v) (&(q), y, z). Then 4;" - ( is a local parametrization for G.
For g (t], , ), we have # 4(g).

If v satisfies (SSOCi, ii, iii), it easily follows that J satisfies (Ai, ii, iii) for (Q,).
The theorem is now a consequence of the following remarks, which are valid under

the assumption that (SSOCi, ii, iii) hold.
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Claim. Condition (3.7b) holds if and only if the Hessian at t5 of the map L " 0
R, namely the (c x c)-matrix

(39) 2 [HD]VvL(b(t))= D’ 0

2is invertible, where H VqL((O)) and D is the matrix whose columns are the vectors
Vqgi(b ()), I/, and Vqhi(& ()), 6 J.

Claim. is a local minimizer for (QF) if and only if is a local minimizer for (Q).
Claim. By known facts about the conditions (A) (cf. McCormick [7, Thm. 7]),

satisfies (A) for (Q) if and only if is a local minimizer for (Q) and the matrix (3.9) is
invertible.

Claim 3.10.

(3.11)

satisfies (A) for (Q) if and only if

the set {Vqgi(ck(q))" /+} U {Vqhi(b (4))"/" J}

is linearly independent, and

(3.12)
if 0 : R e, s. Vqgi(b (4)) 0, Vi /+

and so. Vqhi(&()) 0, Vj J, then sc. HsC > 0.

Claim. Condition (SSOCiv) is equivalent to (3.11), and (SSOCv) is equivalent to

(3.12).

4. Sensitivity analysis. Consider the family

(Qp) minf(x, p) in x subject to gi(x, p) <-- 0 Vi,

hi(x,p)=O Vj, xC

of problems indexed by the parameter p P, whereP is open, the functions f, gi, and h are

of class (2 on R x P, I and J are finite index sets, and C c R is a cyrtohedron of class
! g J_C2 Let r n + [I] + IJI and let t C R+ c R. Some evident modifications in

notation are forced by the parameter p; for example, we now have for (w, p) R P
(w (x, y, z)),

(4.1)
L(w, p) f(x, p) + 2 Yigi(x, p) + E zjhi(x, P),

I J

z(w, p)= (VxL(w, p), -VyL(w, p), -VzL(w, p)).

The principal result is
THEOREM 4.2. Suppose, for some ff (, , .) C and some P, that (SSOC)

holds for (Q0). Then there is a neighborhood H c p of p and a C_ function w(p)=
(x(p), y(p), z(p)) defined on H such that w(p) if;, and for all p II, w(p) satisfies
(SSOC) for (Q). In particular, x(p) is a local minimizer for (Qo) with unique multiplier
vectors y(p) and z(p). Furthermore, there is a neighborhoodX R of such thatfor each
p II, x(p) is the unique local minimizer for (Q) in x.

Proof. Fix/5 and satisfying (SSOC) for (Q0) and let ! {i i" gi(,/5) 0}. By
Theorem 3.5, ff is a nondegenerate critical point for L(.,/5) on t, where
FxR r s

// x R is the face of containing (and F is the face of C containing $). This,
and the implicit function theorem imply that there is a _C function w(p) mapping a
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neighborhood IIo c P of/7 into a neighborhood I7" of in t such that

(4.3) (i) w(,6) ;
(ii) for all p IIo, w(p) is a nondegenerate

critical point for L(., p) on G;

(iii) if p IIo, w I7", and w is a critical point

for L(. p) on G, then w w(p).
By Theorem 3.5, we also have -r(#,,0)relintNd(). By (4.3ii) and (1,1),

VwL(w(p) p) d+/-

w( or equivalently (cf. Lemma 3.1(c)), r(w(p), p)
dw( (= Le(w(P)) +/- by Theorem 2.8). So, applying Proposition 2.18 (with ( in place of
C, t in place of F),

(4.4) -r(w(p), p) relint Nd(w(p)) for all p in a neighborhood of/.

(In the terminology of Proposition 2.18, (v,-r(,/)) M so (w(p),-r(w(p), p))6M
for all p in a neighborhood of/7). In particular, w(p) satisfies (SSOCi, ii, iii) for (Qp),

Let b be a local parametrization for F, ()= $, t5 (G 37, )- Also, let q(p)=
c-l(x(p)) and v(p)=(q(p), y(p), z(p)). By Theorem 3.5, (3.8b) holds, i.e., v(/7)
satisfies (A) for (Q6.0). This is equivalent, by (3.10), to (3.11) and (3.12). However,
(3.11) and (3.12) clearly hold for v in a neighborhood of t3 if they hold at ts. So for all p in
a neighborhood of/7, (3.8b) is satisfied (with w(p) and v(p) in place of # and/7). Since
(3.8a) also holds by (4.4), Theorem 3.5 implies w(p) satisfies (SSOC) for (Qp).

Only the uniqueness claim of the theorem remains to be proved.
Claim 4.5. For all (x, p)e C x P in a neighborhood of (a?, p), if x is feasible for

(Qp), then (IC) is satisfied for (Q) at x.
Proof. For simplicity, we consider o_nly the case I , and J . If false, there

are sequences x k , p’ p, and a k R x such that

aiVxgi(x k, pk)Lc(xk)-L

and la k I= 1 for all k. Passing to a subsequence, it may be assumed that a k d 0. By
continuity of Vxgi and because the multifunction Lc(" )z has closed graph (Theorem
2.9),

E &V.g(X, p) Lc(.)-,
contradicting (IC) for (Qo) at a?. El

Claim 4.6. There exists a neighborhood N of (37, z?) in R x RJ and a neighbor-
hood M of (,/) in C x P, such that for every (x, p) M,

(4.7) VxL(w, p) Lc(x)z, yi 0 Vi d

admits only one solution (y, z) R t x R J, and the function (x, p) (y, z) isa C function
mapping M into N.

Proof. Let (G, Ho, U) be a 1.r. for C with a? Z(A), and choose Ao c A minimal
with respect to the property s(Ao)= s(A). Then for any x U, F(x, Ao) is a basis for
span F(x, A), so (4.7) implies

VxL(w, p)+ ., a,VG,(x)+Y’, bt3VHt(x)=O
Ao B
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for some a RA and b R B. For (x, p) near (,/), the set

F(x, Ao) t.J {Vxgi(x, p): I} {Vxhi(x, p)" J}

is linearly independent, since (IC) holds for (Q0) at . The conclusion now follows by the
implicit function theorem. 71

Proof of Theorem 4.2 (continued). Suppose the uniqueness claim is false. Then
there is a sequence (x k, pk) --) (, 10) in C x P such that for each k, X k

7 x(p) and X
k is a

local minimizer for (Qp). By Claim 4.5, for all large k (IC) holds for (Qp) at x k. Hence,
by Theorem 3.3 there exists (yk, Z k) R + xR such that

(i) _VxL(w k, pk) Nc(x k (w k (x , yk, zk)),
(4.8)

(ii) ViL if ylk>0 then gi(x k,pk)=O.
For large k, (4.8) implies that yk =0, /ig/. So, by (2.7), Claim 4.6, and (4.8i),
(yk, zk) (, ). Hence, r(w k, pk) r(V, p). But -r(,/) relint Ne() and by (3.1a),
(4.8) implies

(4.9) _r(w k, pk) N(wk).
So we can conclude from Proposition 2.10 that w k r, and hence that w k r, for k
large. By (3.1c), (4.9) implies that w k is a critical point for L(., pk) on t. Then (4.3iii)
implies w k= w(pk), and in particular xk= x(pk), a contradiction that completes the
proof of Theorem 4.2. 71

Briefly, Theorem 4.2 states that (SSOC) is sufficient for _C variation of the
minimizer and multiplier vectors. The next (and final) result shows, in essence, that
these are the weakest conditions implying this conclusion.

THEOREM 4.10. LetY be a local minimizerfor (Qo),Popen, W Ca neighborhood
of (Y., ;, ), w(p) (x(p), y(p), z(p)) a C_ function: P- Wsuch that w() and
for each p P, w(p) is the unique point in W satisfying

(4.11) -r(w(p), p) Ne(w(p)).

Assume also that

(4.12) the Jacobian at p of the map p VwL(r, p) R is of rank r.

Then v satisfies (SSOC) for (Q).
(Note. Expression 4.11 is equivalent, by Lemma 2.1, to the assertion that x(p) is

feasible for (Qp) and w(p) satisfies the first-order conditions of Theorem 3.3 for (Qp).
To get a feeling for (4.12), the reader should interpret it for the case where P R x
Rxx RJ and, for any p (v, s, t)P, (Qp) is the problem of minimizing f(x)-x, v
subject to gi(x)<= si /i, hi(x)= ti, t! and x C).

Proof. Let ( -z(ff,/). We will first show that sr relint N,(ff). If not, then by a
separation argument [10, 1 1.3], there is a vector/z such that

(4.13) O tx Te()Le(ff)+/-, /.t 7=0,

Fix any :relintNe(v). Then (4.13) implies /z. so<0. By (4.12) and the implicit
function theorem, there is a _C function p(t) defined for near 0 R such that

(4.14) p(0) ,6, z(,p(t))+(+t=O.

For >-0,-z(, p(t)) (+ t Ne(), so the uniqueness of w(p(t)) in (4.11) implies
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that w(p(t)) for -> 0. In particular,

w(p(t))=O.(4.15)
dt

Let (G, Ho, U) be a 1.r. for C with e Z(A). By (2.1 b), there is a numberM > 0 such
that for all (st, w) in a neighborhood of (sr, if),

Aif ’= aVG(w)+Y’, bt3VHt3(w) with a R+
(4.16) A B

and b e RB then a <M (’a) and Ibtl <M (’fl)

Define ((t)=-r(w(p(t)), p(t)). Now,

((t) tz (r(v, p(t))-r(w(p(t)), p(t))) tx -r(ff, p(t)) Ix.

So, by (4.15) and then by (4.13) and (4.14), we obtain

d
(st(t)" )=-ttl (r(,p(t)) /z) /z <0.(4.17) d---7 ,=o ,=o

For each aa (resp., fleB), define t(t)=/x .VG(w(p(t))) (resp., /-]to(t)=
tx VHo(w(p(t)))). By (4.13) and (4.15),

(4.18) ( (0) _<- O, /-(0)0, (’ (0) "Ho (0) 0 Va,/3.

For some a(t)eR a+, and b(t)R, we have by (4.11),

(4.19) ((t)=Y.a(t)VG(w(p(t)))+Y. bo(t)VH(w(p(t)))Ne(w(p(t))).
A B

So by (4.16), for near 0,

/x" st(t)<_--M(A max {0, ((t)}+, ]/-]rt (t)[)
which is impossible in light of (4.13), (4.17) and (4.18). Thus

(4.20) sr relint N (r).

Let.( be the face of t containing ft. By Pr.op.ositio.n 2.10, (4.19) and (4.20) imply
w (p) G for all p in a neighborhood of p. Let 4" U + G be a local parametrization for
( with 4(t3)= , O c R open (c =dim t). Define v(p)=-l(w(p)). By (4.1) and
(4.11), VvL((v(p)), p)=0. Differentiating this with respect to p gives HD+E =0
where H is the Hessian at 7 of the function v L((v), p), D is the Jacobian of v(p) at
p, and E is the Jacobian at/ of the map p VvL(, p). By (4.12), E has (full) rank c, so
the (c c)-matrix H must be invertible. Thus ff is a nondegenerate critical point for L
on (. This and (4.20) show, by Theorem 3.5, that ff satisfies (SSOC) for (Q0). U
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A NOTE ON STABILIZATION OF INFINITE DIMENSIONAL LINEAR
OSCILLATORS BY COMPACT LINEAR FEEDBACK*

J. S. GIBSON

Abstract. This note points out the fact that a linear oscillator in an infinite dimensional Hilbert space,
with no uniform decay rate, cannot be given a uniform decay rate with compact linear feedback. The
motivation for the analysis here is the use of a finite number of control elements to stabilize a system with an

infinite number of modes of vibration, and the implications of the inability to produce a uniform decay rate are
elaborated in regard to optimal regulation. For systems with and without inherent damping, the result is based
on approximating a compact operator with a sequence of finite dimensional operators. The physical
interpretation of this technique is discussed.

Introduction. A considerable amount of literature has been devoted to the
problem of using a linear feedback control to stabilize a linear oscillator in an infinite
dimensional Hilbert space. See, for example, [1], [10], [11], [12], [13]. In practice, there
are two methods of implementing a stabilizing feedback: active control and passive
control. For active control, one or more actuators, i.e., power sources, are attached to
the system and activated according to an appropriate control law based on the observed
state of the system, whereas, for the second case, passive control elements such as
dampers and springs are attached to the system to dissipate energy. In either case a finite
number of control elements are added to the original oscillating system, and thus, when
the linear operator representing the feedback control in the system differential equation
is bounded, it is compact.

While an oscillator can usually be stabilizedmi.e., for any initial condition, all the
energy can be dissipated--with a finite number of control elements, the purpose of this
note is to point out the fact that, if the original system has an infinite number of modes
with no uniform decay rate, then no compact linear feedback will yield a uniform decay
rate. (The precise meaning of this statement will become clear.) Russell 10] proved this
result for the case of a linear oscillator with only compact velocity feedback, using
different reasoning than we use here.

The principle underlying the whole development here is the fact that a compact
linear operator on a Hilbert space can be approximated uniformly by its projections on
the members of any increasing sequence of finite dimensional subspaces whose union is
dense. Although we will elaborate on the idea, the recollection of this approximation
result makes the no-uniform-decay result almost obvious for an infinite dimensional
oscillator for which a compact linear control produces the only energy dissipation.
However, the extension to more realistic systems with some inherent damping, but no
uniform decay rate, is a little more difficult.

Finally, some rather disquieting conclusions about optimal regulation of systems of
the type considered here can be drawn from the two theorems of this note and the
results of Datko [3] and the present author [4].

The originally undamped oscillator. Consider the differential equation

(1) i((t) + Aox(t) Bx, (t)+ B2x(t),

where x(t) is in a real separable Hilbert space H, Ao isa self-adjoint linear operator
from D(Ao), which is dense in H, to H, and Ba and B2 are compact elements of (H, H).

* Received by the editors September 12, 1978, and in revised form May 21, 1979.

Mechanics and Structures Department, School of Engineering and Applied Science, University of

California, Los Angeles, California 90024.
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Also, we assume that the further characteristics of the linear oscillator hold" there exists
c > 0 such that

(2) (Aox, cllxll , x D(Ao),

and A is compact from H to H.
Assuming that H is infinite dimensional, we know that the spectrum of Ao is an

2infinitely increasing sequence of positive real eigenvalues w each of finite multiplicity,
and that the mutually orthogonal eigenvectors n of Ao form a complete basis in H. As
usual, we define the "energy space" by E VH, where V =D(A1/:) has inner
product (u1, V2v =(A/:o1, A/2V2)H and E has the energy inner product ((va, ha),
(vz, h:))E (Vx, V2)v +(hi, h:)H. The eigenvectors of Ao are also mutually orthogonal
and complete in V, and the pairs (n, 0) and (0, n) are thus mutually orthogonal and
complete in E.

Next, we define an operator A in E by

(3) A [ 0 I] D(A) D(Ao) X V.
-Ao 0

This A generates a strongly continuous group T(.) on E, and we have conservation of
energy:

(4) IlT(t)yllE=llyllE, yE, -oo<t<oo.

With B (E, E) defined by

[0 0](5) B=
B: B1

A +B, with domain D(A), generates a strongly continuous group S(.) on E, and we
have the first of our two results:

THEOREM 1. Let A be the operator of (3) and B the operator of (5); assume the
hypotheses stated for A and B, including the compactness orB1 and B2. Then the group
S(.) generated by A +B is not uniformly exponentially stable.

Proof. Let Vn Hn span {.}i<__n, and let An be the projection operator from E to
V, H,. Then, since B is compact, it can be approximated arbitrarily closely in (E, E)
by the sequence of operators B AnBA (see [9, p. 204]). Now, if S(.) is uniformly
exponentially stable, the group S,, (.) on E, generated A + B,, is uniformly exponentially
stable for liB- BnlI.(E,E) sufficiently small, but not zero (see [5, p. 390], or [6, p. 498]).
However, since

(6) [Is. (t)(, 0)11 I1(, 0)ll, -<t<, l<-n<m,

Sn (.) can never be uniformly exponentially stable, and therefore neither can S(.) be.
As already mentioned, Russell [10] proved this result for the case B2 0, and it

appears that his argument, though substantially different from the one here, can be
extended easily to obtain Theorem 1 with Bz O. However, it does not appear that
Russell’s argument could yield anything resembling Theorem 2 of this note. We will
refer to some of the positive results of [10] later.

A group (or semi-group) S(.) is said to be uniformly exponentially stable if there are positive constants
M and a such that [[S(t)[[-< Me for all _-> O. This is equivalent to saying that S(.) has a uniform decay rate,
i.e., there are constants to> 0 and < such that [[S(to)[I -< r.
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Systems with inherent damping. Of course, physical systems always have some
inherent damping, so a more realistic version of the uncontrolled oscillator should be

(7)

where Bo 5(H, H) and

(8)

The operator defined by

2(t) + Bo2(t) + Aox(t) O,

(Box, x) _-> 0, x 6 H.

-Ao -Bo
generates a strongly continuous group T(. on E, with

(10) [[7(t)llE -< 1, -> 0.

D()=D(A),

As a matter of fact, in most physical systems there is complete damping, however slight;
i.e.,

(11) 117(t)yll 0 as m, y E.

When (11) holds, we say that (. is strongly stable.
We should note here that the notion of "weak stability" is sometimes used (see [2],

[12], [13]): a semigroup T(. on a Hilbert space E is said to be weakly stable if

(12) (T(t)X, y)E -* O as t- oe, Vx, y 6 E.

However, for the damped oscillator represented by the 7( generated by the of (9),
weak stability is equivalent to strong stability because, as Benchimol has shown (see the
proof of Corollary 3.1 of [2]), a weakly stable Co semigroup whose generator has
compact resolvent is also strongly stable. Now, as is well known, the compactness of A-1

-1and follow from the hypotheses already stated" since Ao is compact from H to H,
A/2 is compact from H to H, and thus the injection from V into H is compact; since
A-1/2 is compact from H to H and bounded from H to V, A/2 is compact from H to
V and A-IBo is compact from V to V. Hence A-1 and-1 are compact operators on E.

It is natural to ask then whether we can use a compact feedback control to give a
uniform decay rate to a system which is already strongly stable, but not uniformly
exponentially stable. The answer is no, as the following theorem states.

THEOREM 2. LetE be a Hilbert space and T(. a strongly stable strongly continuous
contraction semigroup on E, with generatorA. LetB be a compactelement of(E, E) and
let $(. be the sernigroup generated by A + B. Then, if $(. is uniformly exponentially
stable, so is T(. ).

Proof. Since B can-be approximated in f(E, E) by its projection onto finite
dimensional subspaces,2 we need only show that, if En is a finite dimensional subspace
of E, An is the projection operator from E to En, and Bn AnBn, then the semigroup
Sn (") generated by A + Bn cannot be uniformly exponentially stable.

We have

(13) S,(t)x=T(t)x+ Sn(t-rt)BnT(q)xdl, t>-O, xE.

It is not necessary to require E to be separable; see [9], p. 205.
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Assuming there is a constant M such that

(14)

we then have

(15) [[S,(t)xl[>=llT(t)x[[-Mt sup [[B,,T(rt)x]l, tO, xE.

Let tl > 0, 0< e <MtlIIB.II, and 8 e/(2MtllB.II). Since E, is finite dimensional
and T(. is a strongly stable semigroup, we can choose to> 0 such that

82
(16) sup IlT(t)xl[<---, t>=to.

En,

Since T(. is a contraction semigroup and not uniformly exponentially stable, there is
an Xo E, with Ilxoll x, such that

{
, e }(17) max --, a- <-_llT(to/tl)Xoll<=llT(tl)Xoll.

For => 0, write T(t)Xo y(t) + z(t), where y(t) E. and z(t) E. If, for some rt
[0, tx], Ily(rt)ll> 6, then IIT(r/)Xoll2= Ily(n)ll2 +llz(n)[I2-<_ a implies [[z(n)llz < a-a2 <__
(1 62/2)2, and

liT(to / tx)xoll liT(to / tx n)7(n)xoll
(18)

62 62 62
=llT(to/tx-)(y()/z(n))ll<-/ 1--= 1--,

Hence

and

(20) sup IlnT(n)Xollllnnll.
0r-------tx

Then (15), (17), and (20) show

(21) IIS, (tl)Xo]] >- 1 e,

and the arbitrariness of tl and e imply that Sn (’) is not uniformly exponentially stable.

Physical interpretation of the theorem proofs. In view of the current prominence
of modal control techniques for flexible systems (see [1] and its references), it might be
useful to elaborate briefly on the physical interpretation of the proofs of Theorems 1
and 2. The eigenvectors bn of Ao are of course the natural modes of vibration for the
undamped linear oscillator, and the proof of Theorem 1 relies on the fact that they are
mutually orthogonal--i.e., the modes of free vibration are uncoupled. While the
feedback control represented by B, A,BAn is physically unrealistic because both
observation and control action are restricted to the space V, H,, spanned by the first n
modes, it is legitimate mathematically, and useful for the theorem because it keeps the
first n modes uncoupled from the remaining modes.

Although Theorem 2 is not restricted to second order oscillators, both the theorem
and its proof were motivated by the damped system described by (7). In general, the
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damping represented by the operator Bo couples the modes of vibration, so that a more
difficult proof is required for Theorem 2; however, the idea is not very different. Due to
the possible coupling, we may not be able, as we were in the case of Theorem 1, to select
an initial condition for which all the energy stays out of the first n modes; but, for any
time tl > 0, we can choose an initial condition for which all but an arbitrarily small
fraction of the initial energy stays out of the first n modes for 0 _-< _-< tl.

Of course both theorems result from our ability to approximate uniformly (in norm
and on bounded time intervals) the semigroup S(.), representing the system with
compact feedback, by the sequence of semigroups Sn ("), representing systems in which
both observation and control action are restricted to the first n modes. Actually, for
Theorem 1, we could take either Bn BAn or Bn AnB, while, for Theorem 2, we
could take Bn BAn. Bn BAn means that observation is restricted to the first n
modes, while Bn AnB means that control action is restricted to the first n modes.

Implications for optimal regulation. From the results just presented, we can draw
some interesting, if frustrating, conclusions about the linear-quadratic regulator prob-
lem on the infinite interval, for infinite dimensional systems (see [3], [4], [7], [8]). The
problem is stated as follows. Let E and U be Hilbert spaces, A generate a strongly
continuous semigroup T(.) on E, and B e(U,E); the state vector is x(t)eE, the
control vector is u(t), u(. ) L2((0, oe); U), and the input-output relation is

(22) x(t)= T(t)x(O)+ r(t-rt)Bu(rt) drt, t>-O, x(O)E.

The performance index is

(23) J(x(O), u)= ((Dx(rl), x(rt))F +(Ou(rt), u(rt))cr) drt,

where D is a nonnegative, self-adjoint element of W(E, E) and Q is a positive definite,
self-adjoint element of (U, U). For the rest of this discussion, let us assume that D is
also positive definite.

Of course, for a given initial condition x (0), there may be no control u (.) for which
J(x(O), u)< oo. It is shown in [4] (see Theorem 4.11) that there exists a nonnegative,
self-adjoint operator P e (E, E) satisfying the Riccati equation

(24) A*P +PA PBO-1B*P +D 0

if and only if, for each x (0) E, there is a u(. such that J(x (0), u) < oo. In this case P is
unique and the optimal control is given by

(25) u(t)= -O-aB*Px(t), >=0.

This means that the optimal state is given by x(t)=S(t)x(O), where S(.) is the
semigroup generated by A-BQ-IB*P, and (see [3], [4]) S(.) is uniformly exponen-
tially stable.

Now, if U is finite dimensional, as it always is in active control and usually is in
passive control (see, for example, [1] and [11]), BQ-1B*p is compact. So, if T(.)
represents the undamped linear oscillator discussed here, or if it represents a damped
system and satisfies the hypotheses of Theorem 2, we know that there must be an initial
condition x(0) for which there is no control u(. Lz((O, oe); U) such that J(x(O), u) <
oe. Furthermore, there can be no bounded nonnegative, self-adjoint solution of the
Riccati equation; indeed the notion of an optimal closed loop control becomes unclear.
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Var:,ous sufficient conditions have been given (see [2], [10], [11], [12], [13]) for
linear oscillators to be stabilizable by linear feedback, and, for the system (1) with

B2 0 and under certain hypotheses on Ba, Russell [10] has derived decay rates that
show that the performance index of (23) can be made finite with a velocity feedback, for
initial conditions in D(A). We might speculate then that we should seek a feedback
control which minimizes J(x(O), u)whenever it can be made finite, and, possibly, makes
the system (1) strongly stable. Unfortunately, as we know from the discussion above,
such a control cannot be based on a bounded solution of the Ricatti equation; however,
the next best thing to a bounded operator is a closed operator, and this seems a definite
possibility for determining an optimal control scheme for oscillators of the type
considered here.
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STRONG CAUSALITY CONDITIONS AND CAUSAL INVERTIBILITY*

AVRAHAM FEINTUCH’

Abstract. Various strong causality conditions for linear systems are studied and compared. The
relationship between these conditions and the causal invertiNlity problem is considered.

1. Introduction. Let (, ) be a Hilbert resolution space, and consider the linear
feedback system

U e
y

described b; the equations
y Ke, e Fy + u,

where K and F are bounded linear causal operators on (, ). The relationship
between the well-posedness and stability of the above system and the existence of the
operator (I- KF)-1 as a bounded causal operator is well-known and has been studied
by various authors ([1], [6], [10], [12], [13]). Unfortunately, even when (I-KF)-1

exists as a bounded linear operator, it may not be causal. The simplest example of such a
situation is as follows. Suppose L (-oe, oe;/x), where/z is Lebesque measure and

is the usual family of truncation projections. Let St be the shift operator on defined
by

(Sd)(a) f(a t), > O.

Then St is causal but its inverse is anticausal. Thus if St I- KF, (I- KF)- exists as a
bounded linear operator but is not causal.

This gave rise to the causal invertibility problem: When is the inverse of a causal
operator causal? The appearance of [-2] has shown the importance of this problem in
optimal control as well.

One of the ways to attack this problem is to strengthen the causality hypothesis in
various ways, usually involving a delay type condition or Lipshitz condition in the hope
that this will give positive results to the problem. Here we will discuss a number of such
strengthenings of the causality hypothesis. In particular we will consider the strict
causality of DeSantis, Porter, Saeks (see [10]) and the strong causality of Willems [12]
and Zames [13]. We show that strong causality (while historically appearing first) is a
natural extension of strict causality.

In the last part of the paper, we give a very general formulation for the physical
notion of delay which seems to include the delay type strong causality conditions
discussed above. Mathematically, this willmean that the operator has zero memoryless
part. This is done by introducing a mapping from the algebra of all bounded linear
operators to the algebra of memoryless bounded linear operators. The null-space of this
mapping will contain the strongly causal operators.

* Received by the editors January 24, 1979, and in revised form October 10, 1979.
t Department of Mathematics, Ben Gurion University of the Negev, Beersheva, Israel. The results in this

paper were obtained while the author was visiting at Centre de Recherche Mathematique, Universit6 de
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The main results of this paper are necessary and sufficient conditions for the inverse
of I- T to exist and be causal when T is either strictly or strongly causal.

There are a number of results that appear in this paper that are not new but have
appeared in the operator theory literature. These play a transitionary role here, and are
necessary for setting up the apparatus needed to study the systems theoretic notions.
The appropriate references are mentioned when this is done.

2. Causality and strict causality. Let YE be a complex separable Hilbert space and
{Pt:t F} be a resolution of the identity on YE. 3 (Yf) will denote the algebra of

bounded linear operators on YE. Then an operator A @(Yg) is causal if P’A PtApt.
The concept of strict causality is described here very briefly. For a detailed

discussion the reader is referred to [5], [10]. A partition of f is a finite subset of
containing 0 and I. For any partition ={0<Pt< <pt. =I} define AP=
pt_ pt_l. Any A s @ (g) can then be written as

A Y APiA Apj + APiAAp + ., APiAApj.
i<j i=1 j<i

Simple manipulations allow us to rewrite this expression as

A Pt’-IAAPi+ APiAAPi+ APiAPti-1.
i=1 i=l i=l

If A is causal, it is easy to see that /=1Pti-AAPi O, and thus

A: APiAAPi q- Y’, APiAPti-1.
i=1 i=1

DFINITION 2.1. The causal operator A @(Y) is strictly causal if, given e :> 0,
there exists a partition such that for any refinement 1 of ,

i=1

where Ap is constructed from the projections in 1.
This is generally denoted by I dPA dP O.
The strictly causal operators have been studied in detail in [5], [1], [10]. The main

property that will be used here is that the family of strictly causal operators forms a
uniformly closed two-sided ideal of quasinilpotent operators (T is quasinilpotent if its
spectrum is {0}) in the algebra of causal operators which is maximal in the sense that it
contains all two-sided ideals of quasinilpotent operators. Our first result will follow
from this remark.

LEMMA 2.2. Suppose A is strictly causal and B is causal. Then I-B has a causal
inverse i and only if I (A + B) does.

Pro@ Suppose (I-B)- exists and is causal. Note that (I-A-B)=
(I-B)[I-(I-B)-A]. Since A is strictly causal, by the above remarks (I-B)-A is
strictly causal, and therefore o-([I-B]-A)={O}. Thus [I-(I-B)-A] has a causal
inverse and so does (I-A- B). On the other hand, if I- (A + B) has a causal inverse,
then

I-B [I-A -B]+A [I-A -B](I +[I-A B]-IA),
and the same argument applies. This completes the proof.

Now suppose A is causal and consider I-A. It was shown in [1], [5] that if A is
strictly causal, then (I-A)-1 exists and is causal. Various generalizations of this were
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given in [10, Chap. 2]. Here we present a result that includes all those stated there and
seems to be the best possible result involving strict causality considerations.
We recall that if A is causal and {0 < ptl < <ptn I} is any partition, then

A APiAPti-’ + APA AP.
i=1 i=l

The question" When do these sums converge, is a special case of the additive
decomposition problem considered in [7], [10]. It is clear that if one of the sums
converges, then so does the other. The case where A is strictly causal is the extreme case
where the second sum converges to zero and the first sum converges to A. In fact, if
dPA dP exists, then it will be memoryless and A- dPA dP is strictly causal. Thus A

strictly causal means A has no memoryless part. A generalization of this idea will
appear later. For the present we note that the existence of dPA dP gives a unique
decomposition of A into a strictly causal and memoryless part.

THEOREM 2.3. Suppose A A +A2, where A is strictly causal andA2 is memory-
less. Then I-A has a causal inverse if and only if I-A2 is invertible.

Proof. Suppose I A I A A2 has a causal inverse. Since A is strictly causal,
Lemma 2.2 implies that I-A2 is invertible.

On the other hand if I-A2 is invertible, it has a causal inverse. For (I-A2) is
memoryless and, therefore, (I-Az)P pt(i_A2) for all t. It is immediate that
(I-A2)-1P P(I-A2)-1. We now apply the other half of Lemma 2.2 and the proof is
complete.

It is natural to ask when does IdPA dP converge. This can be answered by
reinterpreting a result of Larson [14]. We first present a simple lemma which, we feel,
has great significance, especially for state decompositions (see [2], 11]). This is actually
implicit in [5, Thm. 9.6].

LEMMA 2.4. If T Y3() and Pt I-Pt, then PtTP is strictly causal.
Proof. Note that (PtTpt)2 0. We show that in fact the two-sided ideal generated by

PtTP in the algebra of causal operators is nilpotent. Clearly PtTP is causal, if A is
causal, then

(APtTpt)2 APtTPtAPtTP APtTP (PtAPt) TP O.

Here we used the fact that A causal implies APt PtAPt.
In the same way one shows that (PtTPA)2= O. Since the strictly causal operators

are the maximal quasinilpotent two-sided ideal in the algebra of causal operators, it
follows that PtTP is strictly causal. This completes the proof.

Note that if T is causal, then PtTP (I pt) Tpt Tpt ptTpt Tpt ptT. Let
denote the strongly closed algebra of operators generated by {pt: F}. The condition
for the existence of dPA dP can now be stated as follows.

THEOREM 2.5. SupposeA is causal. Then dPA dPexists ifand only iffor allE ;
AE-EA is strictly causal.

3. Strong causality. In this section, we consider the notion of strong causality
presented in [12], [13]. While the discussion there is quite general, here we restrict
ourselves to linear systems. We present, for this case, an equivalent formulation. This
will make the relationship with strict causality more transparent. In fact we will see that
the strictly causal operators are a proper subclass of the strongly causal ones. We then
give a necessary and sufficient condition for the causal invertibility of I-A when A is
strongly causal.
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From this point on we assume that F c (-oo, oo).
DEFINITION 3.1. Suppose A is a causal operator on (, f). A is strongly causal if

for any e > 0 there exists At > 0 such that for any t’ F, pCu 0 implies []pC+AtAuI[ <-

This definition corresponds to the linear case of the definition of [12]. We
reformulate it in the spirit of 2. AP,, will denote pC+A, p,’.

LEMMA 3.2. A ix strongly causal ior any > 0 there exists At > 0 such that/’or all
t’ F,

Proof. Fix e > 0. Then there exists At > 0 such that if t’ F and P"u O,

Since PCu O, we have pC+AtU APcU and by causality,

and

pC+AtA pC+atApt’+t

pt’A APt, O.

Thus we may rewrite the above expression as

IlzXP,,A ae,,u

Taking the supremum over all such u gives IIAPcA APt,II < e.
We can now clarify the relationship between strict and strong causality. We assume

that F [0, oo). The case F (-oe, oe) can be handled in a similar way.
DEFINITION 3.3. A generalized partition of g’ is a sequence {pt,} from g" such that

Vi APi I (or equivalently pt,- I strongly as ti-
THEOREM 3.4. A is strongly causal on (2;, g) ifand only ifgiven e > 0 there exists a

generalized partition {pt,} in such that IIAPA ZXPII < e for al i.
Proof. Suppose A is strongly causal and let e > 0. Then there exists At > 0 such that

for any t’ F, [IAPcA APt,[[ < e. Then just choose the partition {peat. i= 1, 2," .}.
This satisfies the requirements.

On the other hand, suppose A has a generalized partition {pt,} such that
[]APA APril . Let At min (ti- t,-1). Since any refinement of is easily seen to have
the property IIAPiA APjl < e, this At satisfies the requirements and A is strongly causal.

COROLLARY 3.5. IrA is strongly causal on (Yt, g’), then ptApt is strictly causal on
(pt, pt) for any F.

Proof. Consider the operator ptAp on (ptg, pt). By the results of [4], PtApt is
strictly causal on (ptg, pt) if given e>0, there exists a partition
{0 < ptl < < pt, pt} such that

max IIAPiPtAP APril < e.
lNiNn

By strong causality, there exists a generalized partition {pt,} such that

IlaPm aP, <
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for all i. Let pt ={ptp,,}. Since

ptpti ptipt
(I2,

we have that

zXpp Jp-p-
O,

ti t,

ti < t,

ti-lt<=ti,

ti-1 >=t.

If tn-1 _-< tn, then it follows immediately that is a partition on (P’, P’q) and that

max [IAP,P’AP +/-P,[[< e.
li<n

This completes the proof.
As is well-known [2], the bounded strongly causal operators form a uniformly

closed two-sided ideal and the formulation of strong causality given in Theorem 3.4
together with Corollary 3.5 show that they properly contain the ideal of strictly causal
operators.

We now turn to the invertibility problem. If A is strongly causal on (Y(, q), then
PtAPt is strictly causal. Thus (I-PtAP)-1 exists and is causal.

THEOREM 3.6. Suppose A is strongly causal on (, ’). Then (I-A)-1 exists and is
causal if and only if sup/< I1(I- P’AP’)-all <.

Proof. If (I A)-I exists, then since (I PtAP)(I PAPt)- I and lim_ (I
PtAP) (I- A) it follows that (I- P’AP’)-a- (I-A)-I strongly. Then by the uniform
boundedness principle,

II(I- PtAP)-III < c for all t.

Now suppose the condition

sup II(P’ P’AP’)-’II <-M < c

holds. We show that (I-A) is invertible. Then the argument used above shows that
(I-PtAPt)-a-, (I-A)- strongly. Since, by Corollary 3.5, PtAPt is strictly causal for
all t, and thus (I PtApt)- is causal, it will follow from the strong closure of the causal
operators [5] that (I-A)- is causal.

To show I-A is invertible, it suffices to show that II(I-A)x[I and [l(I-A)*xll are
bounded below for x Y. We do this for the first term noting that a similar argument
holds for the second.

Then

Ilxll II(x PAPt)-1(I Ptmpt)xll

II(/- PApt)-lll II(x PtAP’)xJl

<=MII(I-P’APt)xlI.
Thus I1(I- P’AP’)xll >- (/M)llxll for all F.

Since as t- c, pt I strongly, we obtain

1[(I A)x[I => Mllxl[.
This completes the proof.
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Remark 3.7. The largeness of the class of strongly causal operators becomes clear
by taking - 12(-oo, co) with the usual orthonormal basis. The strongly causal opera-
tors are those whose matrix representations are strictly lower triangular.

4. The memoryless prt ot an operator. Here we present a mapping that gives for
each operator in () a memoryless operator which, in a natural way, will be the
memoryless part of the operator. In the case where an additive decomposition exists,
the two notions of memorylessness coincide. In fact, much more is true. The notions of
strict and strong causality were delay conditions. This means that these operators have,
in a certain sense, no memoryless part. This construction will show in what sense this is
meant. For strongly causal operators, when operated on by this mapping, give zero
memoryless part. Thus strongly causal operators will be in the null space of this
mapping. The problem of characterizing the null space of this mapping seems to be
important and open.

This construction is not new and is well-known in the study of operator algebras
[9], [14]. However, since we feel it is quite important for the study of feedback systems,
we go into great detail. Since the first version of this paper was written, we have made
use of this construction in studying some problems in stochastic optimization [15].

it is a basic fact that () is a Banach space and is the dual space of the Banach
space 1 of trace class operators [7]. Thus every operator A 3() can be looked upon
as a bounded linear functional on . This is defined by

T - Tr (A T), T 1.
Details can be found in [7].

Now consider g (pt: F). Since these projections commute with each other and
are selfadjoint, they generate a strongly closed, Abelian, selfadjoint algebra which we
denote by . Let U denote the set of unitary operators in 5 (i.e., U : U and
UU* U*U I). Then R is an Abelian group in , and generates 5 in the sense that
every element in can be written as a finite linear combination of elements of [3].

DEFINITION 4.1. Let G be a group and denote by 3(G) the algebra of bounded
complex functions on G. A linear functional M on (G) is called an invariant mean on
G if:

(i) f (G) is real valued, then
inf {f(x): x G}<-_M(f)<-sup {f(x): x G}

(ii) for each g G, if fg(X)=f(gx), then M(fg)= M(f).
Note that (i) implies M(f) f for f constant. Not all groups have invariant means.

However, they do exist for Abelian groups although they are not necessarily unique [8].
Thus R has an invariant mean which we will denote by M.

Now fix A 3() and T 1, and consider the bounded complex function defined
on R by

U Tr (U*A UT),

Our mapping will be defined by means of this function. For A N() define O(A) as a
bounded linear functional on 1 by

T, 0(A)} M[Tr U*AUT)].

Since N() is the dual space of (1, the mapping 0 for each A 3(), defines an
element of (). The properties of have been studied in detail in [14], [15]. Here we
list those useful for our discussion.
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TI-IZORZM 4.2. Let 0 be the mapping on ) defined above. Then
(i) ff is linear and I1 11-1.

(ii) IrA is memoryless andB (), then O(AB) A(B) and O(BA)= O(B)A.
(iii) For all A (), O(A) is memoryless and 0[ff(A)] if(A).
We note that property (iii) implies that 0 is a projection of () onto the algebra

of memoryless operators. That 0(A) can be looked upon as an extension of the
memoryless part of A encountered in the additive decomposition can be seen in the
next result. This is seen for different extensions of strict causality in [15].

THEOREM 4.3. IfA is strongly causal, then O(A)= O.
Proof. Fix e > 0. Then by Theorem 3.5 there exists a generalized partition {Vti}

such that [[APiA APi[I < e for all i. Since has norm 1, it follows that ][O(APgA APg)[[ < e.
But O(APgA Ap) APiO(A) Apg by Theorem 4.2 (ii) and since Y.i APi I, we have

0(A) E 0(A) Ap E APO(A)

by memorylessness of O(A). Since Ap A_APj for #/’, it follows that II0(A)II < e. Since e
was arbitrary, (A) 0.

Examples 4.4. (1) Let =/2(-c, ) with the standard resolution of the identity.
Then the strictly lower triangular matrices have the property that O(A)= 0.

(2) Let K be a convolution operator on L2(0, c) with L kernel. Then K is
strongly causal and O(K)= 0.

Now suppose A is causal. Then

A=O(A)+(A-O(A))

is a decomposition of A into a memoryless part 0(A) and an operator whose memory-
less part is zero. This "additive decomposition" is equivalent to the additive deco-
mposition described in Theorem 2.3 when that exists. This raises the question of the
uniqueness of the above decomposition in the following sense: if A B1 + B2, where B2
is memoryless and O(B)= 0, does this imply that B2 "-O(A) and .LI A-0(A)? A
partial answer is given in the next theorem.

THEOREM 4.5. Suppose A is causal andA O(A) is strongly causal. IrA B + BE
with B1 strongly causal and BE memoryless, then B A O(A) and BE O(A).

Proof. Since A =[A-O(A)]+O(A)=B+B, it follows that [A-O(A)]-B1
BE--O(A). Since the strongly causal operators form an ideal, A- O(A)-B1 is strongly
causal. Thus, so is O(A)-B2. It then follows from Theorem 4.3 that O(O(A)-B2) O.
But

O(O(A) B) O(O(A)) p(B)

=O(A)-B.

Thus, if(A) B2 and A 0(A) B1. This completes the proof.
We now raise some invertibility questions related to the fact that 0(A)- 0 is a

strong causality condition for a causal operator A.
(1) Suppose A is causal and if(A) 0. When does I-A have a causal inverse? The

answer must clearly include Theorem 3.5.
(2) Suppose A is causal and I-(A-(A)) is invertible with causal inverse. The

argument used in Theorem 2.3 shows that I-A is invertible with causal inverse if and
only if 1 tr(0(A)). Can we determine tr(0(A))?

(3) We have noted that the null space of 0 contains the strongly causal operators.
We would like to characterize this null space. In particular, are there operators which
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are not strongly causal for which 4,(A)=0? This question becomes particularly
important in light of the results of [15].
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ERRATUM: ON DECOMPOSITION OF GENERATORS*
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Let A and B be infinitesimal generators of linear C0-semigroups on Banach spaces
X and Y, respectively, and F a bounded linear operator from Y into X. The
computations on page 525 of my paper imply that the operators

0A=(A0 B)(00I -/F) and A1 =(0/ /F)( B)
generate Co-semigroups on the product space X Y, provided that the conditionmFB
has a continuous extension to the whole Ymis satisfied. Therefore, one should add this
condition in the formulation of part b of Theorem 1. A different sufficient condition for
operators Ao and A to be Co-generators is that operator F transforms Y into D(A),
and this fact follows from part a of Theorem 1. Nevertheless, all applications of
Theorem 1 considered in the paper are not affected by the correction; as in all of them,
the operator B was bounded. That some conditions are in fact necessary for Ao and A
to generate Co-semigroups can be seen from an example contained in [1].

The author would like to thank Professor Goong Chen and Professor Ronald
Grimmer for drawing his attention to the described incorrectness.

Another reference, recently discovered by the author, is relevant to the content of
the paper; namely, an analogous proof to that given in the paper of the property, that
A-bounded finite dimensional operator on a reflexive Banach space has A-bound zero
(see Remark 3 of my paper), is contained in [2, pp. 195-196] together with the property
itself.
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NULL CONTROLLABILITY OF LINEAR SYSTEMS WITH CONSTRAINED
CONTROLS*

W. E. SCHMITENDORF’ AND B. R. BARMISH:

Abstract. The paper considers the problem of steering the state of a linear time-varying system to the
origin when the control is subject to magnitude constraints. Necessary and sufficient conditions are given for
global constrained controllability as well as a necessary and sufficient condition for the existence of a control
(satisfying the constraints) which steers the system to the origin from a specified initial epoch (x0, to). The
global result does not require zero to be an interior point of the control set f, and the theorem for constrained
controllability at (Xo, to) only requires that f be compact, not that it contain zero. The results are compared to
those available in the literature. Furthermore, numerical aspects of the problem are discussed as is a technique
for determining a steering control.

1. Introduction and formulation. Consider the problem of steering the state of a
linear system

(S) 2(t)=A(t)x(t)+B(t)u(t), t[to, )

to the origin from a specified initial condition

x(to)=xo

by choice of control function u(. ). Here x(t) R n, u(t) R", and A(. and B(. are
continuous matrices of appropriate dimension. Unlike the usual controllability prob-
lem, where the control values at each instant of time are unconstrained, we insist here
that the control values at each instant of time belong to a prespecified set f in R ".

Let d//(f) denote the set of functions from R into f that are measurable on [to, c).
Then any control u(. ) d//(f) is termed admissible. We now define three notions of
constrained controllability or, more precisely, D,-null controllability.

DZFINrrION 1.1. The linear system (S) is f-null controllable at (Xo, to) if, given the
initial condition X(to) Xo, there exists a control u(. dg (f) such that the solution x(.
of (S) satisfies x(t)= 0 for some [to, ).

DZFINITION 1.2. The linear system (S) is globally =null controllable at to if (S) is
f-null controllable at (Xo, to) for all x0 R n.

Our major result will pertain to the global type of controllability. To compare our
results to those of previous researchers, we also need a local controllability concept.

DZFINIa’ION 1.3. The linear system (S) is locally f-null controllable at to if there
exists an open set V c R ", containing the origin, such that (S) is null controllable at
(Xo, to) for all x0 V.

The majority of constrained controllability results are for autonomous systems,
i.e., systems where A and B are constant. When f R ", Kalman [1] showed that a
necessary and sufficient condition for global R"-null controllability is rank(Q)= n,
where O a-[B, AB,. , A-IB]. Lee and Markus [2] considered constraint sets f),

R which contain u 0, and showed that rank(Q)= n is a necessary and sufficient
condition for (S) to be locally -null controllable. Furthermore, if each eigenvalue h of
A satisfies Re (h) < 0, then (S) is globally f- null controllable. This result is typical of the
results available when f contains the origin.

Received by the editors September 1, 1978, and in final revised form August 28, 1979.
t Technological Institute, Northwestern University, Evanston, Illinois 60201. The research of this

author was supported by Air Force Office for Scientific Research under Grant 76-2923.
Department of Electrical Engineering, University of Rochester, Rochester, New York 14627.
This requirement can be weakened to local integrability.
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Saperstone and Yorke [3] were the first to eliminate the assumption that zero is an
interior point of f when they considered problems with m 1 and [0, 1]. Their
result states that, for these problems, (S) is locally D-null controllable if and only if
rank(O) n and A has no real eigenvalues. They also extend this result to m > 1 and
consider the m-fold product set f 1-I1 [0, 1]. Problems with more general constraint
sets were studied by Brammer [4] who showed that if there exists a u satisfying
Bu 0, and the convex hull of D, has a nonempty interior, then necessary and sufficient
conditions for local O-null controllability are rank(O)= n and the nonexistence of a
real eigenvector v of A’ satisfying v’Bu <= 0 for all u O,. In addition, if no eigenvalue of
A has a positive real part, then the theorem becomes one for global f-null control-
lability. A similar result for global controllability when f [0, 1] was obtained by
Saperstone [5]. Friedman [6] considers a linear pursuit evasion problem, where the
target is a closed convex set, and gives a sufficient condition for the existence of a
pursuer control, based on the evader’s control, which drives the system from a specified
initial condition to the target.

For nonautonomous systems, the most familiar controllability result is that of
Kalman [1] when f R m. He showed that (S) is R’-null controllable if and only if
W(to, tl) is positive definite for some tl [to, oe), where

tl

W(to, tl) & b(tl, ’)B(’)B’(r)qb’(h, r) dr,

and b(t, r) is the state transition matrix for (S). When the control is constrained, the
major global results are those by Conti [7] and Pandolfi [8]. In [7], Conti describes a
"divergent integral condition" which is necessary and sufficient for global D-null
controllability when f is the closed unit ball. In order to make Conti’s result more
compatible with existing theory for time-invariant systems, Pandolfi in [8] defines the
notion of pth characteristic exponent for time-varying systems. For the special case
when the system is time-invariant, the characteristic exponent turns out to be the real
part of some eigenvalue of A. Subsequently, controllability criteria are provided in
terms of this exponent.

The f-null controllability problem is also studied in papers by Dauer [9-1, [10],
Chukwu and Gronski [11] and Chukwu and Silliman [12]. In order to answer the
question of D-controllability, one must test a certain growth condition which involves
searching a function space. In contrast, the results given here are finite-dimensional in
nature.

In [13], Grantham and Vincent consider the problem of steering a nonlinear
system to a target. They present a technique for determining the boundary between the
set of states which can be steered to the target and those which cannot. More recently,
Murthy and Evans [14] obtained results comparable to [3]-[5] for discrete linear
systems and Pachter and Jacobson [15] developed sufficient conditions for control-
lability for case where A(. and B(. are time-invariant and D is a closed convex cone
containing the origin. A readable account of the state of the art is contained in the book
by Jacobson [16, Chap. 5].

In contrast to much of the work of previous authors, this paper concentrates on the
case where A(. and B(. are time-varying. Our results for global D-null controllability
are for constraint sets f that are compact and contain zero (but not necessarily as an
interior point). One of our main results on global D-null controllability is an extension
of a theorem of Conti [7] and it degenerates to Conti’s theorem when f is a unit ball.
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Our results for D-null controllability at (x0, to) have even wider applicability since
they do not require 0 c . Neither do they require the existence of a u c t2 such that
Bu 0 as in [3]-[5], [7]-[12]. Thus we can analyze controllability of a system with, for
example, m 1 and [1, 2], whereas, many of the presently available theorems do
not apply. Furthermore, as will be illustrated by examples, there are autonomous
systems (S) which are neither globally D-null controllable nor locally D,-null controll-
able but nevertheless are f-null controllable at some (x0, to). Our theorem can be used
to decompose the state space into two sets. Initial states in one set can be steered to the
origin while those in the other cannot be driven to the origin by an admissible control.

2. Main results. In order to describe our necessary and sufficient conditions for
global D,-null controllability, we make use of the supportfunction Hn R
on 12 which for any a 6R is given by

Ha(a) & sup {w’a: w c D,}.

Using this notation, we have the following theorem, which is proven in Appendix A.
THEOREM 2.1. Suppose f is a compact set which contains zero.2 Then, (S) is globally

-null controllable at to if and only if

(2.1) / Hn(B’(z)z(T)) dT=
at

for all nonzero solutions z(. of the ad]oint system

(S’) 2(t) -a’(t)z(t), c [to,

or equivalently, if and only if

ft {oo’B’(r)O’(to, r)A" e f} d’rsup

for all A c R", A O.
We note that Ha(B’(r)z(r)) can be viewed as the composition of a nonnegative

Baire function with a measurable function. Hence, the integral in (2.1) is well-defined
along all trajectories z(. of (S).

In the following corollary, we examine the special case of Theorem 2.1 which arises
under the strengthened hypothesis "zero is an interior point of D,." As we might
anticipate, for this special case, the structure of the set 12 will not matter other than the
requirement that it contains zero in its interior.

COROLLARY 2.2 Suppose there exists a compact set f such that
(i) zero is an interior point of
(ii) (S) is globally D-null controllable.

Then (S) is also globally 12’-null controllablefor any other set f’ (not necessarily compact)
which contains zero in its interior.

See Appendix A for proof.
Our proof of Theorem 2.1 will make use of a more fundamental result (also proven

in Appendix A) giving conditions for )-null controllability at a fixed initial epoch
(Xo, to). To meet this end, we define the scalar function J" R" x R x R R by

T

(2.2) J(xo, T, h & x)cb’(T, to)h + [ Ha(B’(z)c’(T, r)h dr.
at

The theorem is also valid if the requirement "0 D" is replaced with "there exists a u 6 f such that
Bu 0". This type of assumption is used by Brammer [4].
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We note that J(xo, T, h) can be viewed as the support function on the so-called
attainable set. This fact is used implicitly in the proof of the next theorem.

THEOREM 2.3. Let fl be a compact set. Pick any subset A ofR which contains 0 as
an interior point. Then (S) is [l-null controllable at (Xo, to) if and only if
(2.3) min {J(xo, T, h ): A e A} 0

/:or some T [to, oo), or equivalently, if and only if
(2.4) J(xo, T, A) >-_ 0 ]’or all A A

for some T [to, oo).
Comment. If f is also convex and A and B are constant, the sufficiency portion of

this theorem is just a special case of Theorem 7.2.1 of [6]. Naturally, the smallest time T
for which (2.3) holds will be the minimum arrival time at the origin.

Theorem 2.3 can also be stated in terms of the adjoint system (S’), i.e., if we take
A= R" and notice that z(t)= 4)’(to, t)Z(to) is the response of the adjoint system (S’),
then the following theorem is easily proven. (The proof is established by making the
change of variables z(t) a__ c’(T, t)A).

THEOREM 2.3’. Let lq satisfy the hypothesis of Theorem 2.3. Then (S) is f-null
controllable at (Xo, to) if and only if there exists some T [to, ) such that

T

(2.5) X’oZ(to) + | Hn(B’(r)z(z)) dr >= 0
at

for all solutions z(. of (S’).
This theorem demonstrates that the question of f-null controllability at (Xo, to) can

be answered by solving a finite dimensional optimization problem. Moreover, the
question of global [l-null controllability can also be answered via a finite dimensional
optimization problem.

COROLLARY 2.4. Let f and A be as in Theorem 2.3. Then (S) is globally f-null
controllable at to if and only if]or every Xo R there is a time Txo [to, oo) such that

min {J(xo, rxo, ): A A} 0.

The proof of this corollary follows from Theorem 2.3 in conjunction with the
definition of global O-null controllability.

There is one point worth noting. In using Theorem 2.1 to check for O-null
controllability at to, f must be compact and contain 0. If Corollary 2.4 is used, only the
compactness assumption must be satisfied.

Next, we present some examples to illustrate how our theorems can be applied and
to compare our results to those of [3]-[5].

Example 1. Let x(t) and u(t) be scalars and suppose (S) is described by

2(t) x(t) + u(t), [0, ).

This system is R null controllable if f R 1. But suppose [0, 1]. Then the system is
not globally O-null controllable at to 0. This follows from Theorem 2.1 since, for
Zo < O, Ha(B’(r)z(r)) 0, and thus Ha(B’(r)z(r)) dr < +o. Also, using [3] or [4], it
can be shown that the system is not locally O-null controllable. Nevertheless, there do
exist initial states x0 from which it is possible to steer the system to the origin. Such states
can be determined via Theorem 2.3.

For the above,
r

r-’r/J(Xo, T, Xo e TX + sup {W e to [0, 1 ]} dr.
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When A [-1, 1], this becomes

Y(xo, T, A) !x e

xoeA +A(e- 1),

and thus

min {J(Xo, T, a )" a e [- 1, 1]} 0

if and only if xo _-< 0 and Xo >- e -r 1 for some T e [0, m), or equivalently, if and only if
-1 < Xo_<-0. We conclude that even though (S) is not locally -null controllable, it is
l’l-null controllable at (xo, 0) whenever -1 < xo _-< 0.

If [1, 2], neither [3]-[5] nor Theorem 2.1 apply. However, we can use Theorem
2.3. Since

2a e (T-),
H(B’(’rlcD’(T, flat [ a e (T-),

J(xo, T, a) becomes

J(xo, T, a {x era +2a(er- 1)’
xo era + a (er- 1),

and

min {J(Xo, T, A )" A e [-1, 1]} 0

if and only if 2(e-r- 1)<-_Xo<-e-r- 1. Thus (S), with =[1, 2], is -null controllable
at (x0, 0) whenever -2 < xo -< 0.

As a final variation of this problem, suppose I-a, a]. Then [4] or Theorem 2.1
shows that (S) is not globally )-null controllable. Using [4], it can be demonstrated that
(S) is locally -null controllable, while Theorem 2.3 not only tells us that (S) is locally
l-null controllable but also that the states Xo which can be steered to the origin are
those satisfying -a < Xo < a.

Example 2. Our second example illustrates the application of Theorem 2.1 for a
nonautonomous system. We consider the time-varying two-dimensional system (S)
described by

l(t)=u(t)sint,

1
/2(t) -’t1,-----(+

Xl(t) + u(t)t sin t, [0, o0).

The control constraint set is taken to be f/= [0, 1]. By a straightforward computation,
the state transition matrix for the adjoint system (S’) is found to be

t-to
4,(t, to)

1
(t+l)(to+l)

0 1

Hence, in accordance with Theorem 2.1, (S) is globally f-null controllable at to 0 if
and only if

sup o[sin r
[0, 1]

r sin r]
0 1 2’02-1
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A [Z01 Z02]’. Evaluating above, this reduces to thefor all nonzero initial conditions Zo
requirement that

(2.6) I(r) dr max 0, zol sin r + ZoZ sin -+i
for all Zo 0. We shall show that this condition is indeed satisfied.

Case 1. Zol 0, Zo 0. For this case, we have

o I(r) dr=o max{0, zosinr}dr

[ Zo sin r dr,

where {r 0" zo sin r > 0}. Because the range set
infinitely many intervals of length , it follows that

o
I(z) dr +.

Case 2. Zox anything, Zo2 0. Let T* ([zol[+ 1)/]Zo[. Then to verify (2.6), it
suffices to show that

I(z)
dr +,

where 2 {r T*" z02 sin r > 0}. (Recall that the integrand is nonnegative.) Now, for
r 2, we notice that the integrand I(r) can be bounded from below as follows:

Z01 sin r + Z02r sin r 1 + Izo21 [sin r[ r 1 + -[zol[ [sin r[r+l
(Zoz[ -]Zoxl)lsin
([Zo2[r*-[zOl[)lsin
]sin r[.

Hence,

I(’r) dr >= fr Isin zl dr

because the range of integration is once again the union of infinitely many intervals of
length zr.

We conclude that (S) is globally O-null controllable.

3. Relationship with other controllability results. In this section, we compare our
controllability results with those of Conti [7] and Brammer [4]. We also consider, as a
limiting case of our theory, the usual controllability problem obtained when magnitude
constraints are not present.

Result of Conti. An important special case of Theorem 2.1 occurs when f is a
closed unit ball in R’, i.e.,

f {o R "’ I[o[[ <= 1},

where II" is a prespecified norm on R ". For this situation we have

Ha(B’(’r)z(7)) sup {w’B’(’r)z(r)" IIoll <= 1} IlB’(r)z (r)ll,,
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where []. [], is the norm on R which is dual to I[" [[. (For example 11. I], is the norm when
[]" is the norm; [[. and []. [[, coincide when [1" is the usual l: (Euclidean) norm.)

By Theorem 2.1, we conclude that (S) is globally f-null controllable at to if and
only if

(3.1)

for all nonzero solutions z(. of (S’). This result is established independently in Conti [7]
and also discussed in Pandolfi [8]. This result, in conjunction with Corollary 2.2 leads
immediately to the following proposition.

PROPOSITION 3.1. Let be any set containing zero in its interior. Then (3.1) is a
necessary and sufficient condition ]:or global -null controllability.

Thus, Conti’s condition is a necessary and sufficient condition for global 12-null
controllability for any set containing zero in its interior, not just when 12 is the closed
unit ball.

Result of Brammer. Consider the case when A(t)=A and B(t)=B are time-
invariant. For these autonomous problems, the following necessary conditions can be
obtained directly from Theorem 2.1. Recall that O [B, AB,. ., An-aB].

THEOREM 3.2. Assume A(t)=A and B(t)=-B are time-invariant and that 12 is a
compact set which contains the origin. If (S) is globally -null controllable then

(i) rank (O) n
(ii) there is no real eigenvector v of A’ satisfying v’Bw <= 0 for all w
(iii) no eigenvalue ofA has a positive real part.
The proof of this result is in Appendix B.
In [4], Brammer has obtained the same result using a different method of proof.

There, he also shows that the above three conditions are also sufficient for global -null
controllability in the time invariant case if it is also assumed that the convex hull of 12 has
a nonempty interior. Alternative proofs of the sufficiency results have been given by
Heymann and Stern [25] and Hajek. The latter proof is in [5].

We note that the system of Example 1 of 2 does not satisfy these three conditions.
Nevertheless, it is -null controllable at (x0, 0) for some initial states Xo.

The Case 12 R’. When 12 R ", it is well-known 17, p. 171] that the time-
varying system (S) is completely controllable (globally R m_ null controllable at to in our
notation) if and only if the rows of (to,’)B(’) are linearly independent on some
bounded interval [to, T]. Here we show that when R m, (2.1) is a necessary and
sufficient condition for global R m-null controllability. This is accomplished by showing
that (2.1) is equivalent to the rows of (to," )B(. being linearly independent on some
bounded interval [to, T].

PROPOSITION 3.3. (S) is globally R’-null controllable if and only if

HR.(B’(’r)Z(T)) dr +c

for all nonzero solutions z(. of (S’).
The proof of this result is in Appendix B.

4. Some computational aspects. In a large number of problems, one may have to
resort to the computer to check whether or not a system is -null controllable. When
using (2.3), a solution of the minimization problem min {J(Xo, T, A): A A} is needed.
Direct application of so-called gradient or descent algorithms to compute
min {J(xo, T, A): A A} is precluded by the fact that J(xo, T, A) is, in general, not
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differentiable in A. This fact is a consequence of the sup-operation involved in the
definition of Ha(B’(r)’(T, r)A). Fortunately, however, numerical computation of
min {J(xo, T, ): A} is feasible if "generalized steepest descent" schemes are used.
These schemes rely on subdifferential3 rather than gradient information. The next two
lemmas develop a description of the subdifferential of J(xo, T, ). The proofs are given
in Appendix C.

LZMMA 4.1.Forfixed (Xo, T) R R,J(xo, T, is a lowersemicontinuous convex
function of A.

LEMMA 4.2. For fixed (Xo, T) R" R, the subdifferential of ](Xo, T, at R"
consists of all vectors , R" of the form

T

(4.1) A.=(T, to)Xo+ f, (T,r)B(r)w,(r)d%

where

w. (r) e arg max {w’B’(r)&’(T, r)A: w
(4.2)

={w e f: w’B’(r)ck’(T, r)A _>- rt’B’(r)4’(T, r)A Vrt e }
for almost all r [0, T].

Remark. Since J(xo, T, A) is the support function on the attainable set (see
discussion preceding Theorem 2.3), a geometric interpretation of the subdifferential at
A is available" This set consists of all vectors in the normal cone to the attainable set at A.
(See Goodman [24, p. 285].)

Formulae (4.1) and (4.2) hold for arbitrary compact-convex 12. Often, however,
more structural information is known about 12. In such cases, (4.1) and (4.2) may
simplify. To illustrate, suppose

a [-M1, M1] [-M2, M2] "" [-M,,, M,, ], M > 0.

Then, the maximum in (4.2) is achieved in the ith component by

[w, (r)]g M sgn [B’(r)&’(T, r)A ]g, 1, 2, , m,

where sgn x _a_ 1 if x > 0; sgn x a__ -1 if x < 0; sgn 0 ___a [-1, 1]. Consequently, for this case,
we can substitute into (4.1), and show that the subditterential OJ(xo, T, consists of all
vectors , R" of the form

T

(4.3) h. =(T, 0)xWfo i=1
iVlihi(T, r)sgnh’hg(T, r)dr,

where hi(T, r) is the ith column of H(T, r)a-(T, r)B(r). This description of the
subditterentials of J(xo, T, can be used in conjunction with the generalized steepest
descent algorithms to compute min {J(Xo, T, A): h e A}.

We also note that h. is uniquely specified by (4.3) if

measure{r: h’hi(T, r)=0}=0 .for i= 1, 2,..., m.

For such h, OJ(xo, T, A) is precisely VJ(xo, T, h), the gradient of J(xo, T,. at h.

5. The steering control. Using the results of 2, we can determine if (S) is l’-null
controllable. However, those results do not give a method for determining a steering
control u, (.) /(lq) which accomplishes this objective.

A, OJ(xo, T, A), the subdifferential of J(xo, T, at , if and only if

J(xo, T, z) >=J(xo, T,h)+(z-h)’h, for all z R".
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One method of determining an appropriate u, (.) is to solve the time optimal
control problem, i.e., find u, (.) () which steers (S) from given (Xo, to) to the origin
and does so in minimum time. If there is a control which steers the system to the origin,
then there is a time optimal one [2]. Hence, in principle, a steering control can be
numerically computed using any of a wide variety of algorithms which are available for
solution of the time optimal control problem.

Since the solution of the time optimal problem is determined by solving a two point
boundary value problem, it can be quite difficult to obtain the steering control this way.
In this section, a "simpler" alternative method for generating a steering control is
presented. This technique does not involve a two point boundary value problem and
leads to a control which steers the system arbitrarily close to the origin. Our result is
obtained from the following minimum norm problem:4 Given initial point (Xo, to) and a
final time T, find u (.) g(f) which leads to the smallest value of [Ix (T)II. The solution of
this minimum norm problem is characterized in the next theorem.

THEOREM 5.1. Let (Xo, to) and T be given. Suppose that A, R achieves the
minimum ofJ(xo, T, A) over the closed unit ball. Then any solution of the minimum norm
problem satisfies

(5.1) u,(r) arg max {oo’B’(r)&’(T, -)h, o) f}

]:or almost all 7- [to, T].
See Appendix D for proof.
We note that condition (5.1) will uniquely determine u, (.) whenever the mini-

mum of oo’B’(r)cb ’( T, r)h, is uniquely achieved. For example, suppose

f I-M1, M1] X [-M2, M2] x... x [-Mm, Mm], mi > O.

Then (5.1) requires

(5.2) [u, (r)]i M/sgn [B’(r)&’(T, r)h, ]i, 1, 2, , m.

For the case when the minimum of [Ix (T)I[ 0, h, 0 and (5.1) will not determine a
control which steers (S) to the origin. The following heuristic procedure can be used to
determine a control which steers (S) arbitrarily close to the origin" Choose a T such that
the minimum of IIx(T)ll is nonzero. As T is increased, the minimum of Ilx(T)[[
approaches zero and the corresponding solution u,(.), generated via (5.2), of the
minimum norm problem results in a control which steers the system progressively closer
to the origin.

In our next theorem, we provide another useful characterization of steering
controls. For fixed T [0, co), Xo R ", we define the functional Vr: R" x A/(f) - R by

T

Vr(A, u(. )) h’b (T, 0)Xo + Jo A’c(T, z)B(z)u(r) dr.

THEOREM 5.2. Pick any compact convex set A containing zero as an interior point.
Then Vr(h, u(" )) possesses at least one saddle point (h,, u,(. )) A x j//(f). Moreover,
u, (.) steers Xo to zero at time T if and only if Vr(/,, u, (.)) 0.

See Appendix D for proof.

II. Additional applications. In this section, we use our results to obtain an existence
theorem for the time optimal control problem and also apply our results to a pursuit
game.

4 Here the linear system (S) is required to be Rm-null controllable.
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6.1. Existence of time optimal controls. Consider the following time optimal
control problem: Find u(.) (f) which drives the state x(.) of (S) from an initial
position X(to)= Xo to the origin and minimizes

q
C(u(.)) dt; tf arrival time at the origin.

The classical theorem for existence of a time optimal control (e.g., Lee and Markus [2])
requires that there is at least one control which transfers the state x(.) of (S) to the
origin. Combining the result of [2] with our Theorem 2.3, we obtain the following
existence lemma.

LFMMA 6.1. There exists a solution to the time optimal control problem ifand only if
there is some finite t [to, ) such that

min {J(xo, q, A ): A A} 0.

Furthermore, the time optimal cost is given by

C* (u, (.)) min {t: min [J(xo, q, , ): A] 0}.

6.2. Pursuit Games. Next, we consider the pursuit game studied by Hijek [18].
The system is described by

(6.1) (t)=Ax(t)-p(t)+q(t), p(t)6P, q(t)60, X(to)=Xo,

where P and O are compact convex subsets of R n. The pursuer p(. seeks a strategy
o-:O [to, oe)p which steers x(.) to the origin for all possible quarry controls
q(’):[to, oe) O. A quarry control is admissible if it is measurable and a strategy is
admissible if or(. preserves measurability.

In [18], a solution to this problem is obtained in terms of the associated control
system

(6.2) }(t)=Ay(t)-u(t), u(t)P*O, y(to) Xo,

where P*O is the Pontryagin difference; i.e.,

P*Q &{x R": x +0 P}.

Admissible controls u(. above must be measurable.
Simply put, Hfijek’s result says that the state x(.) of (6.1) can be forced to the

origin, for all admissible q(. ), if and only if the state y(. of (6.2) can be steered to the
origin. More precisely, the following theorem is available.

FIRST RECIPROCITY THEOREM [18]. Initial position Xo in (6.1) can be (strobosco-
pically) forced to the origin at time T >- to by a strategy r( ifand only ifxo in (6.2) can be
steered to the origin at time T by an admissible control u (. ). Furthermore, r(. and u (.
are related by

(6.3) o-(q, t) u(t) + q.

By applying Theorem 2.3 to (6.2), we obtain another condition for determining if
(6.1) can be forced to the origin.

LEMMA 6.2. Assume P*O compact. Pick any subset A ofR containing zero as an
interiorpoint. Then Xo in (6.1) can beforced to the origin at time T>= to by a strategy r(. if
and only if

min {K (Xo, T, A ): A A} 0,
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where

eA’(T ft
T

K(xo, T, h) Xo t)h + Hp-*-O (eA’(r-r)h) dr.

It should be pointed out that in addition to pursuit game interpretation of (6.1),
(6.1) can also be viewed as a problem of steering a system with disturbances to the origin
if q(.) is thought of as a disturbance. Also, the results apply to systems described by

2(t)=Ax(t)+Bp(t)+Cq(t), p(t)P, q(t) O
if one replaces Bp(t) by p’(t), Cq(t) by -q’(t), P by BP, and Q by CQ.

Appendix A. Proof of Theorems 2.1, 2.3 and Corollary 2.2. Since Theorem 2.3 is
used in the proof of Theorem 2.1, we first present the proof of Theorem 2.3. There are
many ways to prove Theorem 2.3; our proof exploits the convexity of the attainable set
in conjunction with a measurable selection theorem. We note that a proof of the
sufficiency part of the theorem is given in [6, Thm. 7.2.1]. To simplify our notation, we
henceforth take to- 0 without loss of generality. This will apply to subsequent appen-
dices as well.

Proofof Theorem 2.3. Let AT(xo) be the set of states which can be attained from Xo
at time T, i.e.,

(A.1) AT(Xo)= c(T, O)Xo-t- fo
T

(T, r)B(r)u(r)dr" u(.) 6 y///(n)}.
The set AT(Xo) is convex and compact [2]. From Definition 1.1, it follows that x0 can be
steered to 0 at time T if and only if OAT(XO) or, equivalently, by the separating
hyperplane theorem [21],

(A.2) 0_-<sup {A’a: a Ar(xo)}

for all vectors A 6 R". Using (A.1), requirement (A.2) becomes
T

(A.3) A’&(T, 0)Xo+sup/Jo Mc/)(T, r)B(r)u(r)dr" u(.) 6 ///(fl)/_->0
for all R n. As a consequence of the measurable selection theory of [19], we can
commute the supremum and integral operations in (A.3)5. Thus, 0 Ar(xo) if and only
if

T

(A.4) 0<-A’&(T, 0)xO+Jo Ha(B’(r)&’(T, r)A)dr=J(xo, T,A)

for all A R ". Since J(Xo, T, A) is positively homogeneous in A, we can restrict A to A in
(A.4), Theorem 2.3 now follows. 71

Next, we present the proof of Theorem 2.1. In the proof, Theorem 2.3 is used.
Proof of Theorem 2.1 (Necessity). We suppose that (S) is globally -null controll-

able at to 0. Let z(. be any nonzero solution of (S’); we must prove that

(A.5) | Ha(B’(r)z(r)) dr +oo.

(T, r) B(r) being a Carth6odory function enables us to apply the results of [19].
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Proceeding by contradiction, suppose there is a nonzero solution (. such that

Ha(B’(r)(r)) dr a, a <.
Then there is a positive constant/3 < c such that

Hn(B’(r)(r)) dr < ft.

Define

Xo* a -2fl(0)
0.

We now claim that X*o cannot be steered to zero by an admissible control u(.
To prove our claim, for each [0, ), define, ’(0, t)(0), 0.

Now, given any [0, ),

IoJ(x*o, t, A)= x’’’(t, O)It + Ha(B’(r)O’(t, ’)It) dr

Xo*’(0)+ Jo Ha(B’(r)S(r)) dr

_-<-2/ +/3

<0.

Taking A R" in Theorem 2.3, it follows that

min {J(x*o, t, Z )" Z A} <-J(x*o, t, At) < 0

for all 6 [0, ). By Theorem 2.3, (S) is not f-null controllable at (Xo*, 0).
(Sufficiency). Now, we assume that (A.5) holds. Again, we proceed by contradic-

tion, i.e., suppose (S) is not globally O-null controllable at to 0. Hence, there exists an
initial condition Xo* # 0 which cannot be steered to zero. By Theorem 2.3 (with A R"),
we can find a sequence of times (t) k=x and a sequence of vectors (Ak) k=l having the
following properties"

(P1) lim t, +o,
k

(P2) J(x*o, t, A) < O fork=l,2,3....

We are going to construct an initial condition Z:o # 0 for (S’) which makes the integral in
(A.5) finite. To meet this end, let

O’(tt,, O)A
k=l,2,....z,, -II,/,’(t,,, o),11’

We note that each zk above is nonzero because Ak # 0, and &(t, 0) is invertible. Then
z)=l is a sequence in R belonging to the set

S {z R n" Ilzll- 1}.

Since $ is compact, we can extract a subsequence (zk)--1 which converges to some
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vector o S. We will now show that ,o is the initial condition which we seek. Let (.) be
the trajectory of (S’) generated by z(0) -o; let (tki)’ denote the subsequence of times
corresponding to (Zki)i=l. By (P1), we have

lim tki +,

and by (P2), it follows that

tkj
x’’(t, 0)h + H(B’(r)’(tg, r)h) dr ( 0 for j 1, 2, 3,....

0

Dividing by []’(t, 0)h[[ and noting that H is positively homogeneous, we obtain

o

t’
Ha(B’(r)&’(O, r)z,) dr Ilx I$z ,ll for j 1, 2, 3,. ,

x for ] 1, 2, 3,....

We would like to obtain an inequality involving Yo with an infinite upper limit on this
integral. To accomplish this, we define

f(r){n(B’(r)’(O,r)z) if z [0, t],
otherwise, j 1, 2, 3,...,

f(r) Ha(B’(z)6’(O, z)Yo), r [0, m),

and make the following observations.
(i) f(z) dr is bounded (by [[x) for ] 1, 2, 3,. .
(ii) f(z) converges pointwise to f(z) on [0, ). This observation is proven using

the facts that Zk o, tk +, and Hn depends continuously on its argument.
Applying Fatou’s lemma [20, p. 83], we have

fo f(z)dzltiSffo f(z)dz

sup [ f,(z)lim dr
o

 llx ll,

Substitution for f(z) above gives

oHn(B’(r)&’(O,

r)-o)d-_-< Ilxo* [I,

i.e.,

H(B’(z)Y.(z)) dr llxll

which is the contradiction that we seek. This completes the proof of the theorem. Vi

ProofofCorollary 2.2. Suppose gl and 1’ satisfy the hypotheses of the corollary. We
are going to show that (S) is globally IT-null controllable. To prove this, it is sufficient to
find a subset l)___ 1’ such that (S) is globally ill-null controllable: Pick 6 > 0 such that
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(This can be accomplished because zero is interior to ’.) Now, to prove that has the
desired property, we pick R > 0 such that

(This can also be done since is compact, hence bounded.) Let z(. be any nonzero
solution of (S’). Then we have

Rlln’( )z(r)ll dr

sup {w’B’(,)z(,)" [wl R} d,

--R o Ha(B’(r)z(r)) dr

since (S) is globally OR-null controllable. (OR-null controllability follows from O-null
controllability in conjunction with the fact that OR .) By Theorem 2.1, we conclude
that (S) must be globally O-null controllable and hence O’-null controllable.

Appendix B.
Proof of Theorem 3.2. (i) This condition follows immediately from the fact that

global R -null controllability is necessary for global O-null controllability.
It is also possible to prove (i) directly from Theorem 2.1. Suppose (S) is globally

O-null controllable but rank (O)< n. Then there exists a v e R , v 0, such that
B’ e-’v 0 for all 0. Let z(0) v. Then z(r) e--m’tv and

o

which contradicts Theorem 2.1.
(ii) Suppose (S) is globally -null controllable but there exists a real eigenvector v

of A’ satisfying w’B’v <= 0 for all o) e f. Denoting by a the real eigenvalue associated
with v, we have e-a’tv e-Xtv. With z(O) v, z(r) e-A’v e-av, and

So ,oasup(’B’z(z) dr=fo .,asup(’B’e-"v)dr
--h,r

e sup (w’B’v) dr.

Now this integral is less than or equal to zero since sup {w’B’v" w f} -_< 0 and e -’t >= O.
This contradicts Theorem 2.1.

(iii) Again the proof is by contradiction. Assume (S) is globally f-null controllable
but A has an eigenvalue A with a positive real part. Then A is also an eigenvalue of A’ so
that A’v hv, where v is an eigenvector corresponding to A’. Let h and t3 denote the
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complex conjugate of h and v. They satisfy A5 AS. Hence,

-A’t ht -A’t te v=e v and e v=e v.

Consider the solution of the adjoint equation corresponding to the initial condition
z(0) v + 5. (Note that z(0) is real.) For this z(0),

sup (w’B’z(z)) sup (to’B’ e-A’(V + 5))

sup [to’B’(e-Xtv + e-;r5)]

sup {to’B’ e-at[2m cos bt + 2n sin bt]},

where a and b are the real part and imaginary part of h and n and m are the real part
and imaginary part of v. Let M & sup {sup[w’B’(2n cos bt + 2n sin bt)" w f]" >-_ 0}. M
is finite since f is compact, i.e., M _-< 2 max {[n[, [m[} [[B[[ sup {[[w[[" to }. Thus

and

sup (w’B’z(r))<-Me -at,

The integral on the right is finite since a > 0 and we have a contradiction to Theorem
2.1.

Proof ofProposition 3.3. (Necessity). Suppose (S) is globally R"-null controllable.
Then there is a finite interval [0, T] on which the rows of b(0,.)B(.) are linearly
independent. Thus, for every nonzero vector Zo R n, it follows that B’(t)c’(O, t)Zo 0
for some t[0, T]. Since B’(’)4’(0,’)zo is continuous, there must be an interval
I [t- 6, + ] on which B’(r)cb’(O, r)zo 0 for all z L On this interval, we have

sup {toB’(r)cb’(O, r)zo" to R "} +c.

Hence, using the nonnegativity of Ha(" ), we conclude that

fo HR"(Bt(r)z(7")) dr >= flHR"(Bt(r)ct(O’ r)z) dr

ft sup {to’B’(r)b’(0, r)z0: to R’} dr

-I-cX3o

(Sufficiency). Proceeding by contradiction, we suppose that for all nonzero solu-
tions z(.)of (S’), we have

HR,,(B’(r)z(r)) dr +o

but the columns of B’(.)b’(0,.) are linearly dependent on every bounded interval
[0, T]. Let (Tn)= be a monotone increasing sequence of times such that Tn - oo. Then,
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for each n, we can find a nonzero vector zTn such that B’(r)&’(O, r),2n =- 0 on [0, T ]. Let

for n 1, 2,...

Then, (zn),l is a sequence in the (compact) unit ball. Hence, we can extract a
subsequence z,, converging to some Y0, I1 o11-1, We notice that the corresponding
subsequence of times Tnj still converges to + oe. Furthermore, for each fixed re[0,
we have

B’(z)’(0, z)o lim B’(r)’(O, T)Z,,
]-oo

Consequently, if (7.) is the trajectory mate of o,

Io H.,(B’(r)(r))dr Io sup {w’B’(r)&’(O, r)o: we R m} dr 0

which contradicts the assumed hypothesis. 71

Appendix C.
Proof ofLemma 4.1. For (Xo, T) fixed, J(xo, T, A) can be expressed as

J(xo, T, h) sup {H(A)" w(.

where

T

H(A)&A’&(T, 0)XO+Io A’&(T, 7-)B(7.)w(7-) dr.

Consequently, J(xo, T,.) is the pointwise supremum over an indexed collection of
continuous linear (hence convex) functions. Hence J(xo, T, itself must be convex and
at least lower semicontinuous (in fact, continuous). [3

Proofo[Lemma 4.2. We prove this lemma using some of the standard properties of
subditterentials given in Rockafellar [21 ], [22]. Since both functions in the definition of
J(xo, T, A) are finite and convex, A. e 0J(xo, T, )t) if and only if

T

A, e 0(x)’(T, 0)A + 0 Io Hn(B’(7.)’(T, 7.)A

T

=(T, O)xo+ fo OHn(B’(7.)&’(T, 7.)A)

T

=&(T, 0)x0+ fo &(T, 7.)B(7")" c3Ho((7"))I,;,(-)=B’O-)4,’(T,-)x

(by Theorem 23.8 of [22]).

(by Theorem 23 of [22])

(by Theorem 23.9 of [21]).

Now, by Corollary 23.5.3 of [21], o),(7.)eOHn((7.)) if and only if
argmax {o9’a3(7.)" o)e 12}. Substituting the required form for 03 above, we obtain our
desired representation.for .. [-1



NULL CONTROLLABILITY OF LINEAR SYSTEMS 343

Appendix D.
Sketch of a proof of Theorem 5.1. Let f’LI(O,T;R’)-->R, g’Rn->R,

AT "LI(0, T; R’)-> R be given by

f(u){O if
+oo otherwise,

g(z) -II (T, 0)Xo + zll, z R",
T

Aru Io (T, r)B(r)u(r) dr.

Then, using the notation above

inf (MN)inf {[[x(T)ll: u(. )6 (D,)}

=inf {f(u)--g(ATu)" u 6L1(0, T; R’)}.

Written in this way, inf (MN) is in the standard form for application of Rockafellar’s
extension of Fenchel’s duality theorem (cf. [23, Thm.1]). The functionals f and g are,
respectively, proper convex and concave functions; it can be easily shown that inf (MN)
is "stably set"ma technical precondition for Rockafellar’s theorem.

By carrying out the computations involved in Theorem 1 of [23], it can be shown
that the problem

min (MN)* a= min {Y(xo, T, h ): h 6 A}

is dual to inf (MN) in the following sense"

inf (MN) + min (MN)* O.

The "extremality condition" in Rockafellar’s theorem provides a necessary condition
which must be satisfied by all solution pairs h, solving (MN)* and u, (.) solving (MN).
This extremality condition requires

h* a,
where A*ris the adjoint of AT, and Of(u,) is the subdifferential off at u,. For our choice
of f, this necessary condition particularizes to

&(T, r)B(r)6 (normal cone of ///(12) at u, (.)).

We denote this normal cone at u, by N(u, ). By definition of the normal cone, we have
v(. 6 N(u*) if and only if

T T

fo u (T)B(T))(T’ T)’*dT fo
This is possible only if w u, (’) achieves the supremum of w’B’(r) ’( T, r)1, for
almost all -6 [0, T]. Equivalently, we must have

u, (r) 6 arg max {w’B’(r)’(T, r))t, o 612}

for almost all r 6 [0, T].
proofof Theorem 5.2. As in the proof of Theorem 2.3, let Ar(xo) be the set of states

which can be attained from Xo at time T. We recall that this set is compact and convex.
Define Wr A x Ar(Xo) --> R by

(D.1) WT(t,) & i ’,
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In accordance with Proposition 2.3 of 19, p. 171 ], WT(I, ) will possess a saddle point
because the following conditions are satisfied:

(D.2.1) For all A 6 A, W(A,. is concave and upper semicontinuous.

(D.2.2) For all s AT(xo), W(., ) is convex and lower semicontinuous.

We note that

min max VT(A, u(.))=min max WT(A,j).
AA u(-),/g() AA AT(XO)

Furthermore,

max min VT(A, u(’))= max min WT(Z, ).
):///() hA AT(Xo) hA

These equalities, in conjunction with the fact that WT possesses a saddle point, imply
that VT also has a saddle point.

To prove the last part of the theorem, we take (A,, u,( )) to be a given saddle point
of VT(A, u(’)). Hence we have

(D.3) VT(h,, U,(’)) min max VT(h, u(’)).
h cA u("

Using a measurable selection argument, as in the proof of Theorem 2.3, it is also
apparent that

(D.4) min max VT(A, u(’)) min J(xo, T, A).
AA (.),/g(l)) AA

From (D.3) and (D.4) we conclude that

(D.5) VT(h ,, U, (")) min J(xo, T, ).
AA

From Theorem 2.3 and the comments following the theorem, we know that Xo can
be steered to zero at time T if and only if

0 min J(xo, T, A

VT(A,, u, (.)) (by (D.5)).

To complete the proof, we must show that if VT(A,, u, (.)) 0, then u*(. steers
x0 to 0. Now

0 VT(A,, u, (")) VT(A, u, (")) for all A A

or

Thus

T

c(T, z)B(z)u, (z) dr] for all h A.

(D.6) 0 <-_ h’x(T, Xo, u, (.)) for all A A.

Since 0 is an interior point of the convex, compact set A, (D.6) implies x(T, Xo,
u, (.)) 0 and u, (.) is a steering control. 71
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TRUNCATION ERROR BOUNDS AND CONVERGENCE OF LEAST
SQUARES ESTIMATES*

YORAM BARAM

Abstract. The error resulting from truncating a data record in least squares estimation of a Gaussian
process is shown to be bounded in the mean square. The bounds are shown to be easily computable for linear
processes, and the truncation error is shown to be strongly diminishing under a stability condition. These
results have direct implications on filtering and prediction errors, data reduction and asymptotic analysis of
parameter estimates.

1. Introduction. Consider the problem of estimating present or future values of a
stochastic process using information which would normally consist of past values of the
process itself or another related process. A realistic estimation procedure must be
initialized at some finite time, which implies that any preceding information will be
discarded. Furthermore, in many situations it may be desirable to discard some past
information due to data storage and processing limitations.

This paper is concerned with the error arising in least squares estimation when a
(possibly infinite) portion of the data record is discarded by truncation. In particular,
bounds on this truncation error are of interest. A bound for general Gaussian processes
is obtained, employing a general property of product measures. Specializing to linear
processes, two bounds are obtained and shown to be computable by simple procedures.
It is then shown that under a stability condition, the truncation error is strongly (almost
surely and in the mean square) diminishing and not merely, as well known, in
distribution. It is this strong convergence, which is significant in the asymptotic analysis
of process estimation and parameter identification techniques.

2. Gaussian processes. Consider two stochastic processes, xt s En and yt [m,
where the time parameter may take continuous or discrete values on different intervals
of the real line. Let t and s denote the Borel fields generated by (yp, -o0 < p _<_ t) and
(yp, 0 _<- p -< s), respectively. Let Esxt and Ext denote the conditional expectations or
the least-squares estimates of xt given s and s, respectively. We denote the
truncation error by e tx, Eesxt Ext.

In the sequel, we shall restrict the discussion to the case where (xt) and (yt) are
Gaussian processes, i.e., for each sR any finite number of vectors from the set
(xp,-o0 < p <_ t) or from the set (yp,-o0 < p __< t) have a joint Gaussian distribution on
the respective spaces. We shall denote by (x 1, x2) and Ilxll the standard inner product and
norm on n.

THEOREM 2.1. For the processes (xt) and (yt) defined above and.for any >-_ s > 0 we
have

(2.1) Elle tx, sll EIIExtll.
Proof. xt can be written as

(2.2) Xt Eext 4- it, t,

where

(2.3) /xt xt-Egxt

* Received by the editors December 13, 1978, and in final revised form September 24, 1979.
t Department of Electrical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
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is Gaussian (e.g., [1, p. 13]) and uncorrelated with (yp,-oo<p_-<0), (and with any
oo-measurable random variable). It follows that/xt is independent of ro and thus, so is
E/xt. Now, since ,s is the smallest tr-field containing the Cartesian product of 0 and
s, in symbol

(2.4)

and since ETxt is , measurable, then it is , measurable (see, e.g., [2, p. 96, Lemma
2]). It follows that

E(E’xt- E’x,, E’xt-E’ttt} 0,

where we have used the s-measurability of E* and the smoothing property of the
expectation. Hence,

EllEn,x,-Ex, <_ EIIE,x, Ea,xtl] + 2E(E,xt Ea,x, Ea,xt

(2.6)
EllE<x,- E<,[I-- EE<IIx,-

=EI[Ex,
where the last equality follows from (2.2) and from the smoothing property of the
expectation. The assertion is thus proven.

COROLLARY 2.2. Suppose that

(2.7) lim E[lEextl] O,
t+

then the truncation error e,(, vanishes in the mean-square as

Proof. The proof follows immediately from Theorem 2.1.
Remarks. 1) A case of interest is s t- T where T is a constant time lag.
2) Note that no particular relationship need be assumed between the processes (x,)

and (y,). Normally, the fields generated by (yt) will contain information on the process
(x,). A special case is (y,)= (x,).

3. Linear processes. We now consider the case where the process (x,) is generated
by linear differential and difference equations with time varying coefficients. First
consider

(3.1) dx, A,x, dt +
where wt is a zero-mean Gaussian process on RP with uncorrelated increments (a
Wiener process), uncorrelated with Xr for all r t. As before, let and be the Borel
fields generated respectively by (y,, -< s) and (yt, 0 s), where (yt) is some
Gaussian process on . We shall assume that wt and Yr are uncorrelated for any r t;
however, no particular relationship between (yt) and (xt) is assumed at this point. As in
the previous section we denote eta, E*xt-E*x,. We shall denote by t.0 the
transition matrix corresponding to (3.1). For any n x n matrix A, we define the matrix
norm as

(3.2) lal] sup
Ilxll

IIAI[ is equal to the square root of the maximum eigenvalue of AA (e.g., [3 pp. 576,
577]).
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(3.5)

thus,

(3.6)

yielding

3.1. Truncation error bounds.
THEOREM 3.1.1. Let the process (Xt) be given by (3.1) and let the process (yr),

generating (t) be Gaussian. Then the truncation error e is bounded as

Elle tX, s[[ II’,,ollEllExoll
(3.3)

=< IIqt.ollEllx011.

Proof. We have for any > 0

Io(3.4) xt f! t,oXo nt" f] rBr dw,.

Since wt and yp are uncorrelated for all p <_-0, then, almost surely

EXt dPt,o E;Xo

EIIEx,II-- EIIO,.oExoll,

EllEnx,[[ <-[[f)t ollE[lExoll
(3.7)

where the first inequality follows from (3.6) and (3.2) and the second follows from the
convexity of the norm and from Jensen’s inequality (see, e.g., [4 p. 76] for the vector
case). It now follows from (3.7) and from Lemma 2.1 that

(3.8) Elle ,X.s II--< II,,ollEllEx01l <= II,,ollEllxoll,
completing the proof.

Equation (3.3) presents two bounds for the truncation error. Naturally, the
computation of the tighter bound is more laborious, but it is performed by a rather
simple procedure, as shown in the sequel.

A case of particular interest is where is generated by the process

(3.9) yt Ctxt + vt

where xt is given by (3.1), Ct is a time varying linear transformation and v, is an
uncorrelated Gaussian process, uncorrelated with x.

THEOREM 3.1.2. Let xt be given by (3.1) and let yt be given by (3.9). Then the
truncation error is bounded as

E yt-E yt, s < t"(3.10) e,,

Proof. We have, almost surely,

(3.12) e t, C,e ,,.
Hence

(3.13) lie yt,, < IIc[llieT,II.-
The proof then follows immediately from Theorem 3.1.1.

Suppose that it is desired to estimate present or predict future values of the process
(xt) given by (3.1), using values of the process (yt), given by (3.9). Suppose that the data
record (yp, 0 > r _-< p -< > 0) is truncated, so that only the portion (yp, 0 < p _--< t) is used.
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Defining ;t [E’x rt, x rt]r and t E{.t,-tT}, we have by Jensen’s inequality

(3.14) EllE"Xol[<--[tr {[I, 0160[I, 0]r}]/2

where 0 is obtained by integrating the Lyapunov equation (e.g., [5, p. 76])

d
(3.15)

dr
O=FO,+OFf +G,FGT r<r<0

initialized at

0J(3.16) 0r Pr
where Pr =cov (Xr). Also in (3.15),

(3.17) F, [A-KC
0I_

G,-= F,=
0 B,’ O,’

where K, =- P.crre- 1, R, cov (v,), O, coy (0), where 0, is the white noise process
associated with w, P, E{(Ex, x,)(EV’x, x,)7"} is obtained by integrating the
Riccati equation (e.g., [5, p. 122]),

d
(3.18) dzP,=A,P,+P,Ar, +B,O,Br-P,Cr,R 1C,P,

initialized at Pr. The first bound in (3.3) is then obtained as

(3.19) Flle,sll<-II,oll[tr{[I 0]g,o[/0]}]/2.

The second bound is obtained as

(3.20) lle LI[-<-II*,,oll[tr {coy (xo)}]/2.

Equations (3.1) and (3.9) together constitute a linear system. Also of interest are
the cases where xt and yt are discrete-time processes, and where xt is a continuous-time
process and yt is a discrete-time process. In both cases we have truncation error bounds
analogous to those shown above. The derivation is similar and will not be repeated here.
Note that the integration of (3.15) is common in estimation and control practices.

3.2. Strong convergence of the truncation error. Convergence to zero of the
truncation error has several implications, particularly in the context of asymptotic
analysis of estimation procedures. Mean square and almost sure convergence of the
truncation error for linear processes follow under a stability condition from the results
of the previous section.

Recall that the process x, given by (3.1) is said to be asymptotically stable if II,.oll is
uniformly bounded and if

(3.21) lim I1 ,.oll 0.
t-eo

THEOREM 3.2.1. Let the process xt given by (3.1) be asymptotically stable, let
EIIxoll < oo and let the process y,, generatingt be Gaussian. Then the truncation error e tx.s
vanishes in the mean square. If, in addition, N+ (0, 1,... and if

(3.22)
t=l

then the truncation error vanishes also with probability 1.



350 YORAM BARAM

Proof. The mean square convergence of e t.s follows from (3.21) and (3.3). To show
convergence w.p.1, under (3.22), we note that (3.22) implies

(3.23) Elle,,ll < oo
t=l

which, by Chebyshev’s inequality, implies that for any e > 0,

(3.24) Y’. P{IleLI[ < e } < oo.
t=l

Now since e,s is an uncorrelated Gaussian, hence, independent sequence, we have by
the Borel-Contelli lemma that for any e > 0,

(3.25) lim e,,ll < w.p.1;

implying

(3.26) lim eLII- 0 w.p.1,

completing the proof.
THEOREM 3.2.2. Let xt, given by (3.1) be asymptotically stable with EIIxoll < oo and

let the process y’ be given by (3.9). Suppose that Ilc, is uniformly bounded for all >- O.
Then the truncation error es is strongly diminishing.

Proof. The proof follows immediately from (3.13) and from Theorem 3.2.1.
Convergence results analogous to Theorems 3.2.1 and 3.2.2 readily follow for the

cases where xt or yt are discrete time processes.

4. Discussion. It is well known that in the case of linear Gaussian processes the
error covariance of the optimal estimator will converge under certain conditions (see
[6], [7]) to a finite limit value. However, this convergence only implies that the estimates
based on the truncated data will converge to the estimates based on the entire data in
distribution. This weak form of convergence proves to be insufficient for inferring on
properties of the one process from those of the other, while the strong convergence
shown above implies that the two processes will almost surely possess the same
probabilistic properties in the limit. Rissanen and Caines [8], [9] proved the consistency
of maximum likelihood estimates of the parameters of stationary, Gaussian, auto-
regressive, moving average sequences, dispensing with the common but nonrealistic
assumption that the estimator is operating at steady state. Their result was facilitated by
showing that the filtered observation process strongly converges to the stationary
process obtained from a "steady state" estimator. A similar analysis may now be
performed for state space models, employing the above convergence results. Note,
however, that the strong convergence of the truncation error holds for more general
situations, i.e., for time varying, discrete and continuous time systems.

The estimation error resulting from a change in the initial conditions of a linear
system has been shown by Ljung and Kailath [10] to be

(t)- o(t) H(t, 0)fro mo + (Tr r0)cr-(o(0l t) too)],

where (too, ro) and (m, or) are the two sets of initial conditions, H(t, 0) is the transition
matrix of the Kalman filter corresponding to (m, or), 0(01t) is the smoothed estimate
and 2(t) and 2o(t) are the state estimates corresponding to the initial conditions. This
expression can be related to our bounds by taking m mo 0 and by taking 7to to be the
initial condition for the truncated record and r to be the estimation covariance of the
full record at t 0 (note however that in computing our second bound, in (3.3), neither
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r, nor the length of the truncated portion of the data are required). When convergence
of the truncation error is concerned, here we see explicitly that filter stability, i.e.,
system observability, is sufficient for the error to vanish in the mean square (and w.p. 1, if
(3.22) holds for H (t, 0)).

As commented previously, no relationship between the process xt and the data yt
need be assumed in order to obtain the bound on the truncation error e,.s and its strong
convergence to zero. The bound follows from the normality condition on xt and y, while
the convergence follows trom the stability of xt. Note that linearity is not necessary in
order to obtain the general results, and stability is only required in the sense that Eesx,
converges to zero. This, of course, may hold for nonlinear processes. In the linear case,
however, the bound assumes particularly simple forms which are computable by simple
and familiar procedures.
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ON THE SYNTHESIS OF A STABILIZING FEEDBACK CONTROL
VIA LIE ALGEBRAIC METHODS*

H. HERMES

Abstract. Let the n-dimensional system of differential equations dx/dt X(x(t)) have p R as a rest

solution, i.e., X(p) 0. Even in cases when this rest solution is unstable, one can often induce a strong stability
(asymptotic stability) by the inclusion of one or more controls, e.g., via a controlled system (a) dx/dt
X(x) + u Y(x), where, say, lul-<- 1. Lie theory gives a computable, sufficient, condition to determine when, by
use of the control u, one can steer a full n-dimensional neighborhood of p to p by solutions of (a). This
condition is assumed to hold. One prefers a feedback control, i.e., that u u(x). The main result in this paper
is an algorithm which determines a "modified" stabilizing feedback control. Specifically, for given e > 0, one
measures the current state q and the algorithm determines u(t; q), 0 <= <= e, such that the solution x( u) of
(a) initiating from q and corresponding to this control u, satisfies distance Ix (e u P < [q P[. In fact, iterates
are theoretically shown to converge to p. Numerical examples computed via a simple FORTRAN program are
included. These substantiate the strong stability achieved via such a modified feedback control.

Introduction. We consider the control system, on n,
(1) (t)=X(x)+uY(x),

where X, Y are smooth (actually C suffices) vector fields, p I is a rest solution of the
uncontrolled system (i.e., X(p) 0) and the control u may assume values in [-1, 1]. Let
(adX, Y) denote the Lie product IX, Y], inductively (adkX, Y)=
[X, (adk-ls, Y)]; Ct)l {(adJX, Y):/’ 0, 1, 2,. } and 5el(p) denotes the elements of
ow evaluated at p. It is well-known (see [1], [2]) that dim span owl(p) n is a sufficient
(but not necessary) condition that all points in some neighborhood of p can be attained
by solutions of (1) initiating from p. Since reversing time merely introduces a minus sign
in certain elements of owl(p) but does not change the dimension of its span, it follows
that dim span owl(p) n is a sufficient condition that all points in some neighborhood of
p can be controlled (steered) to p in finite time. This is, therefore, a sufficient condition
for "controlled stability" of the rest solution p of the uncontrolled system, even though
p may not be a stable solution of 2 X(x).

In practice one is not only interested in knowing that the ability to steer from a
neighborhood of p to p is possible, but what is needed (preferred) is a method to
construct a feedback control to do the task. One would like to merely measure the state
x and have an algorithm which then provides the value u (x). Our method, here, is not
quite this. In applications one rarely has the ability to measure the state continuously;
hence, we assume that measurements are made at time intervals of length el> 0.
Suppose the first measured state is ql. We give a constructive algorithm to generate a
control u(t; ql), 0-< _-< el. Let q 2 denote the solution of (1)at time 61 which initiates
from qa at time 0 and corresponds to this control u( ql). The algorithm may then
be used to generate a new control u(t, q2), 0 _-< _-< el, etc. The controls generated in this
manner are such that if e > 0 is sufficiently small and the initial point qa sufficiently near
p, then the sequence ql, q2,.., converges to p. In this sense, the algorithm may be
considered as generating a stabilizing feedback control.

For W a vector field on Nn, we let (exp tW) (p) denote the solution, at time t, of
2(t) W(x(t)), x(O) p. The algorithm is based on the fact that by composing at most 2k

maps of the form (exp e(X + ui(e) Y))p, one can form maps, denoted q (e)p, such that

* Received by the editors March 19, 1979, and in final revised form October 19, 1979.
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+/- (e)p] =oqk(O)p p and d/deqk +(adkX, Y)(p) Furthermore, the maps q(e)p
correspond to admissible trajectories of system (1) resulting from controls with at most
2- 1 switches. Now let (al,’’’, a,) N" and consider the composition

where

q(e)p=q"---f (Ic,le)o. oqo (Icicle)p,

+ if ci _-> 0,
ei

if O < 0.

Then for e _-> O, q(e)p corresponds to a trajectory of (1) resulting from a control with at
most n-1

i=o (2 1)= 2 -n switches and d/de q(e)pl=o i=a a(ad-lx, Y)(P). In
particular, if span Oa(p)=n and we are at a point ql near p with qa_p=
’=1 ai(adi-lx, Y)(P), one can prescribe a control over the interval [0, e a], having at
most 2n-n switches, and which drives the solution in the direction

-"--1 ci(adi-ax, Y)(P). This is the essence of the idea behind the algorithm.
It should be remarked that methods for "piecing together" trajectories of system

(1) corresponding to controls having values +1 or 0 to generate solutions, whose
derivatives with respect to variation parameters are (adkX, Y)(p), are by no means
unique. An elegant approach to do this (which however, requires a modification of the
formula on p. 271 to be correct) may be found in [3]. The method of [2] is theoretically
simple and useful, but seemingly does not lend itself as well to numerical computations
as the method used here.

While the theory insures convergence of the sequence ql, q2,.., to p, numerical
computations based on the algorithm produce a sequence qa, Q2, Q3, which does
not always behave as the theoretical sequence. In the last section, we give numerical
results for several examples which were computed via a simple FORTRAN program
based on this algorithm. With some flexibility allowed in the control bounds and time of
integration, i.e., el, the results were excellent.

For the sake of exposition, we have chosen to present both the theory and
numerical results for systems of the form (1). Very little effort is necessary to extend
these first-order methods to systems of the form 2 X(x)+ -’7--.1 uY as studied in 1],
[2]. The basic idea also can be used to compute "stabilizing feedback controls" when
first-order tests fail but higher order tests yield sufficient conditions for local control-
lability; see [3], [4], [5]. The numerical algorithm can be improved, for example, by
compensating for the "drift" caused by the vector field X, by solving for the coefficients
ai which determine the direction to the rest point in terms of the basis (adiX, Y)(q), .i
0,..., n-l, rather than (adiX, Y)(p), etc. These technical points for numerical
procedures have been carried out, but omitted in this paper which presents the theory.

1. Basic theory. We consider the n-dimensional control system (1) on R". One
could, instead, consider X, Y as tangent vector fields on an n-manifoldM but since our
goal is a local theory, I suffices.

Let A denote the Jacobian matrix of partial derivatives of X with respect to x,
evaluated at p,i.e.,A X,,(p). Then since we assume X(p) O, (adiX, Y)(p) AiY(p),
and from the linear theory we have

LEMMA 1. Let X(p) 0 and 5tl(p) {(adVX, Y)(p):, O, 1.. }. Then if dim
span StY(p)= k <-n, Y(p), (adX, Y)(p), (ad-X, Y)(p) are linearly independent.

In more familiar language, the assumption dim span Sea(p)= n is equivalent to

rank {Y(p),AY(p),..., A"-Iy(p)} n, where A=Xx(p); i.e., that the linearized
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system associated with (1) is controllable, and hence, system (1) is locally controllable at
p.

Lemma 1 merely shows that with our assumptions, we need only consider the first n
elements, i.e., (ad"X, Y)(p), u =0,..., n- 1, of 5el(p). Loosely speaking, what we
next show is how to obtain these "directions" via compositions of solutions of (1).

The ensuing computations are based on the Campbell-Baker-Hausdorff formula.
k kSpecifically, let V=eX-e Y and W=eX+e Y. Then (see [6, pp. 116-118])

(exp V) (exp W)(p) (exp= c,,,( V, W))(p), where Cl V+ W 2eX, c2
k

e IX, Y], c3 1/2e 2k/ (adz Y, X) and c4 -4e k/3 (ad3X, Y) ---el 3k+1 (ad3 Y, X), etc.
Throughout, e => 0 and k, m are nonnegative integers. We define

k k(2) qo+ (e, k)p (exp e(X + e Y))p, q-d (e, k)p (exp e(X e Y))p,

which we can interpret either as the solution at time 1, of 2 e(X+ e Y), or the
ksolution, at time e, of 2 X + e Y, x(0)= p. Then

d/de q-(e, 0)pl=o Y(p), d/de q-d (e, 0)pl=o Y(p).

Next, we define (an exception to the general definition)

+(e,k 1)p+ (e,k-1) oqoq (e, k)p qo
k-1(i) =exp(e(X-e-Y))oexp(e(X+e Y))p

k+l=exp(2eX+e [X, Y]+1/2e2+(ad2y, x)-e+3(ad3X, Y)

-(2)e 3k+’ (ad3 Y, X)+ o(e k+3 ))p

In particular

Similarly, we define

+ (e, 1)p exp (2eX + eZ[x, Y] + o(e3))p,qa

dde q - (e, 1)p] =o 0,

d2/de 2 q+ (e, 1)p] =o =2[X, Y](p)

q- (e, k)p q,- (e, k 1) q-(e, k 1)p,

and note that

d/deq-(e, 1)ply=o=0, dZ/deZq-(e, 1)pl=o=-Z[X, Y](p).

For the moment, we will continue by generating only positive multiples of
(ad"X, Y)(p); i.e., we deal only with q+,, (e, m). Define

+ +qz(e,k)p=q-(e,k)oqa (e,k)p
k-1 k-1 k-1exp (e (X + e y)) exp (2e (X- e y)) exp (e (X + e Y))p

k-1exp (e(X + e- Y)) exp (e(X- e Y))
k-1 k-1

(ii)
exp (e (X- e y)) exp (e (X + e Y))p

=exp (2eX-e’+a[X, Y]+(ez’+a/3)(adZY, X)
,+3 ’+1 IX, Y]+ ()e (ad3X, Y) + o(4)) exp (2eX + e

+ (ez’+/3)(adz Y, X)-e+3 (ad3X, Y) + O(eM))p
k+2exp (22eX + 2e (adZX, Y) +e2k+ (adz Y, X) + o(e z’+ ))p,
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where M max (2k + 1), (k + 3). In particular,
+ (e, 2)p exp (22eX + 2e4(ad2X, Y) + o(e4))p.q2

Remark 1. One notes that q]- (e, k)p is formed from qT (e, k)p, replacing Y with
-Y. Thus each term in q-(e, k)p, which contains one factor Y (e.g., the terms

k k+l k-e [X, Y], (ad3X, Y), etc.) aree cancelled" by terms e [X, Y],
k+l-e (ad3X, Y) in q (e, k)p, when the composition is formed to define q (e, k)p.

The terms with two (or an even number of) factors Y do not cancel, but instead sum,
e.g., the terms 31-e- (ad Y, X), etc. The effect of these can be made small by increasing
k, due to the exponent 2k. This pattern will continue when we define qL(e, k) and is
essential in keeping track of the order of "remainders".

From (ii), we note that

d/de q-(e, 2)pl=o ={ 0

2(4!)(adZX, Y)(p)

Again, q (e, k)p q (e, k) q]- (e, k).
Next

(iii)

if 1-</-<3,

if/" 4.

+
q3 (e, k)p q (e, k) q- (e, k)p,

q3 (e, 3)p exp (2382 + 23+ e6(adax, Y) + o(e6))p,
0 if l=<j-< 5,

dJ/de q(.e, 3)p
23(6!)(ad3x, Y)(P) if/" 6.

The inductive definitions ofq (e, k)p should now be evident. We state the result as
LZMMA 2. Let q(e,k)p,q:(e,k) be defined as in (2) and (i) above, and

inductively, ]:or m 2,. ,
(e, k)p.+/- : (e,k)q-iq,,,(e,k)p=q,_

Then
2rn(3) q,,,(e, m)p exp (2"eX +/- a,,,e (ad X, Y) + o(eE"))p,

where ao 1, a,,, 2 m-lam-, SO

am 2""-1)/2

and

(4) dJ/de +/- { 0 if 1 <- j <= 2m 1,
q,,(e, m)pl=o

+ am(2m)!(ad"X, Y)(p) ifj 2m.

Remark 2. The bound 2k 1 on the number of control switches needed to produce
q (e, k)p, and hence generate +(adkX, Y)(p), is crude. Indeed, one may note that in
defining q- (e, k)p (see (ii)) the second exponential in q-( (e, k)p is the same as the first in
+ k-1

ql (e, k)p, and hence, these combine to give exp(2e(X-e Y)). Thus q (e, 2)p
requires only two control switches.

Remark 3. For illustration, we again refer to q (e, k)p. The reason one chooses
k 2 (i.e., q (e, 2)p) is clearly to make sure the order of the coefficient 32-’e 2k+l of
(ad2, X) is of higher order than the coefficient 2e k+2 of (ad2X, Y). If, however, we
were to deal with an example (as we later shall) in which (ad2y, X)(p)= 0, we could
generate (ad2X, Y)(p) from q-(e, 1)p.
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It is preferable, for our purposes, to obtain the directions +(adlX, Y)(p), j
0,. , (n- 1) as first derivatives. This is readily accomplished by reparametrization.

COROLLARY 1. Let qo (e)p qo (e, O)p and for m 1, 2,. ,
((e/am)1/,,,(5) q,,(e)p =q,n m)p.

Then
d/de q+ (e)pl =o + (ad’X, Y)(p)

Proof. q+,, (a,,e:’)p q(e, m )p, hence, by differentiating both sides of this identity
2m times, using (4), and letting q+’(e )p denote the first derivative of q+(e)p with respect
to its argument, we obtain

a,(2m)tqL’(ae2)p[=o= d2"/de2q+.,(e, m)p[=o am(2m)t(adX, Y)(p).

It follows that q+., (0)p + (ad"X, Y)(p).
For computing purposes, it is useful to have an explicit list of the first several

functions q., (e)p. These are

(e)p exp (e (X + Y))p,qo

q: (e)p (exp / (X q: Y))o (exp /- (X +/- Y))p,

q: (e)p exp ((e/2) /4(X + (e/2) /4 y)) exp (2(e/2) a/4(X q: (e/2) a/4 y))

exp ((e/2)1/4(X + (e/2)a/4 y))p,
q: (e)p q ((e/S)1/6, 3) q: ((e/S)1/6, 3)p,

(e, 3)p.which can now easily be constructed from q2
The maps q.,(e)p have been defined for e_->0. Since d/deq.,(e)pl=o

+ (ad"X, Y)(p), if we define

q.,(e)p ire_->0,(6) q.,(e)p
qT.(lel)p if e <0,

m 0,..., n- 1, then q,,(. )p is defined, and continuously differentiable, for e in a
neighborhood of zero. Let a// be a neighborhood of zero in ". Then the map
(c, cen) qn-(on) ql(c2) q0(crl)p of 0"//into " takes zero to p and has the
Jacobian n x n matrix with columns (adX, Y)(p), 0,..., (n- 1). The assumption
that dim span 5?(p) n, together with Lemma 1, then implies this map covers a
neighborhood of p. Furthermore, since q,(e)p, e >= o is the endpoint of an admissible
trajectory of (1) corresponding to a control with at most 2"- 1 switches, the composi-
tion q,,_l(a,)o.., qo(aa)p is the endpoint of an admissible trajectory of (1) cor-
responding to a control with at most Ei=o (2 1) 2 n switches. We summarize this
as

THEOREM 1. Considerthe system X(x)+ u(t) Y(x), x(O) p on R with X(p)
0, lu(t)l < 1 and dim span 51(p)= n. Let q(e)p and q,(e)p be defined as in (5), (6),
above. Then every point in some neighborhood ofp can be attainedfrom p by a trajectory of
(1) of the form qn-1 (c,) q1(c2) qo(cel)p which corresponds to a control having at
most 2 n switches. Similarly, p can be attainedfrom any pointp in some neighborhood
ofp by a trajectory of (1) of the form q,-1 (a,,) qo(al)p 1.

2. The feedback control algorithm. Again our assumptions for the system (1) are
that X(p) 0 and dim span 51(p) n. For any lel> 0, let (p, e) denote a disc centered
at p such that x 6 q/(p, e) implies

(7) IX(x)l <= e, ](adiX, Y)(x)-(adjX, Y)(P)I <= e, ] 0,..., (n 1).
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ALGORITHM. Given qi 0?/(p, e), express qi_p as a linear combination of
Y(p), (ad’-ax, Y)(p), i.e.,

(a) qi _p .,=a a,(qi)(ad ’-aX, Y)(P)

and define

(b) qi+ q ,,_l (-a" (qi)e qo(-a (qi)e )qi.

We will show that qi+l again belongs to 0?/(p, e), and for qa a//(p, e) with ]el>0 and
sufficiently small, the sequence q 1, q2,.., generated by the algorithm converges to p.

To gain insight into why the algorithm can be expected to work, we note that

q -l(-Ce’(q 1) -q =-e ai(q )(ad -1X, Y)(q +o(e)e)o qo(-al(ql)e)q 1)
i=1

a direction which is "nearly" the negative of ql-P. The nearly is because (adiX, Y)(q 1)
and (adiX, Y)(p) are close but not necessarily equal for ql 0?/(e, p).

THEOREM 2. Let all (p, e) be as above, ql all (p, e) and q2, q3, be the sequence
generated by the steps (a), (b) ofthe above algorithm. Thenfor e > 0 and sufficiently small,
q ->pasi->o.

Proof. For x R’, define

f(e, x) q’-a (-ce’(x)e) qo(-a (x )e )x,

where, as before,

x-p a(x)(ad-aX, Y)(p).
i=1

Then

(i) f(O,x)=x,

(ii) f(e, p) p since oi(p)= 0, 1,..., n.

Now consider the expansion of f in a Taylor series, with remainder, about the point
(0, p), i.e.,

Of(O, p) Of(O, p) 02]’(0, P) 2f(e, x) f(O, p)+e+(x -p) + 2 e
de Ox

0El(0, p)
+ e (x -p) + higher order terms.

OeOx

From (ii), above, we see 0kf(0, p)/Oe k 0, k 1, 2," which implies all nonzero terms
in the remainder (higher order terms) are of the order le k Ix -p I" with k, m _-> 2. Thus
since Of(0, p)/Ox id, from (i),

02f(0, p)
(8) f(e, x)= p+(x-p)+(x-p)+ e

Oe Ox
(x -p) + o(le Ix -pl).

We next wish to obtain a sharper estimate which includes c2f(0, p)/,ge ,gx explicitly
calculated.

From (3) and (5), we obtain the estimate (with e => 0)

X--F-,Ok+I (x)(adkX, Y)+o(e) x.
ak
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Thus

X(x)
k=l k=0 ak

+e Ok(X)(adk-lx, Y)(p)-e ak(x)(adk-’X, Y)(p)-p+o(e)
k=l k=l

+ X(x)+o(e)
k =0 ak

<=(1-)lx-pl/o(e) ifx //(e, p) by (7).

Equation (9) shows that the term e (02[(0, p)/Oe Ox). (x -p) in (8) is, in essence, actually
-e(x-p). Using this in (8) yields

(10) If(e, x)-pl (1- e)lx-pl+ o(lel Ix-Pl)
if x ?/(e, p). Now choose lel>0 and sufficiently small so that if o -<el -<-Iel, then

o(lxl Ix -Pl) (1/2)1x -Pl, x e z(e, p).

For such a choice of e, and x q/(e, p),

(11) If(e, x)-Pl <= (1 e/2)]x -pl.

Returning to the algorithm, and noting that q2=f(e, q), etc., we see if ql 0-//(e p),
then q2 07/(e, p) and

[qE_p[ If(e, qX)-P[ <- (1 e/2)lq -p],

]q3_p[ if(e q2)_p] -< (1 e/2)lf(e, qa)-p[ <--_ (1 e/2)2[q
and inductively, Iq -pl-<- (1 e/2)"-lq -pl showing q" p. [3

3. Numerical results. This section will present the results of computations, using
the feedback control algorithm, on two examples. The first is nonlinear and two
dimensional; the second is nonlinear and three dimensional. In each case, the rest point
p of the uncontrolled equation (i.e., of the vector field X) is taken to be the origin (as can
always be accomplished via a change of coordinates). The symbol D denotes the
Euclidean distance from q to the origin.

As the theory shows, for dimension n-<2 we need only generate Y(p) and
[X, Y](p), i.e., use q: (e, 0)p and q: (e, 1)p. Both of these use only trajectories of the
form (exp e(X + Y))p, i.e., no positive power of e multiplies Y; hence, the control
bounds (taken to be + 1 initially) have significance. In dimension three, we must also
generate (ad2X, Y)(p) by using q: (e, 2)p which is composed of trajectories of the form
(exp e (X + e Y))p. Here, in general, the control bound is relatively insignificant in view
of the factor e multiplying Y. However, as indicated in Remark 3, if (ad2 Y, X)(p) O,
we may generate (ad2X, Y)(p) by use of q: (e, 1)p which is composed of trajectories of
the form (exp e (X + Y))p. Our second example is of this form, hence the control bounds
are significant. In both examples the control bounds initially began at +/- 1, but the
program automatically doubled the bound after any step in which Di+ =>Di. The time
of integration (related directly to e) was also modified whenever Di/1 ->Di. The
integration subroutine used was RKF45, by H. A. Watts and L. F. Shampine; see [7].
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Example 1 (Unstable pendulum.) We take, as the equation of motion, /+ sin x u,
or as a first order system

-1 X2,

2 -sin x + u.

We are interested in controlling so as to "stabilize" the above system in a neighborhood
of the unstable rest solution Xl(t)=-r, x2(t)=O; i.e., the pendulum points vertically
upward. Letting y xl-7r, y2 x2 to shift the rest solution to the origin gives the
system

))1 =Y2,

3)2 sin Y + u

with, now, p (0, 0) being the unstable rest-solution of the uncontrolled system.
For the sample run, shown in Table 1, the initial data given the program was

e .05, ql (0.1,-.007) with the computation to end after 20 steps (i.e., the compu-
tation of q20) or if D =< 0.0001. The initial bounds on the control were +4. To save space,
we list here only the values qi, Di, control magnitude, and switching sequence to go
from qi to qi+.

TABLE

control switching
step coordinates D bounds sequence

(.1, --.007) .1002 +4 4,--4, 4
2 (.08, .007) .0804 +4 --4,--4, 4
3 (.06, .015) .0671 +4 --4,--4, 4
4 (.05, .019) .0573 +4 --4,--4, 4
5 (.045, .020) .0495 +4 --4,--4, 4
6 (.038, .020) .0429 +4 --4,--4, 4
7 (.032, .019) .0372 +4 --4,--4, 4
8 (.026, .017) .0322 +4 --4,--4, 4
9 (.022, .016) .0277 +4 -4,-4, 4

10 (.019, .014) .0237 +4 -4,-4, 4
11 (.015, .012) .0202 +4 -4, -4, 4
12 (.013, .011) .0172 +4 -4,-4, 4
13 (.011, .009) .0145 +4 -4,-4, 4
14 (.009, .008) .0122 +4 -4,-4, 4
15 (.007, .006) .0102 +4 -4,-4, 4
16 (.006, .005) .0085 +4 -4, -4, 4
17 (.005, .004) .0071 +4 -4,-4, 4
18 (.004, .0039) .0058 +4 -4,-4, 4
19 (.003, .0032) .0048 +4 -4,-4, 4
20 (.0029, .0027) .0040 +4

As can be seen, the control switching sequence was such as to initially make the
position and velocity agree in sign (for this initial data, both positive), and thereafter,
both position and velocity decreased monotonically towards zero.

Example 2. This is a three dimensional, nonlinear system, of the form (1).
For notational ease, all vectors will be written as row vectors. We take
X(x) (sin X2, X3, XlX2), Y (0, 1, 1). Computation shows (adX, Y)(x)
(cos x2, 1, Xl), (adZX, Y)(x) (cos Xz-X3 sin x3, Xl, x2 cos x2 + Xl-sin x2) so Y(p),
(adX, Y)(p), (adZX, Y)(p) are linearly independent. Also, (adz Y, X)(p) O.

In several runs, with the control bound fixed at 1 and initial value of D approxi-
mately 0.5, the sequence generated did not converge to zero (in fact divergence
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occurred). However, with the control bound allowed to automatically double when
Dj+l >_-D j, rapid convergence occurred in all sample runs. A typical example (omitting
switching times and switching sequences) is given in Table 2. The initial value of e was
0.01 with the computation to stop if D _-< 10-5, which occurred.

TABLE 2

step coordinates D control bounds

(.06,.04,--.08) .1077 +/-1

2 (.069,.006,--.081) .1073 +/-1

3 (.067,--.017,--.082) .1079 +/-1

4 (.059,--.032,--.080) .1054 +/-2

5 (.043,--.056,--.078) .1057 +/-2

6 (.006,--.076,--.067) .1018 +/-4

7 (--.025,--.086,--.056) .1058 +/-4

8 (--.025,--.038,--.021) .0507 +/-8

9 (--.011,--.017,--.008) .0221 +/-8

10 (--.004,--.007,--.003) .0089 +/-8

11 (--.002,--.003,--.001) .0034 +/-8

12 (--.0006,--.0010,--.0003) .0012 +/-8

13 (--.0002,--.0003,--.0001) .0004 +/-8

14 (--9X 10-5, --.0001, --5 X 10-5) .00017 +/-8

15 (--3 X 10-5 --5 X 10-5, --2 X 10-5) 6 X 10-5 +/-8

16 (--l x10-5, --2 X10-5, --l x10-5) 2X10-5 +/-8

17 (0, --10-5, 0) 10-5 +/-8

The print format contained 5 decimal accuracy; the relative error in the integration
of the differential equations was kept at 10-8. The above run used approximately 1/2
second of central processing unit time on a CDC 6400, mainly on the 102 integrations
of the three dimensional, nonlinear, system of ordinary differential equations.

Concluding Remarks. In two dimensions, and even three dimensions, this method
of generating Y, (adX, Y) and (ad2X, Y) is computationally feasible. For dimensions
four, or more, difficulties in convergence have been experienced. This can be expected
from the theory. Specifically, suppose that in (3), the terms o(e :") began with elements
in the Lie algebra generated by X and Y (denoted L(X, Y)) having coefficients with a

2m+lfactor e i.e., suppose
+/- 2m /2m+lq,,(e, m)p (exp (2"eX +/- a,,e (ad X, Y) + W))p

for some W L(X, Y). Then, from (5),

q,(e)p =(exp (2’(e/a,,)I/2"X + e(ad X, Y)+(e/a,.)l+a/2"W))p.

While, in theory, (e/a,)//2"= o(e) and is considered inessential, with m large (say
m -> 3), this term can hardly be neglected for computational purposes. Either a better
algorithm for generating +/-(ad"X, Y)(p), with m large, is needed, or in practice one
should design the system to have a sufficient number of control components
incorporated in such a way that high order brackets (adiX, yi) are unnecessary.
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OPTIMAL INFINITE-HORIZON UNDISCOUNTED
CONTROL OF FINITE PROBABILISTIC SYSTEMS*

LOREN K. PLATZMAN"

Abstract. A finite-input, finite-state, finite-output stochastic control problem with imperfect state
observation and classical information pattern is shown to be meaningful as the horizon increases without
bound and the discount rate approaches unity. The plant model, a finite probabilistic system, includes the
Markov decision and partially-observed Markov decision problems as special cases. Under conditions
resembling controllability and observability in linear systems we show that: an optimal strategy exists, it may
be realized by a stationary policy on the state estimate, its performance does not depend on the initial state
distribution, and convergence rates for its finite-horizon and discounted performances are readily established.

1. Introduction. In this paper, we study a stochastic control problem in which
1) The decision-maker does not know the current state value, and acts on the basis

of past observations and decisions, as well as an initial state distribution.
2) Performance is measured by averaging incremental rewards, with equal weight,

over an indefinite time interval.
Such problems are characterized by various paradoxes. The performance may

depend on how the limits (as the horizon increases without bound or the discount
approaches unity) are taken [13]. In so-called "dual control" problems [4], [12] (where
the decision-maker must choose between actions that improve short term performance
and those that improve state information for the sake of performance in the long run)
the infinite-horizon limit may be meaningless.

These difficulties vanish in the well-known Markov decision problem (MDP),
where the state set is finite and the decision-maker always knows the current state value
[5], [10], [14], [15], [16], [19], [25]. The object of.this paper is to show how difficulties
may be avoided in finite-state problems with imperfect state observation. Thus, we
study the problem of optimally controlling a finite probabilistic system (FPS), a
stationary discrete-time controlled stochastic process whose input, output, and (inter-
nal) state sets are finite.

Our principal results are"

1) A pair of conditions, one on the interaction of inputs and states (reachability)
and one on the interaction of states and outputs (detectability), that together
imply well-posedness of the infinite-horizon undiscounted problem (Theorem
3).

2) Bounds on convergence rates of finite-horizon and discounted performances as
the infinite-horizon undiscounted limit is approached (Theorem 1).

This work is inspired by well-known (or, at least, generally assumed) properties of
the infinite-horizon, linear-quadratic-Gaussian (LQG) control problem, (see, e.g.,
Kushner 18] or Athans [3]).

The expression "finite probabilistic system" is used in accordance with a
classification of systems by Kalman, Falb, and Arbib [17]. Our representation of an
FPS, borrowed from probabilistic automata theory, is that of Paz [20]. The FPS control
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Laboratory, Cambridge, Massachusetts, supported in part by Air Force Office for Scientific Research under
Contracts 72-2273 and 77-3281, and reported in the author’s doctoral dissertation.
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problem is a slight generalization of the partially-observed Markov decision problem
(POMDP), independently conceived by Drake 11 and Astrom 1 ], among others, who
showed that the problem is equivalent to a (nondenumerable state) MDP. Such MDP’s
have been studied by Ross [24].

The structure of our problem, however, makes it considerably more tractable than a
general-state MDP. The value function is convex [2], and in some cases piecewise-
linear as well [27]. Piecewise-linearity of the value function, discovered by Drake 1.1 ],
but extensively developed by Sondik [281, occurs when the optimal strategy has a
finite-memory realization. An example is given in 5.

This paper is organized according to the following plan. The FPS model is
introduced in 2, along with standard state-estimation and dynamic programming
terminology. The infinite-horizon undiscounted problem formulation and its
consequences are presented in 3. Conditions implying well-posedness of the problem
are given in 4. Section 5 is devoted to illustrative examples.

2. The model.
2.1. The plant. A finite probabilistic (dynamical) system (FPS) is a 4-tuple S (U,

Y, S, {P(y]u): y 6 Y, u U}) where:
(i) U is a finite nonempty set of input values (or decisions);
(ii) Y is a finite nonempty set of output values (or observations);
(iii) S {1,..., N} is a finite nonempty set of (internal) state values;
(iv) Each P(y[u) is an N x N substochastic matrix of state transition probabilities, and

P(u)= Z P(ylu)

is a stochastic matrix Vu e U.
Let II denote the simplex of horizontal stochastic N-vectors

N, >0 VieS, Y. 7/’i 1},(2.1) II {Tr" 7r ri
i$

and also define:

Z* the free monoid generated by U x Y; i.e., the set of finite strings(2.2) of input-output pairs.

(2.3) F Uz*= the set of mappings from Z* to U.

An FPS is studied in conjunction with an initial state probability (ISP) zr e II and a control
strategy (CS), F. Given (S, or, y), we construct an inputprocess {u(k) e U}k=o, a state
process {s(k)S}k=o, an output process {y(k)e Y}=I, and an information process
{z(k)e Z }=o according to:

(2.4) Pr [s(0) i] zri, e $,

Pr [y(k + 1)= y, s(k + 1) /’Is(k) i, u(k) u, {uZk )lk’=O

(k)},=o,{ y(k’)},=] P(y [u),(2.5) {s -1

uU, i,]$, yY, k=0,1,2,’",

J(u(0),y(1))(u(1),y(2))’"(u(k-1),y(k)), k=l,2,"’,
(2.6)

empty string, k 0,

(2.7) u(k) y(z(k)), k O, 1, 2,....

Thus {s(k), u(k)} is an MDP and {[z(k), s(k)]} is a denumerable state Markov chain.
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Clearly, s (k), u (k), y (k + 1), z (k), may be viewed as random variables on a
probability space ,. that depends on the ISP 7r and the CS % P,,v and E,,r will denote
the probability measure and the expectation operator (respectively) associated with

The plant model includes a number of special cases, notably:
1) The MDP, when Y S and Pi(flu) Pi(u), i, ] S, u U.
2) The MDP with state observation delay [7] when Y= $ and P(ilu) P(u),

i,jS,uU.
3) Certain statistical decision problems [9-1, when P(u) does not depend on u.
4) The POMDP, when y(k) is a "random function" of s(k- 1) and u(k- 1), i.e.,

when e;(y lu) e(u)O,(u). An alternate formulation of the POMDP expres-
ses y(k) as a "random function" of u(k-1) and s(k); then
P(u)O(u).

2.2. The performance indices. Consider a bounded real-valued reward function R
on S x U x Y x $, and define:

(2.8) r(k) R[s(k), u(k), y(k + 1), s(k + 1)],

(2.9) g(K)= K-’ E r(k), K l, 2,
k=0

(2.10) (fl)=(1-fl). Y kr(k), 0=</3 <1.
k=O

We call r(k) an incremental reward; g(K) is the actual finite-horizon average
performance for horizon K; and (/3) is the actual discounted average performance for
discount . Each is a random variable on

Following convention, we assume that the decision-maker cannot directly observe
the reward process {r(k)}. If it is desired to make this information available to the
decision-maker, we may easily incorporate it into the observation process.

2.3. State-estimation of FPS’s. In order to apply dynamic programming tech-
niques to our problem, we must first devise a process of sufficient statistics [30], [31].
Following [1], [11], [27]-[29], the process we seek is one consisting of horizontal
stochastic N-vectors {r/(k) II} having entries:

(2.11) rli(k)=P,,v[s(k)=i[z(k)], isS.

We may readily verify that it satisfies the recursive form:

(2.12)

(2.13)

where

(2.14)

r/(k + 1)= T(l(k), (u(k), y(k + 1))),

T(’, (u, y))= 7rP(ylu)/rrP(y[u)u,

k=0,1,2,...

and u is a vertical N-vector whose entries all equal unity.
A multiple-step version of (2.14) will also be required. For z=(ul, Yl)"

(u., Y2)""" (Ul, y/)e Z*, define the matrix product P(z) P(yllUl)
P(y21u2) P(ytlu). Then let

(2.15) T(rr, z)= 7rP(z)/rrP(z)v.
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Now (2.12)-(2.13) may be expressed as:

(2.16) l(k) T(,n’, z(k)).

2.4. Dynamic programming equations. Still following [1], [11], [27]-[29], define:

(2.17) V is the vector space of bounded real-valued functions on II.

(2.18) q(u) is the expected incremental reward vector, a vertical N-vector with
entries

q(u) Y. Z P(Ylu)R(i, u, Y, i), iS, uU.
jS y Y

(2.19) ]" V- V is the discounted dynamic programming operator

[Jv](r)-max {rq(u)+/ Y (re(ylu))v(T(m (u, y)))}.
uU yY

(2.20) f" V - V is the undiscounted dynamic programming operator given by f ].
The finite horizon (undiscounted) FPS control problem is solved [1], [11] by the

iterative procedure"

(2.21)
v=fv_l, K= 1,2,...,

Vo=O,

where v: has the interpretation:

(2.22) v:() sup E.v r(k) sup {E,,,[K. g(K)]}.
yF k =0 F

The optimal initial decision (when the ISP is r, and K decisions remain) is the maximal
u U used to determine v:(r) from v:_. To obtain the next decision, replace K by
K 1 and replace r by r (1).

It is also known that v is convex [2] and piecewise linear with a finite number of
faces [27]. This may be casually explained as follows:

Convexity. A decision-maker faced with ISP - might be given additional state
information to obtain ISP r’ with probability A, or ISP r" with probability (1-),
where r Ar’ + (1 I )-". He cannot do worse with additional information, so v: (r) -<

Zvtc (or’) + (1 A) vt: (Tr").
Piecewise linearity. For any given CS y, the performance E,,v[g(K)] takes the form

is 7riwi(y), where wi(y) E.,v[g(K)ls(O) i]. But the finite-horizon problem admits
a finite number of distinguishable CS’s, so W {w(y)} is a finite set. Since vs:(rr)=
maxww{Trw}, it is piecewise-linear with at most # W faces.

Similarly, the discounted (infinite-horizon) FPS control problem is solved by
determining the unique fixed point of fo,

(2.23)

which satisfies

(2.24) v(cr) sup E,, flkr(k)
F k=0

Using the contraction property of discounted dynamic programming operators (see,
e.g., Bertsekas [6, 6.3]), it is readily shown that

(2.25) the sequence {fov}=o converges, uniformly in r, to tT,, ’v s V, 0 =</3 < 1.
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If v is bounded, convex and continuous, then ]rv is bounded, convex and
continuous; hence, by (2.25),

(2.26) t is bounded, convex and continuous.

Apparently, tT may be, but need not be, piecewise linear [29].
Finally, we state, for future use, an inequality that follows trivially from the

definition of f (by induction on k)"

(2.27) sup ([f’v -/kv’](Tr)}-<_ sup {Iv v’](Tr)} k O, 1, 2, .
zrII rII

This inequality is used to establish the convergence ot value-iteration sequences such as
(2.21).

3. Consequences o weli-posedness in the infinite-horizon undiscounted limit.
3.1. Problem formulation. In essence, our problem is to demonstrate, for any ISP

r, the existence of a CS y, that maximizes the infinite-horizon undiscounted (IHU)
performance indices, limK_, {E=,v[g(K)]} and lim,l {E,,v[(/3)]}, over all CS’s ,/ F.
Such a problem formulation, however, is unsatisfactory. For instance, the limits
defining IHU performance may not exist or may not coincide for certain CS’s.
Furthermore, such a result would not address the rate of convergence of the per-
formance of y, as K oo or/3 ]’ 1, and it is this very consideration that determines
whether the IHU formulation will be useful in practice.

Let us instead follow the approach of Bertsekas [6]. We will first state a condition
for well-posedness and list some of its attractive consequences. Then, in 4, we show
how it can be verified.

This section is therefore devoted to consequences of
Condition 1. There is a v, V and a constant g such that

(3.1) fv,=v,+g.

When Condition 1 is satisfied, we will frequently make use of

(3.2)

where

(3.3) Iv[ sup {v(Tr)}- inf {v()}, v V.
rrl rl-I

When v, exists, it is not unique, since v, plus any constant is also a solution of (3.1).
Theorem 2 will show that it can be taken, without loss of generality, to be convex. For
some v, satisfying (3.1), define"

+(3.4) v, v, inf {v,(r)},

(3.5) v;, v,- sup {v,(r)}.

+ is a strictly nonnegative solution of (3.1) and v is a strictly nonpositive solutionNow v,
of (3.1).

Continuity of v: and tTo may suggest that a continuous solution to (3.1) exists
whenever Condition 1 is satisfied. Example 4 of 5 shows that such is not the case.
Theorem 4 of 4 will establish the continuity of v, under an additional assumption. In
this section, however, we will not require v, to be either convex or continuous.
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3.2. The policy and CS’s corresponding to v,. Let Condition 1 be satisfied and
define *" H-> U to be a "policy" that identifies a maximizing input in (3.1):

(3.6) fv,(r) rq(*(Tr))+ E (rP(yl*(r)),) v,(T(r, (q*(r), y))).
yY

We may now construct a CS 7, for each ISP r so that

(3.7) u(k)= if* (r/(k)) =.v= a.s.

Simply combine (2.16) and (3.7) to obtain

(3.8) y,(z)= O*(T(Tr, z)).

For ease of notation, also define

(3.9) *
Although (3.8) defines y=, it is (3.7) that would be used to realize it in practice.

Since * does not depend on k, we say that y= is realized by stationary policy on the state
estimate q(k). It is straightforward to show that (2.4)-(2.7) with (3.8) define the same
probability spaces * as do (2.4)-(2.5) with (2.12)-(2.14) and (3.7). We remark that
measurability of * is required when (3.7) is used to define *; it may be established,
when v, is convex, by partitioning II into subsets

(3.10) II(A) {zr" 7ri > 0:>i 6 A}, #AS

over which T(., z) and v, are continuous, the latter by [23, Thm. 10.1].

3.3. Convergence o[ II-IU performances. We may now show that the optimal
finite-horizon and discounted performances, as well as the performances of y=, con-
verge to g as K - c or/3 ’ 1. By any reasonable definition of IHU performance, this
means that y, is an IHU-optimal CS for ISP r, and g is the optimal IHU performance or
"gain". Since * realizes 3’=, it is known as the IHU-optimal policy.

LEMMA 1. Let Condition 1 be satisfied. Then

(a) v,(r)<=vc(Tr)-Kg<=v(r),

+(r).(b) v,(Tr)<-t(er)-(1-)-lg<=v,
+Iv-] isProo[. Part (a) clearly holds when K 0, since Vo 0 by (2.21), and v, ,

strictly nonnegative [nonpositive] by (3.4) [(3.5)]. We now prove (a) by induction on K.
Let e denote an arbitrary constant and let v =< v’ signify v(zr)=< v’(zr)"qr 1-I. From
(2.19)-(2.20), we obtain

(*)
f(v+e)=(fv)+e,

v<-v’fv<-fv’.

These identities enable us to show that

I) < t)K -Kg < v, ,
The proof of (a) is completed by observing that v and v satisfy (3.1), and that
[vg v+, by (2.21). Similarly, from (2,19), (2.20) and (3.4), (3.5), we obtain

fv =/(tv), tv, v,, tv, v,,
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which, along with (,), enables us to prove

[f’v, ](r) 1 -/3k

by induction on k. Taking the limit k and applying (2.25) yields (b).
THEOREM I. Let Condition 1 be satis#ed. Then
(a) The opdmal expected performance converges, uniformly in , as O(K-) or

0(I #), m g; speci#calZy,

Isup {E,,.v[g(K)]}- gl K-C, r II, K 1, 2,...

Isup {E,[#(B)]}- gl =< (1 B)C, r II, 0-<_/3<1.

(b) The expected performance of y= converges, uniformly in 7r, as O(K-1) or
0(1 ), to g; specifically,

IE*[g(K)]- g] < K-I C, r H, K 1, 2,. ,
IE*[(#)]-gl<:(1-#)c, rrI, 0<=/3 <1.

(c) The expected suboptimality of 3’ converges, uniformly in 7r, as O(K-1) or
0(1 fl), to 0; specifically,

sup {E.,,[g(K)]}- E*[g(K)] <- K-1C,

sup {E,v[ff (/3)]}- E* [#(#)] -<_ (1 #)C,

reH, K=l,2,...

-eH, 0<_-/3<1.

Proof. By (3.1), (3.6)-(3.7) and (3.9),

E*[r(k)lrl(k)]= v,(r/(k))+ g-E*[v,(r(k + 1))[r/(k)].

And so, (2.9)-(2.10) become

E*[g(K)] g K-’ (v,(Tr) E*[v,(? (K))]),

*[(]-g (1- v,(r- 2 ( --*[v,((kl]
k=l

With (3.2), this establishes (b). By (2.9)-(2.10), and (2.22), (2.24),

sup {E,,v[g(K)]} K-VK(Cr),

sup {E,v[(/3 )]} (1 -/3)fi# (Tr).

Lemma 1 is now invoked to establish (a) and (c). F1
The sense in which y is an IHU-optimal CS for ISP 7r may now be made precise.
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COROLLARY. Let Condition 1 be satisfied. Then

(a) lim {E*[g(K)]} g VTr II,
K--.oo

(b) lim {E* [(fl)]} g VTr II,

(c) lim sup {E,,,[g(K)]} <- g Vr H, 3’ F,
Kc

(d) lim sup {E,[(/3)]} <= g VTr H, 3’ F.

3.4. Sequences that converge to v,. Let -k be an arbitrary element of II and define"

(3.11) (r) v(r)-v(r), v V.

In an ergodic MDP, it is well-known [10], [14], [15], [16], [19], [25] that
1) t3, is unique.
2) t3K t3, as K o.
3) tT0v, asfl ’ 1.

Even when VK is asymptotically periodic, a solution of (3.1) may be obtained by the
damped value iteration procedure of P. J. Schweitzer [26], [21]:

K AfK- + (1 A )/]K- 1, K 1, 2, ,
(3.12) 0 < h < 1.

70 0,

These ideas are now generalized to the FPS control problem.
It is to be noted that Ross [24] has proved a similar convergence theorem under the

assumption that {}0-<< is equicontinuous. Since we have not excluded the case
where v, is necessarily discontinuous, Ross’ theorem is inapplicable. Our analysis is
based on the convexity of t and tK, as well as the finite distribution of r/(k + 1) given
u(k) and (k). Although we do not require it at this time, a connection between
convexity and equicontinuity may be established using Lemma A.1 (in Appendix A).

THEOREM 2. Let Condition 1 be satisfied. Then
(a) Any sequence fl’ ’ 1 has a subsequence fl, 1 such that . is pointwise

convergent. Moreover, the limit function ,(-)=lim,,_, {t.(zr)} is convex,
satisfies (3.1) and 2C.

(b) Any sequence K’, --> has a subsequence K, such that ’K. is pointwise
convergent. Moreover, the limit function tS*,(r)= lim,_ {tK.(Zr)} is convex,
satisfies (3.1) and [,[ <= 2C.

To prove Theorem 2, we require two preliminary results.
LEMMA 2. Any uniformly bounded sequence of convex functions on II, {v’},

has a pointwise convergent subsequence {v,}. Moreover, the limit function v(zr)=
lim,_.oo {v,,(Tr)} is convex. If Ivy[ <- C’ for all n 1, 2,..., then Ivl-<- c’.

Proof. Using the partition (3.10) of H, take successive subsequences, for each
nonempty subset A of $, to obtain pointwise convergence on H(A). When A contains
more than one element, the desired subsequence exists by [23, Thm. 10.9]. The
limit v is convex since hv(r)+(1-h)v(zr’)-v(hzr+(1-h)zr’)>=inf{hv(r)+
(1 h)v, (r’) v, (hr + (1 h)r’)}_--> 0. Finally Ivl=sup,.=,ri{v(Tr)-v(zr’)} <-

sup=,,,n {sup, {v,,(Tr)-v,,(zr’)}}--< sup, [v,[, so [v,[ <- C’ V, [v[ <= C’.
LEMMA 3. ff V, --> V (pointwise), then [v, fv (pointwise).
Proof. For any r II, e > 0, we must show that there is an M such that I[]’v,-

]’v](r)[ < e, Vn _->M. Define the finite set B {T(Tr, (u, y)): u U, y Y, 7rP(y[u) 0}
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and let M be such that [v,,(zr’)- v(Tr’)[ < e, r’ B, n => M. The desired result follows
immediately from the definition of f.

Proo[of Theorem 2. (a) By (3.11) and Lemma 1, [tol [t71_-<2C. Now
]tt(cr)-ta(6)]_-< It,ll, so {t(cr)}.is uniformly bounded. By Lemma 2, there exists a

sequence/3n ]’ 1 such that 6. tT, (pointwise), t, is convex, and [t,l-<-2C. By (2.23),
[ovo-vo=(1-B)vo(rr); Lemma 1 ]mphes (1-/3,)v.(zr)- g; and so
(pointwise). But Lemma 3 implies ftT. ftT, (pointwise), and uniform boundedness of
{t} implies [/.-f]t. 0. Consequently,/t,-t, g, and so t, satisfies (3.1).

(b) Following Schweitzer [26], we define a modified system that undergoes a
transition in the usual manner with probability h, or does nothing with probability 1
Specifically, for y0 Y, define

Y- Y LI {yo}
P(ylu)=P(y]u) ifye Y, P(yo]u)=(1-h)I,

(3.13)
R[i, u, y, ]] R[i, u, y, ] if y Y, R[i, u, yo, ] O,

g=xg.
Let f be the undiscounted dynamic programming operator (2.20) for the modified

system. Clearly,

(3.14) fv =hfv+(1-h)v.
Condition 1 is satisfied for the modified system, since Iv, v, + g. Since (3.12) is the
modified version of (2.22), Lemma 1 yields

(3.15) v (v) -< 0s: (r) Kg -< v (or),

and so [Os:l =< 2C. Existence of a pointwise convergent subsequence t, t,, convexity
of ,, and [,1-<-2C are obtained from Lemma 2 as in the proof of part (a), above. It
remains to show that , satisfies (3.1).

Define

(3.16) Ls: sup {xtc (zr)},

L lira sup {L:}.
K-oo

From (2.27), we may readily obtain the Schweitzer-Odoni inequalities:

(3.17) XK+I(’n’)<=ALK + (1-- h)XK(qr), LK+I <=LK.
Thus, the Odoni bounds L/( converge monotonically to L. We may now show, by
contradiction, that L 0. Assume L > 0 and select 6, M, e, K, 7r so that

6>0,

LM>C+6

(3.18) e 2
rrt--0

Lg<-L+e

x+t(Tr) >-_L- e.
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For m=l,...,M-1, (3.17) yields LK+M-,,,LK and XK+M_,,+I(r)=<ALc+
(1--A)XK+M-,,(zr), or, equivalently, XK+lVt_,,/(r)-LK<--(1-A)(x:+lVt_,,(Tr)-L:).
Thus

(3.19) xK/_,,(Tr)--L: => (1-A)-’(x+M(Tr)-L:), m =0, 1,... ,M- 1.

Hence, by (3.16) and (3.18),
M-1

v-,,+,(r)-,,(r)= Y (X,,+,-m(r)+)
m=0

(3.20) >=L:M 6 +Mg

>C+Mg

which contradicts (3.15). Thus L 0. By a similar argument,
liminfK-,o{inf,n{XK(Tr)}}=0. Hence XK->0, and so, by Lemma 3, 5, satisfies
(3.1).

4. Sutlident conditions or well-posedness. We now consider the problem of
showing, on the basis of simple conditions on S and R, that Condition 1 is satisfied.

4.1. Summary o results. Let e denote the "unit vector" in II having entries

1 if =j,
(4.1) e= 0 ifi#j,

and let $* be a subset of $ such that

(4.2) max {, (r)} max {tt (e i)}, 0 -<_/3 < 1.
rH iS*

Now each t0 is a convex function on the simplex II, and so it achieves its maximum at a
vertex e i, S. Thus S* may be taken to equal S. In some problems, a smaller set S* may
be identified. In the machine repair problem of Smallwood and Sondik [27], for
example, S* would contain the single state corresponding to "no failures of any kind".
Further information on partial ordering of S and its implications in this context may be
found in [32].

Also let

O+= max {qi(u)},
iS,uU

(4.3) Q-= min {qi(u)},
iS,uU

We now define four conditions on S, two of which involve $*.
Condition 2 (Reachability). There is a p < 1 and an integer : such that

(4.4) sup max {P,,v[s(k)=.i]}>-l-p VrcII,/’cS*.
,/F O_--<k_--<

Remark. Condition 2 deals primarily with the extent to which states may be
influenced by proper selection of inputs. It assures that for any present value r of r/(k),
there is a CS 3’ that will bring the system into an optimal state within : time units with
positive probability. A decision-maker who exercises this option to "reach"/" will not
necessarily be able to tell whether the system actually enters (unless p 0). For this
reason, Condition 2 alone is not sufficient to establish Condition 1. Condition 2 is
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similar to conditions of Bertsekas [6, p. 358] and Platzman [21], which are used to
establish Condition 1 for MDP’s. A simple test for Condition 2 is accomplished by
computing Y = [! +ut:P(u)]2v’, Condition 2 is satisfied it Yq > 0 for all e S, ] $*.

Condition 2* (Resetability). Condition 2 is satisfied with O 0.
Remark. Condition 2* is much stronger than Condition 2 because it assures that

the desired state will be reached with probability one. Thus the decision-maker will
know when state/" has been reached. An action that places the system in an optimal state
with probability one is called a "reset action", hence the name "resetability". Sondik
[28] has shown that

(4,5) Condition 2* ::>Condition 1 with C-<_ :Q.

Condition 3 (Detectability). There is an a < 1 and an integer sr such that

(4,6) E.v[a[P(z())]]<= a t,r II,y F,

where a[.] denotes the "modified ergodic coefficient" of an N xN substochastic
matrix:

{Dreip e.i’P], i, ip#O, ei’P }(4,7) a [P] max LiPu’ e"PuJ i, $, e 0

and D is a metric on H defined and discussed in Appendix A.
Remark. Condition 3 deals primarily with the interaction of states and outputs. The

function a[. is closely related to ergodic coefficients for the state estimation process
{n (k)}, and Condition 3 implies that the (nondenumerable state) MDP {7 (k), u(k)} is in
a certain sense ergodic [22]. This assures continuity of any solution to (3.1), but a
controllability assumption is required to establish boundedness. Condition 3 may be
verified by showing that a[P(z)]< 1 for all z in a suitably large subset of Z*; this is most
easily accomplished by exploiting the notion of subrectangularity defined and discussed
in Appendix B. Thus, in the MDP, for example, Condition 3 is trivially satisfied. A
general procedure for verifying Condition 3 is given in [22].

Condition 3* (Renewability). Condition 3 is satisfied and there is an t* II such
that:

(4.8) max {P=.[n(k)=n*]>=l-a} V’zrII, yF.
O_k

Remark. Condition * has a "built in" controllability assumption since * can be

rarded as a state which is entered within a finite time interval with probability one.

Inorin transiem states, Condition * implies Condition 2. Indeed, under Condition
*, (k), (k) becomes a denumerable-stte Markov process on state set T(*, z):
z e Z*, rP(z)v 0, and Condition 1 may be obtained by standard MDP methods.
Ross [24] has shown that

(4.9) Condition 3" ff Condition 1 with C <= srO (1 a)- 1.

In this section, we will prove
THEOREM 3. Condition 2 and Condition 3 Condition 1 with

(+)O
(4.10) C

(1
,

0)(1 -a)"
THEOREM 4. Condition 1 and Condition 3 imply
(a) Every convex solution o]’ (3.1) is continuous.
(b) The sequence {vt}=o is uniformly convergentto a convex continuous solution

(3.1).
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Remark. Theorem 3 has a clear analogy in LQG theory, where separate conditions
of controllability and observability are required to assure infinite-horizon stability. The
analogy to Condition 2* would be a system that could be driven to state 0 by simple
output feedback; a more extreme case might be a system whose state never deviates
from 0. Condition 3" corresponds to a system whose state estimate never deviates from
0. In the absence of linearity assumptions, Conditions 2* and 3* are, of course, more
interesting.

4.2. Methodology for proving Theorem 3. Our aim is to obtain (from Conditions 2
and 3) an inequality of the form

(4.11) I,I=<.KO+I[.
Then I1 -< go/(1 ), so {1 I} is uniformly bounded, and v, may be obtained as in the
proof of Theorem 2(a).

We first restate (2.23) as

(4.12) ,() max {E,v[r(0) +B,((1))]}
F

or, more generally,

(4.13) ,() ffff E=,v
=o

kr(k) +K(n(K))

In (4.13), a maximizing y exists for anyK > 0, 0 < 1, and 6 H, since the right-hand
side of (4.13) involves only the finite horizon K.

The inequality (4.11) will be obtained from (4.13). We may derive (4.5) by setting
K , or (4.9) by setting K (. To prove Theorem 3, we proceed in two steps; first
bouning e according to Co.ition 3, an ten bouni.g iye] aoring to
Condition 2.

4.3. Proof of eorem 3, Let j S* be such that a(ei) = max=n {ffa()} and let
F maximize (4.13) with e and K (; this is possible by an argument stated

immediately following (4.13). For ease of notation let Ei,v denote E=,v with e i.
Substituting (2.16) into (4.13), we obtain

=o Br(),
But, for any H,

(4.5 ., r( +m.[o(r(,

Also, by (2.8), (2.18), and (4.3),

(4.16) O-NE.,[r(k)]N 0+ V , F.

Now Lemma A.2 and (4.14)-(4.16) may be combined to form

o(el-o(l +(ma.+
k=0

(4.17)
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where aj.v Ej,v[a[P(z(())]]. If Condition 3 is satisfied, then

(4.18) a.<-a.
We will use (4.17) and (4.18), along with some implications of Condition 2, to

obtain a bound of the form (4.11). Condition 2 implies that for any ISP ,k, there is a CS
and a k-< : such that

(4.19) e,,/[s(k) =j]_>- 1-p.

Since E,[P,[s(k) j[z(k)]] P,[s(k) j], this becomes

(4.20) E,[ni(k)] X-p.

Again, (4.13) and (4.16) may be used to obtain

(’) +ka(e
k’=0

(4.2)

(e + ,,[o(n())].
k’=O

Thus

a(’)-tT(,)_< B k’ +BE,/[(e)-(n(k))]
k 0

(4.22)
<- kQ + E,,/[ff (ei)

Now substitute (4.17)-(4.18) and (4.20) into (4.22) to obtain

tY (’) tYt () -< (k +()Q+[1-(1-p)(1-a)]16t
(4.23)

_-< (s / ’)O /[1 -(1 -p)(1 a)]

which is a bound of the form (4.11). Hence Itl<=C=(c+)Q/((1-p)(1-a)). Pro-
ceeding exactly as in Theorem 2(a), there is a sequence n 1 such that ta, t,, ,
satisfies (3.1), and ]t,l -< C. Thus Condition 1 is satisfied. Q.E.D.

4.4. Proof of Theorem 4. Condition 3 implies that, for every 7r e II and 3’ e F, there
is a Z* such that a[P()] < 1, length()= st, and P,,[z (st) ]>0. Indeed,

(4.24) 8(7r) min {max {P,v[z(sr)= ]: Z*, length() sr, a[P()] < 1}}

is positive and continuOus throughout II. Hence,

(4.25) inf {6(r)} > 0.

To prove part (a) of Theorem 4, let v, be a convex solution of (3.1), and let {r"}=
be a sequence in H such that rr"- zr and v,(zr)-v,(r") e. Then e->0 since v, is
convex [23, Thm. 10.2]. Let L be the least upper bound on all such discontinuities:

(4.26) L sup {lim, sup {v,(r) v.(r’)}}.

We show that L 0. Select so that a[P()] < 1 and P*[z (st) ] g >= 8. Now Lemma
B.3 implies that

(4.27) T(., ) e H(fi),
where =J(P())={/’" Pii()>O, some ieS}, and II(.) is given by (3.10). Rewrite
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(3.1) in the form

(4.28)

or, more generally,

v,(r) + g max {E=,r[r(O) + v,(n (1))]}

E,,v,[r(O) + v,(r/(1))]

E,.v,,[r(0) + v,(T(zr, z (1)))]

(4.29) v.(r)+(g=E=., r(k) +v.(T(fr, z(())).
k=0

Likewise,

(4.30) v,(rr") + srg _-> E,<,r,r[ (i=Xo r(k))+v,(T(cr", z (()))].
But,

(4.31)
E,.v,,[v,(T(Tr, z()))]-E,,,.v,[v,(T(Tr", z (r)))]

E Pi.v,[z(()= z](riv,(T(Tr, z))-rTv,(T(r", z))).
zZ*
i$

Clearly, T(Tr", z)--> T(Tr, z) whenever rP(z) O. But v,(T(cr", ))--> v,(T(cr, Y)) as
well, since T(vrn, ), T(vr, Y)e H(fi-) by (4.27), and since v. is continuous throughout
II(fi,) by [23, Thin. 10.1]. Now (4.29)-(4.31) yield e-<(1-t)L. Since L is the least
upper bound on e, this becomes L _-< (1- t)L, and so, by (4.25), L 0.

To prove part (b), consider the modified system S= (U, Y, $, P) given by (3.13),
and used to prove Theorem 2(b). Just as f is the modified version off (i.e., it is generated
by rather than S), and 5 is the modified version of v, let *, 35 e ’, 5 (k),/5,., ., iP, g
be modified versions of Z*, y eF, z(k), P,.v, E,.,/, T, 8, respectively. If S satisfies
Condition 3, then so does S; so by (4.25),

(4.32) 8>0.

Following Theorem 2(b) and [23, Thm. 10.9], let {c.} be a subsequence of {,:}
that converges pointwise to a convex solution , of (3.1) and converges uniformly (to
t.) on the closed subsets of II(A), A c__ S.

Define

(4.33) LK sup {I t,() ,, (,r)l}, L lim sup {Lt}.
".’H

We wish to show that L 0, for {:} would then be uniformly convergent (on H) to ,,
and Theorem 4(b) will have been proved.

Further define

(4.34)

={5 e2*" Length (5)= and a[P(5)] < 1},

, inf {fi,,.915(/)e 2’]},
reH,’eF

sup
"rrHl



376 LOREN K. PLATZMAN

By (4.24)-(4.25) and (4.32),/2c => 6 > 0. Moreover, by (4.34) and Lemmas B.1 and B.2,
#l+r >= #l + (1 121)121’. Consequently

(4.35) #1’1 asl

By Lemma B.3, ItqII(A) is a closed subset of II(A), ’A _S. Thus
converges unitormly on Ill. Since Ill is nonempty for _>- sr, this may be stated as

(4.36) lim {L,,l} O, >-- .
Once again, let us assume that L > 0 and obtain a contradiction.
Select l, using (4.35), so

(4.37) /.Z 16.

Also select K Ka, using (4.33) and (4.36), so

(4.38) Lg <=2L, Lg.<-L/8.

Now, for all K’=>/ + ,
L,-<_ 2 sup {l[]:’-g.](rr)

By (2.27),

I-I

Expanding in the manner of (4.29)-(4.31),

(4.39) LK,_--<2 sup {g=,[[.-g](2(Tr,(/)))]}

and so, by (4.34),

Lc,-< 2[/2t’L./" + (1 -/2/’)L ].

Finally, (4.35), (4.37), and (4.38) yield

(4.40) Lc, <__ L/2.

But now, by (4.33), L <=L/2. Moreover, Lo C by (3.1) and (3.12); (4.39) with/ 0
yields L/c, _-< 2Lo, and so L -< 2 C. Thus L 0. Q.E.D.

5. Examples. In this section, we give simple illustrative examples of FPS control
problems.

Example 1" The MDP. In an MDP, the output and state processes coincide. Thus,
the entries of matrix P(ylu) equal zero eyerywhere except in column y, and so
a[P(ylu)] 0. Thus, Condition 3 is satisfied with " 1 and a 0. Condition 2 is known
as a sufficient condition for infinite-horizon undiscount,ed well-posedness of MDP’s; see
[6, p. 358] or [21]. Note that Condition 2 does not imply aperiodicity of the optimal
system; a solution to (3.1) may exist even when t3: is asymptotically periodic.

Example 2: TheMDPwith delayedstate observation [7]. If y(k) s(k 1), we have
an MDP with delayed state observation. The entries of P(ylu) now equal zero
everywhere except in row y, so Condition 3 is again trivially satisfied.

Example 3: A problem having a finite-memory solution. This example is drawn from
the doctoral dissertation of E. Sondik [28].

A wealthy industrialist employs two analysts (u 1, 2) to manage his holdings. The
holdings may be in a loss state (s 1) or profit state (s 2). Each analyst’s effect on the
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holdings is modeled as a Markov chain with transition matrix P(u) and profits q(u). At
the end of the month, the analyst handling the funds reports on their state. The report is
correct with probability tz(s, u). We combine P(u) and/x(s, u) to obtain

[.48 .04] P(112)=[.45 .20]P(I[1)=
.30 .10 .36 .24

P(211)
.20 .40

P(212)=
.04 .3

where

q(1) q(2)

S {1 (loss state), 2 (profit state)},

U {1 (select analyst 1), 2 (select analyst 2)},

Y {1 (analyst reports loss state), 2 (analyst reports profit state)}.

Conditions 2 and 3 clearly are satisfied for this problem.
It turns out that the IHU optimal policy is"

if /l(k) <.1129,
u(k)=6(n(k))= if n1(k)>.l129,

arbitrary if r/l(k) =.1129.

Furthermore, the optimal decision may be determined on the basis of the past two
input-output pairs alone, according to the rule"

1 if u(k-2)= y(k-1)= u(k-1)= y(k)=2,
u (k)

2 otherwise.

Accordingly, v, is piecewise linear with three faces. The number of faces of v, generally
equals the number of memory states required to realize [28].

Example 4: A problem where v, is necessarily discontinuous. LetN 2, U {1, 2},
Y= {0}, and P(OI1)= I, P(012)=

1

1
R[i, u, y, j]

0
ifi=u=l,
otherwise.

Since Y contains a single element, the observations convey no useful information, and
we are confronted with an open-loop control problem. We may readily show that
Condition 2* is satisfied with $* {1} and : 1. Condition 3 is not satisfied since the
choice u(k) 1 for all k causes P(z(k)) I, and a[I] 1. Now g 1 and any solution of
(3.1) takes the form

if zr (1, 0),
1, otherwise.

Thus every solution of (3.1) is discontinuous.
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Example 5" A problem in which Condition 1 is not satisfied. Consider a system in
which learning and rewards are mutually exclusive"

U= Y={1, 2, 3},

P(3[1)=P(312)=I,

P(l131
1-p

N=2,

1 if u =i,
R[i, u, y, ]]

0 otherwise.
In this system, the state never changes, Input 3 permits state identification (learning).
Inputs 1 and 2 are "state guesses" in which the "no information" output, 3, is observed.
The optimal performance is g 1, achieved by selecting input 3 infinitely often, but with
vanishing frequency. We may show by contradiction that no solution to (3.1) exists" if v.
satisfies (3.1) and 7r has strictly positive entries, then O(Tr) 3 since T(r, (., 3)) 7r but
7rq (.) g 1; but this implies that the optimal CS selects input 3 at all times, in which
case g 0. This is, of course, the standard paradox of IHU dual control. Similar
difficulties arise in the "two-armed bandit problem" [9] and may be resolved by
resorting to IHU formulations other than (3.1) [8].

Appendix A. A metric associated with Condition 3. Define

(A.1) D[r, zr’] max {d[r, 7r’], d[Tr’, 7r]},

where

(A.2) d[cr, 7r’]= 1-min {ri/ri" 7ri >0}.

The function D has a number of remarkable properties. It is a metric on II, closely
related to the metric used in [22] to establish ergodic properties of {r/(k)}. In the metric
topology induced by D, II is separated into the disconnected subsets H(A) given by
(3.10). ThusD is discontinuous with respect to conventional metrics on H exactly where
a convex function may be discontinuous in the conventional sense. This enables us to
prove

LEMMA A. 1. Any convex function v on H satisfies
,., (,,-’)[ -< D [.,,-, ,,-’] I’ 1.

Proof. Assume without loss of generality that v(’)>v(Tr’), and let r"=
7r’+(D[cr, r’])-l(r-r’). Now 7r=(1-D[cr, r’])Tr’+D[Tr, 7r’]r" and the desired
result follows from the convexity of v, provided only that 7r" II. Clearly, Zips zr’ 1. So

’>0 and so "-"> 0, Vi S. If ri > 7ri, then 7ri riit remains to show that
zr+(D[zr, r’])-(ri-r)->0. If zr<zr, then D[cr, r’]_->l-(r/cr) and so r=
Tl" "Je" [1-- Tt’i/ Tg O

We may use Lemma A.1 to obtain an expression involving a[. ]. It shows that if z is
a string of most recent input-output pairs, then alP(z)] may be used to bound the value
of knowing what occurred before z.

LZMMA A.2. Let v be a convex function on II. Then

[v(T(r,z))-v(T(r’,z))l<-_a[e(z)]lvl, rP(z)O, r’P(z)O.

Proof. From the definition (A.1)-(A.2) of D, it is clear that

D[r, ATr’ + (1-A)zr"]_-< max {D[Tr, 7r’], D[r, ’"]},

eH, 0<h <1.
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From (2.15), we obtain

(A.4) T(r, z)= . [ri(eip(z)u)(rP(z)u)-a]T(e i, z),
ie{i:e’P(z)#O}

rP(z) o.

Combining (A.3) and (A.4) with the definition (4.7) of a[. yields

(A.5) D[T(r, z), T(Tr’, z)]_-< alP(z)], "n’P(z) # O, 7r’P(z) # O.

The desired result follows immediately from Lemma A.1. 71

Appendix B. Subrectangular matrices. A substochastic matrix P [Pij] is said to be
subrectangular if

(B.1) Pij >0 and Pi,r > 0 ::>Pit > 0 and Pi’i >0.
Let P be a subrectangular matrix and define"

(B.2)
I(P) {i: Pq > 0, some ]},

J(P) {]: Pij > 0, some i}.

Then we may easily verify that

(B.3)

(P)
{j" Pij > 0}

{i" eii > 0}
I(P)

if e/(P),
if i I(P),

if ] e J(P),
if j J(P).

Using (B.3), we obtain three fundamental properties of subrectangular matrices
required in 4.

LEMMA B. 1. a [P] < 1 P is subrectangular.
LEMMA B.2. The product of any matrix with a subrectangular matrix is subrec-

tangular.
LEMMA B.3. If P is subrectangular, then {T(zr, z): zr YI, rP(z) 0} is a closed

subset of II(J(P(z))), where II(.) is defined by (3.10).
For a more detailed discussion of subrectangular matrices and their applications,

see [22].
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SCHAUDER DECOMPOSITIONS, APPROXIMATIONS AND CONTROL
PROBLEMS*

HIDEAKI KANEKO" AND WILLIAM H. RUCKLE-

Abstract. A Schauder decomposition for a Banach space X is a sequence {Pn} of finite rank continuous
projections such that (a) PnP, P,Pn emin{m,n} and (b) lim,, Pnx x for each x in X. Schauder decom-
positions can be used to approximate the solution to optimal control problems defined on X. For example, let
S and T denote continuous linear operators from X into itself; let u be a point in the range of S and let p be a
continuous seminorm on X. The problem:

(I) find x (and c) in X such that (a) S(x) u, (b) c x Tx,
(c) p(c) is a minimum,

can be discretized to the problem:

(II) find x (and c,) in the range of P, such that (a) Sx Pu,
(b) cn xn -PTxn, (c) p(c,) is a minimum.

We discuss conditions under which the minima found in solving (II) converge to the minimum in (I) as
n . Then we illustrate our theory by computing approximate solutions to the problem:

(III) find functions x (and c) such that (a) x(t) is given for
in [011/2) U [, 1], (b) c(t)= x(t)-o x(s) ds,
(c) o c(t) dt is a minimum.

Introduction. Schauder bases and decompositions are classic means of approxi-
mations in the abstract theory of Banach spaces. A reasonable question is whether these
theoretic devices can be of service in solving practical problems. In studying the
literature the authors have not found explicit reference to the theory of Schauder bases
in the treatment of concrete examples. For example, even though the author of the huge
compendium [4] has a well-known interest in the theory of best approximations, this
work contains no applications of Schauder bases to practical approximation. On the
other hand, many authors use Schauder decompositions as approximation schemes
without recording this fact. For instance, in the paper [1] the arguments essentially rest
upon properties of Schauder bases and decompositions. The trapazoidal rule for
integration can be described in terms of Schauder’s original basis of C[0, 1]. In this
paper, we offer further evidence for a positive answer to the above question in a case
where the approximation problem is more complicated. We preface our main dis-
cussion ( 2) with a basic theory of approximation in a Banach space with a Schauder
decomposition ( 1). In 2, we describe an optimal control problem which is essentially
to drive a function from an initial state to a terminal state in such a way as to minimize a
given functional. We then show how this problem can be embedded in a Banach space
having a tailor made Schauder basis. We also derive formulas for the matrix which
occurs in the discretized problem. In the final section ( 3), we present the results of
numerical calculations for two typical problems. Our main intention for including these
calculations is to demonstrate the relevancy of the preceeding theory. The numerical
approximation which we use is indeed crude, but it is clean cut and seems appropriate to
the problems. For the first of these problems we compare the approximate solutions
with an exact solution obtained by means of the calculus of variations.

1. Approximation in a Banach space having a Schauder decomposition. The
purpose of this section is to develop a basic theory of approximation in a Banach space

* Received by the editors March 28, 1979, and in revised form October 15, 1979.

" Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 39631.
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having a Schauder decomposition. The theory which we develop is somewhat rudimen-
tary but most useable as we shall illustrate in 2 and 3.

DEFINITION 1.1. A Schauder decomposition for a normed linear space X is a
sequence {Pn} of continuous finite rank projections from X into X such that

(a) P,,P,,, Preen emin(m, },

(b) lim P,x x for x in X.

The usual definition of Schauder decomposition does not require that each P, have
finite rank [3]. Condition (a) implies that P, (X) = P,,, (X) if n =<m. The concept of
Schauder decomposition is a generalization of the concept of a Schauder basis; see [3]
for a discussion. For the purposes of approximation, the actual basis expansion may be
less convenient than some other vector basis of the range space P, (X). This is illustrated
in2.

TnzOZM 1.2. LetXbe a Banach space with a $chauder decomposition {P,}, let C
be a closed and bounded subset ofXsuch thatP, (C) Cfor each n, and let z be a point in
X\C.

(a) For each n there exists an element x, of best approximation of z in P, (C).
(b) If x, is as in (a) and x is the weak limit of any subsequence of {x,}, then x is an

element of best approximation of z by means of elements of C.
Proof. (a) The set P,(C) is bounded and closed in the finite dimensional space

P, (X). To verify that P, (C) is closed, suppose each y is in P, (C) and y y in X. Since
C is closed and P, (C) = C, y is in C. Moreover, P,y lim P,y lim y y so that y is
in P, (C). This implies P, (C) is compact. This means there exists a point x, in P, (X) on
which the continuous function q(x)= IIz-xll attains its minimum.

(b) Let {x,} be a subsequence of {x,} which converges weakly to the point x. The
sequence {x,- z} converges weakly to {x- z} so that by Lemma II. 3.27 of [1]

(1.1)
IIz x lim inf IIz

k

The last equality holds since {[Iz x.[[} is a decreasing sequence. From (1.1) we conclude
that

(1.2) IIz xll IIz y[I

for y in tA, P,(C). But LI, P,(C) is dense in C by Definition 1.1(b). This means that
(1.2) holds for each y in C.

The condition P, (C)= C is essential to guarantee that x, is not closer to z than
inf {l[x- z[[" x in C}. It may seem at first that this condition is contrived and diminishes
the applicability of Theorem 1.2. In the sequel we shall illustrate that we can tailor the
Schauder decomposition to suit the problem in such a way that this condition is satisfied.

COROLL.RY 1.3. Suppose X is a reflexive Banach space with a Schauder decom-
position {P,}. Let C be a weakly closed and bounded subset ofXsuch that P, (C) Cfor
each n. Then ]’or each z in X\C, them exists an element of best approximation ]’or z in C.

Proof. Since X is reflexive, and C is a weakly closed and bounded subset of X, C
must be weakly sequentially compact [2, p. 430]. Hence, the sequence {x,} obtained in
(a) of Theorem 1.2 has a subsequence which weakly converges to a point in C. By
Theorem 1.2 (b) this point is an element of best approximation of z in C.
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THEOREM 1.4. SupposeXbe a Banach space with a Schauder decomposition {Pn},
and p is a continuous seminorm on X. LetD be a bounded closed convex subset ofXsuch
that nP,(D)=D. Ifx in P,(D) is such thatp(x)=inf {p(y): y 6 P,,(D)} then{p(x,)}
decreases to inf {p(x): x D}.

Proof. Since P,(D)cD for each n it follows from Definition 1.1(a) that
P,,P (D) P,, (D) P, (D) if m _<- n. This means that {p (xn)} is a decreasing sequence. If
d lim, p(x,) then d -<_p(y) for y in fq,P,(D) so that d <-p(y) for y in Pn(D)=D.

COROLLARY 1.5. Suppose X is a Banach space with a Schauder decomposition
{P,,}, and D is a compact subset of X such that P, (D)= D. If {x,} is a sequence
determined by Theorem 1.4, there is a subsequence of {xn} which converges to a pointxo of
D for which p(xo) inf {p(x): x 6 D}.

2. A control problem and its finite dimensional reduction. In this section, we
formulate a control problem and suggest a means to solve it numerically by means of
Schauder decompositions. This control problem arises in connection with a typical
feedback system illustrated in Fig. 2.1. In the system illustrated, the input x(t) at ti.me
is the sum of the output Tx(t) and a control function c(t). We can represent this
algebraically by the equation

x= Tx+c.

x(t)

FIG. 2.1

The output of the system Tx (t) is usually considered to be determined by the state of x
from time 0 to time t. For example, one might describe T in terms of an integral
operator

Tx(t) | A(t, s)x(s) ds,
o

where A(t, s) is continuous in and s. The purpose of the control c could be to drive x
from an initial state

x(t)=Ul(t), O<=t<=
to a finite state

x(t)=u2(t), 1/2<-t<=l
at the least possible cost p(c).

We first consider the control problem from an entirely functional analytic view-
point. Let X denote a Banach space with a Schauder decomposition {P,}, and let $ and
T denote continuous linear operations fromX into itself. Let u be an arbitrary but fixed
point in the range of S, and let p be a continuous seminorm on X. We then pose the
problem



384 HIDEAKI KANEKO AND WILLIAM H. RUCKLE

PROBLEM 2.1. Find x and c in X such that

(a) Sx u,

(b) c x- Tx,

(c) p (x) is a minimum.

In a sequel, we shall show that the motivating control problem is indeed a special
case of Problem 2.1. The formal resemblance should be clear. Our present task will be
to disci’etize Problem 2.1 by means of the Schauder decomposition of X and to
determine the value of solutions of the discretized problem as approximations of the
solution of Problem 2.1. The discretized problem is the following

PROBLEM 2.2. Find xn and cn in R (P), the range of Pn such that

(a) Sxn =Pnu
(b) c x -PTxn
(c) p(c) is a minimum.

Consider this question: if {xn, c,} is a solution to Problem 2.2 in R (P) how good is
it as an approximation to the solution of Problem 2.1 ? Of course, since {P,u} converges
to u, we can approximate u as closely as we like. But how does p(c,) compare with m
given by

rn inf {p(c): c x Tx, Sx u}?

For each n 1, 2,. ., let

r,, inf {p(c): c x -PnTx, x R (P), Sx Pu}.

THEOREM 2.3. If each P commutes with S, then lim sup, r, <- m.
Proofi Denote I- T by Q. For x in R (P,)

P,Qx Pn(I- T)x P,x -P,Tx x -PnTx.

Since lim, P,Qy Qy for each y in X, the seminorm q defined by q(y) SUpk p(PkQy)
is continuous on X by the uniform boundedness principle. Given e > 0, let y in X be
such that Sy u and p(Qy)m + el2. Let N be such that for n _->N

q(P,y y) +p(PQy Qy) < e/2.

For n _-> N we have SPry -PSy Pnu so that

r, <- p(P,QP,y)

<-p(Qy)+p(-Qy +P,Qy)+p(-PnQy +PQPy)

-< p(Qy) +p(PQy Qy)+ q(Py y)

<m+e.

Therefore, lim sup, rn _-< m.
COROLLARY 2.4. Suppose for e >0, x, in R(P,) is such that Sx, =Pnu and

p(x-P,Tx,)<r, + e. If x is the limit of any subsequence of {x,} then Sx u and
p(x Tx) <-_ m + e.

Proof. We may assume that limn x, x. It follows that Sx lim Sxn limn Pnu
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u. Since

rx P.rx. I]--< Tx P.rx + IIPrx P.Tx.

<= rx P.rx / ( sup liP. II)II rx rx. II,

we conclude that limn PTx Tx and

p(x- Tx)= lim p(x -P.Tx)

=< lim sup rn + e

<=m+e.

COROLLARY 2.5. Suppose for each n 1, 2,..., xn in R(Pn) is a solution to

Problem 2.2. Ifx is the limit ofany subsequence of {x}, then x is a solution ofProblem 2.1.
Our next theorem gives conditions on the operators $ and T under which the

approximations converge.
THEOREM 2.6. Suppose (i) Tis a compact linear operator, (ii) $ commutes with each

P,, (iii) there isM > 0 such thatfor each e > 0 and n 1, 2,. , one can find x, in R (P,)
with Sx. =Pnu, Ilx.ll<=Mand p(x.-P.Tx.)<-_r. +e. Then lim. r. m.

Proof. Since T is compact, lim. (I-P.)T 0 in the uniform operator topology.
Let v be any vector such that Sv u. Given e > O, let N be such that

sup {p((I-P.)Ty)" [[y[[<-M} <- e/4,

p((I-P)v)<e/4,

p(T(I-P.)v)<e/4

for all n _-> N. The first inequality holds since T is compact, the second and third since
lim. (I-P.)v 0. Given n >_-N, let xn in R (P.) be such that Sx. P.u, IIx ll-<-M and
p(x.-PnTx)<-r +e/4. Then S(x. +(I-P.)v)= u so that

rn <-p(x. +(I-Pn)v- T(x. +(I-P.)v))

<- p(x. P.Tx.) + p((I Pn) Tx) +p((I- P.)v) + p(T(I P.)v)

<-r,+e.

Therefore, we conclude m-<liminfrn. This, together with Theorem 2.3 shows
lim r m.

THEOREM 2.7. If T is compact, and S commutes with each P,, then for each e > 0
we can find N such that lie-(x- Yx)ll <  llxll whenever c and x are solutions ofProblem
2.2 with n >= N.

Proof. Let N be such that IIT-P,T[[ < e for n->_ N. If x and c are solutions to
Problem 2.2 in R (P,), we have

lie (x Yx)ll lie (x P.Tx) + Tx P.Tx
Zx rx

We now return to a concrete version of the control problem described at the
beginning of the section, and analyze it by constructing an appropriate Banach space
with a Schauder decomposition. Let A (t, s) be a continuous function from [0, 1] x [0, 1]
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into [0, 1]. Let ul(t) be a continuous function defined on [0, 1/2) and u2(t), a continuous
function on [32-, 1 ].

PRO3LEM 2.8. Find functions x and c such that

(a) x(t)={ ul(t)’ 0<---t<1/2’
u2(t), _-<t--<l,

(b) c(t) x(t)- fo A(t, s)x(s) ds,

I01 t)
1/p

(c) Ic(t)[ d is a minimum (p _-> 1).

In order to treat Problem 2.8 after the manner of Problem 2.1, we define a Banach
space Z with an underlying Schauder decomposition with the properties needed for
applying the appropriate theorems. For n 1, 2,... let H, denote the set of 3
functions Hn 1, H,2," , H3- defined on [0, 1] by

H,i(t) ! 1

0

fortin[i-1 i).3 ,3’

otherwise

(i 1, 2,. ., 3) except that gn3-(1) is 1 instead of 0. Let Z denote the closed linear
span of LI, H in the space B[0, 1] of functions bounded on [0, 1]. Here B[0, 1] has the
uniform norm

Ilxll-- sup {Ix(t)l: 0 _--< 1}.

By a uniform continuity argument, it follows that Z contains C[0, 1] as well as the
function u(t) defined to be ul(t) for 0_-< t_-<1/2, u2(t) for 32-_-< t-< 1, and 0 otherwise, where
u and u2 are the. functions in Problem 2.8. For x in Z we define

Px (t) ,Z1= x Hi (t).

Then P, is a projection from Z onto the linear span of H, in Z. We shall verify that {P}
is a Schauder decomposition of Z. If n >- m, P,H,, Hmi so that lim P,H H for each
H in U H,. Since Ilenxll <- Ilxll or each x in Z, it follows from the Banach-Steinhaus
theorem [2, p. 60] that limn P,x x for all x in Z. This verifies Definition 1.1 (b). To
verify Definition 1.1(a), note that if m < n

(PmP.X P.,( -1

i-1

Now Pm (H,i) is 0 unless (i- 1)/3 is (/"- 1)/3" for some/" in which case P,, (H,i) is Hmi.
Therefore, we conclude that
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On the other hand,

PnP,,x m x( -1

i=1
-)Pn(Hmi)

3m i-1

i=1

We can now define Sx, Tx and p(x) for x in Z by

Tx(t) Io A(t, s)x(s) ds,

Sx(t)={It), tin[O,)U[, 1],
tin [,-),

p(x) Ic(t)l" d

Obviously SP, P,S for each n, so if we add the condition "Find x and c in Z" to
Problem 2.8, we can apply Theorem 2.3. Problem 2.8 can then be discretized to the
following problem in R (P,) [H].

PROBLEM 2.9. Find x and c in [Hn] such that

(a) Sx P.u,

(b) c x -P.Tx,
lip

is a minimum.

If we set Ci c((i- 1)/3"), Xi x((i- 1)/3n) and Ui u((i- 1)/3") for
1, 2,. , 3, then Problem 2.9 assumes the following form.

PROBLEM 2.10. Find vectors x and c in R 3" such that

(a) xi--ai, i=1,2,’’’,3n-1 2"3-1+1 3

(b) c x-Ax,

(c) Icil is a minimum.
i=1

Here A is a 3 x 3" matrix whose entries are computed as follows:

i- 1 (i-1)/3n

A{ -1 s)x(s) dx

(i-1) ilI((i--1)/3’*X -- j=l /-1)/3 3---if-, x ds
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since x being in R (Pn) is actually a step function. Thus we have

Ci Xi- A s ds xi.
i=1 i-1)/3

This means that A (aij), where

A s ds, f<i-1
aii --1)/3n

]>i-1.

We shall obtain some specific numerical solutions to Problem 2.10 in the next section.
The theory developed here also applies to Problem 2.9 with a delay namely the

following.
PROBLEM 2.11. Find x and c such that

u(t), in [0, ),
(a) x(t)

ue(t), in [}, 1],

(b) c(t) x(t)- o A(t, s)x(s -) s,

(c) ([o lc(t)[PdO is a minimum.

In Problem 2.11, x(t)= 0 for < 0. The only change needed to reduce Problem
2.11 to the form of Problem 2.9 is to redefine T by

Tx(t) Jo A(t, s)x(s-) s

t--l

A(t, s + )x(s) s, >.
/3

In this case, the entries of the matrix A in Problem 2.10 are given by

if N 3- for all ,
i/3-/3

ai= A{i-1
]-1)/3-1/3

, S + ds if > 3n- and 3- <f N i,

3. Two numerical examples. We shall now use the ideas developed in 2 to

approximate solutions to Problem 2.8 in two particular cases"

(A) x(t)
0, 0-<-t<1/2’
1, _-<t_-< 1,

p=2, A(s,t)=l, (s,t)IxI,

1, 0 <- < 1/2,
(13) e,t <_t<_l,

p=2, A(s,t)= l, (s,t)IxL

In case (A), we were able to find an exact solution to Problem 2.8 by means of an

arduous but unenlightening application of the calculus of variations. For the purpose of



SCHAUDER DECOMPOSITIONS 389

comparison, the functional (o Ic(t)[2 dt) 1/2 is a minimum when x(t)=pe2/3-t+ Qe’,
where P is approximatedly .142573 and Q is .110974. The minimum value of
( [c(t)[2 dt) 1/2 is .20189. We expect that in case (B) an exact solution will be much
harder to find.

After reducing Problem 2.8 to Problem 2.10, we can further modify Problem 2.10
to put it in a form more suitable for computation. We want to minimize

3

p(c) 3-" I;
i=1

3-here 3-"((I-fi,)x)r((I-A)x)
=xr(I-A)r(I-A)x
xTBx,

where B (I A) 7-(i A) is a symmetric 3 3 matrix. In Problem 2.8, the first and
last 3 n-1 elements of the vector x are given. Hence the minimization problem is simply
solving 3n- equations for 3-1 elements which occupy the middle third of the vector x.

We partition x and B thus

x= and B= B21 B22 B23[,
31 B32 B33_]

where a, z, b are 3-a dimensional vectors and the submatrices Bo are 3-1x 3-matrices, i, ] 1, 2, 3. We then have
T

C C xTBx
T=z (B2a+B2b)+(arB2+brB2)z +zB22z+R,

where R does not depend on z, i.e., is constant. Since B is symmetric we obtain

(3.1) crc 2(arB12 + b TB32)Z + zrB22z + R.

We then take the partial derivatives of crc with respect to the components of z and set
them equal to zero to obtain

B22z= -B2a- B32b,

which we can solve for z using standard FORTRAN routines.
Numerical results for problems A and B are tabulated in Tables 1 and 2.

TABLE
Problem A

4 Exact

x(]
lOx()
11x()

x(
13x()
14x()

x(
x(

17x()
min ( Ic(t)l dt) 1/z

.32110

.32467

.33184

.23393

.32993

.33037

.33124

.33255

.33430

.33650

.33914

.34222

.34576

.21315

.33315

.33345

.33420

.33541

.33707

.33918

.34176

.34480

.34830

.20636

.35385

.35246

.35155

.35113

.35119

.35172

.35275

.35425

.35624

.2O189
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TABLE 2
Problem B

n=3 n=4

.8211O

.83410

.84819

.86341

.87976

.89728

.91599

.93591

.95707

.71659

.80606

.81898

.83302

.84818

.86449

.88198

.90066

.92056

.94170

.65922

4. Remarks. As we stated in the Introduction, there are in the literature many
examples of Schauder decomposition which are not identified as such. Since these
examples include the most obvious and useful Schauder decompositions, we cannot
claim that our present work contributes new and useful numerical techniques. For
example, the Schauder decomposition introduced in [2] is simply a piecewise constant
approximation schememthe first type of approximation that one would consider.

On a more positive note, we point out that the theory developed in 1 quickly
shows that the given approximation scheme or those like it lead to a useable approxi-
mation of the solution to the control problems of 2. This means that in order to attack
such problems one need only verify that the scheme results from a Schauder decom-
position or, even better, tailor a Schauder decomposition to suit the problem as we have
done. Thus our work has the potential of (a) unifying diverse results on convergence
under a single theory; (b) suggesting a way to attack problems like those in 2 without
working out a special theory of convergence.

Toward point (a) above, we shall note in a future paper that the nth degree
polynomial approximation of a function form a Schauder decomposition of the Sobolev
spaces W n 1, 2, 1 < p < oe, and exploit this fact to verify some known results
on nth degree polynomial approximations.

Finally we note that the matrix problem solved in 3 is a special case of a least
squares problem. The method we used to solve it, is essentially Algorithm 2.10 given in
Chapter 5 of [5]. Because of the special nature of the problem we were able to reduce
the size of the matrix by two-thirds.
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WELL-POSEDNESS OF SOME EVOLUTION PROBLEMS IN THE THEORY
OF AUTOMATIC FEED-BACK CONTROL FOR SYSTEMS WITH DIS-

TRIBUTED PARAMETERS*
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Abstract. The subject of this paper is the evolution, in time, of systems of diffusion type controlled by an
automatic feed-back mechanism using a finite number of observators and control-inputs. For the initial-
boundary value problem for a functional partial differential equation of parabolic type, which the state
variable has to satisfy, the following types of questions are considered: existence, uniqueness, regularity and
continuous dependence on data of a solution. Answers to these questions are given in function spaces of
H61der and Sobolev type.

1. Introduction.
1.1. Purpose of this paper. In this paper we shall consider a system for which, in the

uncontrolled situation, the behavior is described by an evolution equation of diffusion
type ((1.1.1) with II -0) together with initial and boundary conditions (1.1.2-3). In the
controlled situation an automatic feed-back control mechanism is applied to this
system. The effect of this control is accounted for by the term IIu in (1.1.1). II is called
the feed-back control operator.

(1.1.1) (L + II)u +f, FPDE,
8t

(1.1.2) Bu =&, BC,

(1.1.3) u(., 0)= 0, IC.

In the uncontrolled case a rather well-developed theory for existence, uniqueness,
regularity and continuous dependence on (f, b, O) of the state u is available.

In Ladyzenskaja, Solonnikov, Uraltseva (1967) such a theory is given using
function spaces of HSlder type. We shall refer to this type of theory as "C-theory".

A theory using function spaces of Sobolev type can be found in Lions, Magenes
(1972). To the latter type of theory we shall refer as "H-theory".

In the controlled case, the structure of the operator H will be such that (1.1.1) is no
longer a PDE but a FPDE, where "F" abbreviates "functional".

The purpose of this paper is to give a "C-theory" as well as a "H-theory" for the
existence, uniqueness, regularity and continuous dependence on (f, &, 4’) of a solution
of (1.1.1-2-3) in the controlled case.

As for the structure of the operator II we shall take an approach, in which, right
from the beginning, we shall deal with control in feed-back form using only a finite
number of observators and control inputs. This in contrast with the work of Lions

(1971), where much more of an open loop approach for the control term is taken.
Now we shall first demonstrate, with an example, what type of automatic feed-back

control mechanisms we have in mind in 1.2. In 1.3 we shall explain, in full generality,
the setting in which we shall consider the problem (1.1.1-2-3). In 1.4 we shall discuss
the strategy to attack (1.1.1-2-3). Next we shall look at the concept of compatibility of
the data in 2. In {} 3 we shall deal with a theorem that appears to be very useful for the
derivation of our main results. Then these main results will be discussed in 4 and 5. In

* Received by the editors November 28, 1978, and in revised form September 24, 1979.
"f Mathematical Institute, University of Utrecht, Budapestlaan 6, Utrecht, The Netherlands.
$ Dept. of Mathematics, Free University of Amsterdam, De Boelelaan 1081, Amsterdam, The Nether-

lands.
391
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6 the developed theory is applied to some examples. There we shall also come back to
the example of 1.2 for explicit calculation of some solutions.

1.2. An example taken from physics. Consider the distribution of temperature u in
a plate D with an isolating boundary OD. Let g be the autonomous production/absorp-
tion of heat and let 4’ be the initial distribution of temperature. Suppose, that in order to
control the system, temperature is permanently observed in the points: y16 D, , y,
D, D D OD. This information is fed-back to a heating/cooling apparatus charac-
terised by control input functions on D’cl, , Cq (see Fig. 1).

FEED-BACK

OBSERVATORS

b support c
[CONTROL INPUT[
FIG.

Suppose that ideal values for the temperature in yl, Yp at time --> 0 are known
to be Ii(t),""", Ip(t).

As for the feed-back we consider the following examples.
(i) Instantaneous feed-back: the control action producing/absorbing heat in a

volume element dx at x 6 D during a time interval (t, + dt) is given by

ci(x, t)hii(t)(u(yi, t)-I.(t)) dx dt.
i=1

(ii) Feed-back with (simple) memory" the control action at x in dx during (t, + dt)
is now given by

1 Ci(X, t)hi(t) e-g(t-’)(u(yi, z)-I.(z)) d dx dt.
i= /=1

--1Here/x > 0 is the characteristic time for loss of memory.
A model for this controlled system is given by

(1.2.1) (A + H)u +f, FPDE,
Ot

On
(1.2.2) O-- 0,

(1.2.3) u(., 0)= ,
with A the Laplacian, 0/0ff the normal derivative.

For the feed-back control operator we get

q p

(1.2.4)

BC,

IC

n Y E cif/
i=l j=l
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with observators 6y defined by

(1.2.5) (6y,u)(t) u (y., t),

and with feed-back coupling operators F0 defined by

(1.2.6)
(Fox)(t) ho(t)X(t

h’-ii(t) pt e-g(t-’)x(r) de"

The inhomogeneous term f in (1.2.1).is given by

in case (i)

in case (ii).

q p

(1.2.7) f=g- Y. Y. cFI,..
i---1 1=1

Note, that the operator 1-I of (1.2.4) has a nonlocal character in space. In case (ii), II also
has a delayed character in time. These facts cause (1.2.1) to be an equation of more
complex type than a PDE.

1.3. Description o the general problem. Let us now discuss the general setting in
which we consider the problem (1.1.1-2-3).

u(x, t) will be the state of the system; x, the vector of space variables; x D and t,
the time variable, [0, T]. D will be a bounded, open domain ";D denotes the
closure of D, 0D D\D. For simplicity we suppose, that 0D is smooth. Let us introduce
the notation" O D (0, T), F OD x (0, T). L will be a linear, second order, uni-
formly elliptic PDO"

(1.3.1) L= aiiOq+ aiD,+ao
i=1]=1 i=1

JR" v" aij(x, t)i >-with Di O/Oxg, Dii 02/OxgOxi and ::iE > 0, V(x, t) e (, V: e &,i=l /=1
E Ein__l /2. All coefficients of L are allowed to depend on x and t. For simplicity we
suppose" aij, ai, ao C(0), 1 <- i, ] <- n.

The operator B will be linear and of order v with v 0 or v 1.

(1.3.2)
B 1, Dirichlet BC, v O,

B= bD + bo, NeumannBC, v=l.
i=1

The coefficients bi, bo, 1 <-i <-n are allowed to depend on x and t. For simplicity we
suppose b, boeC(’), l<=i<=n. Furthermore we assume, that V(x,t)e’,
Y.i"=l b(x, t)(x)> 0 with if(x) the outward directed normal on OD at x.

As for the regularity of the data f, &, we suppose

(1.3.3)

f C’’/ (0),, c,a/. (p),

o co(D),

3,3,30>-_0

f Ha,t/2 (O),

c Ht’t/2 (F),

4’ H&(D),

3,,3o>=0.
Here we used for the first time a form of specification which will often be used
afterwards in the same way: at the left of the vertical bar the specification refers to



394 AART VAN HARTEN AND HANS SCHUMACHER

"C-theory", at the right of the vertical bar the specification refers to "H-theory", i.e.,

"C-theory" "H-theory".

C’/ (() denotes the H61der space of order fl in the spa.c.e directions and of order
fl/2 in the time direction. For the definition of Co’o/(O), C’/ (P), CO(/}) and their
usual norms I" I./, I" I,/, I" Io we refer to Ladyzenskaja, Solonnikov, Uraltseva
(1967) with the important remark that these spaces are indicated there with C replaced
by H.

For the definition of the Sobolev spaces H’/ (0), H’/ (F) and H(D), and
their usual norms II" I1" I1" I1 o, we refer to Lions, Magenes (1972, vol. II, p. 6)
and Adams (1975, p. 208).

From now on the notation/3,/,/30 will be reserved for and will always refer to the
indices indicating the regularity of the data as introduced in (1.3.3).

In addition to the regularity of the data it is important to consider the compatibility
of f, 4, 4’. This is done in 2.

Let us now describe the general form of the feed-back control operator II. We shall
take

q p

(1.3.4) II= Y, Y, ceFiiP
i=1i=1

with

control input functions Ci, 1 <- <= q
observators Pj, 1 <- j <- p;

feed-back coupling operators Fii, 1 <= <- q, 1 <-_ j <- p.

Further we suppose

II L(C,//2 (()--> Cv,v/2(()), II 6 L(H/,’/2 (O)--> nv,’/2(O))
(1.3.5)

For Banach spaces X, Y we denote by L(X - Y) the space of bounded, linear operators
from X into Y.

An important role will be played by

(1.3.6) , , ,.
a is called the order of the feed-back control operator.

It will not be surprising that for our theory of well-posedness of the problem
(1.1.1-2-3), we have to distinguish between the cases where the order of the feed-back
control operator II is smaller than, or larger than/equal to, the order of the diffusion
operator L. In 4 we shall deal with the case 0 =< c < 2 and in 5 we consider the case
a__>2.

Our requirements for Pi, Fi, c, 1 -< -< q, 1 -< j =< p are specified in (1.3.7-8-9).

(1.3.7)

Pi L(c’’/2 (0) Cv/2 [0, T])

and:

:t/3 c’/a([o, T] C (/)’) such
that

VU C’/2 (0), Vt 6 [0, T],

(Piu)(t) #i(t)u(’, t).

Pi L(H;/’’/2 (O) H’/2 (0, T))

and:

=1 H’/a((O, T)- Ha(D)’) such
that

Vu H’/ (O) a.e. in (0, T),

(Piu)(t) i(t)u(" t).
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By C (D)’, H (D)’ we denote the topological dual spaces of C (D), H (D) equipped
with their usual norms.

Note that the contents of (1.3.7) are that Pj acts instantaneously with its value on u
at time given by/Sj(t)u(., t), where/5.(t) possesses a prescribed regularity in t.

If P." C(0) C[0, T] (this is not necessarily true in the case of H-theory if
0 =< y _-< 1, but is implied by (1.3.7) in the other cases) then a consequence of the fact that
Pi acts instantaneously as defined in (1.3.7) is" Vu, v C(t), Vt [0, T], u(., t)=
v(., t) : (Piu)(t)= (Piv)(t).

(1.3.8)
F/i L(CV/2[0, T]),

F0. nonanticipative

Fii L(HV/2(O, T)),

F0. nonanticipative.

For a Banach space X we abbreviate L(X-X) to L(X).
Nonanticipativity of Fo. means, that for all elements , rt of CV/2[0, T], Hr/2(0, T)

and V (0, T)"

Ci C"r’3/2 (0) ci Hv’v/2 (O).(1.3.9)

The operator H will be called of type (y, ), if (1.3.5-6-7-8-9) are satisfied.
From now on the notation y, a will be reserved for, and will always refer to, the

type of the operator H as introduced above. A natural question is of course whether the
requirements (1.3.6-7-8-9) already imply (1.3.5).

In the case’ of "C-theory" this is indeed true. In the case of "H-theory" it is true if
y > 1 but not necessarily if 0N y N 1 One of the reasons is, that in general, for
Ci Hv’v/2 (O) and 6 HV/2(0, T) with 0 y 1, the function defined by c(x, t)(t) is
not an element of HV’V/2(O).

A sufficient supplement to (1.3.6-7-8-9) in the case of "H-theory" with 0 y 1,
in order to imply (1.3.5), is

(1.3.10)

ess sup {llci(’, t)ll +III(t)[IHD)’}< if 3’ [0, 1],
0<t<T

and furthermore, if 3’ > 0, ::16 > 3’/2 such that

ess sup t)-c(.,  )llo+
0<t<r<T

Note, that if in the example of 1.2 we take C CC(O), hii, ii C[0, T], then
(1.3.5-6-7-8-9) are satisfied for any choice of 3" [0, c) with

n
(1.3.11) a =0 a =+e, arbitrarily small

The choice of a in the case of "H-theory" is a consequence of the fact that for s > n/2,
H (D) is continuously imbedded in C(3), see Adams (1975, p. 97).

It will be clear that the setting (1.3.5-6-7-8-9) for the control term is rather rich: it
admits many examples quite different from the ones of 1.2. The following additional
examples may serve to demonstrate this.

Firstly it is allowed to take observators which use derivatives in space-directions
and/or integration, averaging in space.

In the model of 1.2 one can, for example, think of an observator/ that observes
the flow of heat through the smooth boundary S of a sub-domain D, of D. This leads to
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(Pu)(t)=s(OU/Ot)(x, t)dx, where O/Off denotes the normal derivative in outward
direction on S. Such an observator would fit in (1.3.7) with

3(1.3.12) y>_-O, c=l 3/>0, a-2.

In the case of "H-theory" the choice of a is here a consequence of the theorem on
traces on the boundary, see Lions, Magenes (1972, vol. II, p. 9).

Secondly it is allowed that the feed-back coupling uses time-derivatives in an
essential way.

In the following example the feed-back coupling operator F maps the function on
which it operates to a smoothed piecewise linear approximation: (F)(t)=
o_-<n <t [(n) + (n)(t- n)]H(t n).

Here sc denotes the time derivative of :. The function H is supposed to be
6 C[0, oo) and further H ->_ 0, H(0) 0, H(t) 1 for e <= <_- 1, H(t) 0 for >- 1 + e, e
a positive constant << 1.

Such a feed-back coupling would fit in (1.3.8) if

(1.3.13)

The choice of -/ in (1.3.13), in the case of "H-theory", is a consequence of the
imbedding theorem (see Adams (1975, p. 97)).

Finally it is useful to remark that certain feed-back operators II which are not a
priori in the form specified here above can be rewritten to that form.

For example, II cFP with c C(t), F the identity operator and (Pu) (t)=
y(u + s(Ou/Ot)). Here s denotes a constant >0 and 6y is as in (1.2.5).

Note that this P predicts in a simple way the value of tyU at the time + s from the
data at time t.

Certainly P doesn’t satisfy the conditions given in (1.3.7), because of the 6y(O/Ot)
operation. But this operation can be eliminated!

From (1.1.1) we derive

OU
6y--2S. 8y (Lu +f+ c6yu + s6yc6y-?.

In other words: $r(Ou/Ot)=z6r(Lu+f+c6yu) if we suppose z=(1-s6rc)-a to be
nonsingular.

Now we can rewrite Hu IIu +1 with l’I c 6y (1 + sL).
Here we denote ca zc and 1 scz 6yr.
Equation (1.1.1) can be rewritten as Ou/Ot=(L+I)u+g with g=f+ This

equation is of the same type as (1.1.1) with the difference that H has been replaced by II.
Now II satisfies the conditions in (1.3.5-6-7-8-9) for any 3’ e [0, oe) with

(1.3.14) a =2
n

a 2++ e, e > 0 arbitrarily small.

The verification that the choice for a in the case of "H-theory" suffices is analogous to
(1.3.11).



EVOLUTION PROBLEMS IN AUTOMATIC FEED-BACK 397

1.4. On the strategy to attack the problem. Using the compatibility of the data the
problem (1.1.1-2-3) will first be rewritten as

OU
(L + 11)w + fo,

ot

(1.4.1) Bw =&o,

w(., o)=o,

where f0 and &o vanish up to a certain order for $ 0.
The advantage of (1.4.1) is that the solution W of the corresponding uncontrolled

problem is a "nice" function, where originally this is not necessarily true. Now (1.4.1) is
equivalent to

(1.4.2) w SHw + W

with S the solution operator of the uncontrolled problem with homogeneous initial--
and boundary conditions.

In the case that the order of II is less than 2, it is possible to show directly from the
compactness and nonanticipativity of SII the invertibility of I- SH. This is done by the
important lemma given in 3. The solution of (1.4.2) is given by (I- $1-I)-1W and can
be analyzed.

This method fails, however, if the order of II is larger than 2, since SH is not
compact then. In this case we deduce from (1.4.2) a Volterra integral equation for the
functions Piw, 1, , p. This is done by operating on (1.4.2) with Pj(t). This Volterra
integral equation is then solved by using the lemma of 3. The properties of w are next
found from (1.4.2), since we have w $ qi=l Ej=lP ciFiiP;w + W, where the Piw’s are
now known.

2. On the compatibility ot the data. In order to have a solution of (1.1.1-2-3) which
is sufficiently regular at 0 near the boundary of D, it is necessary that the data f, &,
are compatible there in a certain sense. This is well-known in the uncontrolled case. Let
us now investigate compatibility in the controlled situation.

In order to do so it is very useful to introduce the following function spaces"

(2.1)

c,/(O),
o

C[0, T]
0

H (0, T).
0

They are defined as the closure in the spaces without the subscript o of the
oo-differentiable functions with supports that have no point in common with {t 0}. It
can be shown (see Ladyzenskaja, $olonnikov, Uraltseva (1967) and Lions, Magenes
(1972)), that usually the function spaces introduced in (2.1) can also be described as the
subspaces of the function spaces without the subscript 0 consisting of functions for which
the time derivatives at 0 vanish up to some number. This number is given below
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together with an indication when the characterization is valid.

(2.2)

[/3/2] if/3 >- O,

[//2] if/ -> O,

[6] if 6_>-0

[1/2(/3-1)] if/3_-->0, 1/2(fl+I)ZIN,
[1/2(d- 1)] if/ _-> 0,

[6-21- if 6>-0,

As usual [6] denotes the largest integer _-<8.

If the number given in (2.2) is less than 0 the function space with subscript o
coincides with the space without subscript o.

Now we use the function spaces introduced in (2.1) to define the concept of
compatibility of the data f, b,

The data will be called compatible of type f12, 31,/1, if 32 >- max (2, 3’), 3i -> 0 and

(2.3)

=Iv C2’2/2(() such that

v(., o)= ,,
4)- By C’/(P),

0

f--+ (L + II)v e
o

::IV Ht3z’2/2 (Q) such that

v(., 0) ,,
ck By Hl’91/2(F),

o

{-+ (L + II)v
o

From now on the notation 32, 1, 31 will be reserved for, and will always refer to, the
indices indicating the type of compatibility as introduced in (2.3). Let us introduce

(2.4)
I([, , )1c,,B1

inf {[v[o,t2/21v satisfies (2.3)}

II(f, , z)ll;%,,,
inf {llvll=,=/=l satisfies (2.3)}.

Here we use the convention inf oo. An equivalent formulation of (2.3) is

(2.5) I(f, b, 0)1 cv
[2,1,1 < 00 II(f, , )11c

However, it would be preferable if under certain conditions we would be able to derive a
less abstract, better verifiable criterion for the compatibility of the data than (2.3).

In order to do so let us first give some easy consequences of the nonanticipativity of
the feed-back coupling.

c [o, r]

(2.6) for 1 -< <- q, 1 <- -< p,

0 0

F, Hv/2(O, T) c "/2o/;/ (o,r)1 o

forl<-i<-q, l <=j<=p,

H H"//2(O) Hv’v/2(O).
o 0

It appears to be possible to calculate the time-derivatives at 0 of Fi:, in terms of
the time-derivatives at 0 of c itself, by a simple matrix multiplication. More precisely
suppose"

(2.7) sc 6 CV/2[0, T] Hw2(O, T), 3">1, 1/2(3,+
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Define

d(,/) [,//2] d(,/) [1/2(T- !)].

If we define Der as the vector in [d(T)+l with

0,(2.8) (Der )l -t ), 0_-< <- d(T)

then we have the relation

(2.9) Der Fij A ii Der

with A the (d(/)+ 1)x (d(T)+ 1) matrix with the matrix elements

}1kl Fij(t l) 0 N k, N d(7)
t=0

(where with (t l) we mean the function t.* tl).
a(r) (Der )dlt defines an element ofIn order to prove (2.10) we observe that so(t) Y’. 1=o

Cr/2[0, T], H/2(O, T). Using (2.6) we find that Fq-/__o() (Der)lFq(t)lSt in
0 o

C7/2[0, T], H"//2("
o o

,, T), and from this fact (2.9-10) are straightforwardly found

A special situation arises if the matrices A’ have a lower triangle form"

(2.11) k < AiJkl= O.

This will be the case for example, if in addition to (1.3.8), we suppose that

(2.12) Fi L(C[0, T]) Fii L(L2(0, T)).

This statement is proven in the following way.
Suppose Aqkl: 0 with k < l. Then Fq(tl-1) behaves as Alt for $ 0. Consider

g,(t) tllYI(lzt)withte C[0, oo),/-(r) i for re[0, 1], N(r) 0 for r => 2. A simple
calculation shows that Fii cannot be bounded in the sense of (2.12) on the functions sou
for/x -.00. From this contradiction we see that (2.11) follows from (2.12).

In the example of 1.2 with hi, hj6 C[0, T], (2.12) is certainly fulfilled and
consequently we are in the situation of (2.11) there.

The following notation will be useful:

(2.13)

Ci, -. Ci t=O’

aij, l, ai, and ao,l are defined analogously to Ci.l

Note that

(2.14)

LI ,
aij,iDq+ ai,lDi+ao, l.

i=1 j=l i=1

Ci, CT-2l

Pi,, e C(D

for 0 -<- <- d(T)

i,lHV-21+l(D),
Pi,ln(D)

if 3’ > 1, 1/2(T- 1)e N
and 0 -<_ =< d(T).
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Our first result for a more direct characterization of compatibility concerns the case
0=<a<2.

LEMMA 2.1. Suppose that:
ASSUMPTION 2.1.1. The indices indicating regularity of the data (see (1.3.3)),

compatibility of the data (see (2.3)), and the type of the operator (see (1.3-5-6-7-8-9))
satisfy:

(2.15)

,82-->2, 1 =/3 T=/32-2, ONce <2,

/0 =/2, /0 =/32- 1,

a

ASSUMPTION 2.1.2. If d(y)>=O with d(y) defined as in (2.7), then the following
linear algebraic system of equations in the variables Zs,s’.m, I<=S <--p, O<=m <= d(y),
0 <- s’ <= d(y)- m possesses only the trivial solution

(2.16)

zs.s,,o 0, l <--_s <--p, O<-_s’<-d(y),

ifd(y)-> 1 then]or 1 <-m +l-<d(y), l<=s<=p,O<-s’<-d(y)-m-1
p d(3,)

" S,S ’,ttt(m + 1)Zs,s, m+l 2 2 .J ],l Z],]’,l-]’.
i=l t=o /’=o

Here we define"

q m’

2 i,k z’-Xkl
m’=0 k =0

m-k yifm’= mbi,k m -1

Llr Ci, m’-k
| 1=

Lm’+ll+’"+ln- term(r) term(l) term(n).
r=l

if m’ < m,

Under these conditions there are explicitly determinable operators Mk

(2.17) -+ C-2’- (0D)),

L(H"t/2(O H’(D)
"-> Ht3-2k-’-l/2 (OD)),

2 ko
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only dependent on the operators L, H, B, such that"

(2.18)

I(f, c"
2,11 0Q)

O<-_k <-ko.

If 32 > + v then"

II(f, , e/)ll

t=o

O<-k<-_ko.

Moreover, there is a constant Kcp > 0 such that for all compatible triples (f, &, O)"

(2.19)
t3z,t31,t3x

Proof of Lemma 2.1. ":if" Suppose that v satisfies (2.3). Define

Note, that"

(2.21)

and

(2.22) Vo= P.

If d(y)>-O then we find for 0=<m_-<d(y) by expansion in powers of of Ov/Ot-
(L + II)v -f:

(2.23)
(m + 1)v,+l Z tlVm-I

/=0

q p d(’y)
ij+ 2 2 2 E 2 Ci,m-kAkIPLj’Vl-j’’k =0 =0 1’=0

We eliminate E/=O LlVm-l from (2.23). This leads to

(2.24)
(m+l)vm+l=Nm+l(f,)
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m,mwith bi,k as introduced in Assumption 2.1.2 and"

N,,,+l(f, )= Lm + Y. m- L,
l>O,’",ln>O i=1 j=l

n2
ll+’"+ln

( m--
logO,"" ,ln0

nl
lo+...+ln=m-n

Operating at (2.24) with ,, we find the following set of linear algebraic equations for
P,v, 1NsNq, ONto Nd(), ONs’Nd()-m, if d() 0"

(2.25) P,,,vo=P,,,O, 1NsNp, 0Ns’Nd();

if d() 1, then for 1Nm +1Nd(), lNsNp, ONs’Nd(),
p d()

]= =0 i’=0

Because of Assumption 2.1.2, we know that (2.25) possesses a unique solution. This
solution is denoted by

(2.26) P,s,V=E,,,,m(,O), lNsNp, ONmNd(), ONs’Nd()-m.

Substitution of the result of (2.26) in (2.24) provides us with explicit expressions of the
following type"

(.7 vm =Nm(L , 0m (+ 1,

where, by definition, No(f, )= . It is not difficult to verify that N,, is an operator

L(Ct’t/2 () C (1) L(H’t/:(O) H(D)
(2.28)

C-2’(/)) Ht-2" (D)).

It will now be clear how the operators Mk are defined: in the case of Dirichlet BC"

(2.29) Mk(f, )= restriction to 0D of N(L 4’);

in the case of Neumann BC"

(2.30)

k

Mk k! BINk-I with
/=o

nl bilOi-l-bo,l, bi, {()lbi}]i=1 t=o

An expansion of 4)-By in powers of yields exactly the contents of (2.18) "=), ".
"<:::" Given that if ko=>0, the relations M([, O)={(O/Ot)kcb}],=o are satisfied for

0 <- k-<_ ko with M’s as introduced in (2.29-30) we shall show the existence of a
function v as required in (2.3). Define’

(2.31) v N(f, 0), 0=<k_-<d(y)+l

with N as introduced in (2.27).
Using the theory as developed in the Theorems 4.1-2-3-4 of Ladyzenskaja,

Solonnikov, Uraltseva (1967, pp. 298-301), we find the existence of a function v such
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that"

(2.32) -(0@) kv} =Vk for O-<k <-d(y)+ 1
t=O

and moreover:

(2.33)
I/) 1/32,/3z/2 C

d(y)+l

2 II.)kll3o-2k
k=O

d(v)+l

k=O

with certain constants C, Kcp > 0 only dependent of L, II.
By construction we now have v(., 0)-, and it is easy to show that Ov/Ot-

(L + H)v -f

(2.34) CB1’B1/2(O)
0

Namely, if d(y)>=O, then expansion in powers of yields for 1 <_-m + 1 <-d(y)+ 1:

\-7- (L + 1-I)v 2.23* 2.24* 2.25* 0
t=0

because of the definition of the operators Nm. The superscript * means: put the
right-hand side of the indicated equation in parentheses, change the equality sign of the

’Sindicated equation into a minus sign and take Vk as introduced in (2.31-32) in this
expression.

It is also completely straightforward to show that b-By

(2.35) CI’I/2(P)0 Htl’tl/2(r)’o
Let us give the calculation in the case of Neumann BC:

-k! BlVk-I
t=O t=O =0

by the definition of Mk and the given relations.

k

-k! E BINk-l(f, d/) 0
/=o

So (2.18) "(=" and (2.19) have also been demonstrated.
It is interesting to notice the following
COROLLARY (to Lemma 2.1). Assumption 2.1.2 is certainly satisfied if the matrices

A ir have a lower triangle form (see (2.11-12)).
This is true since in this case > m =), J;{"" 0. As a consequence the system of

(2.16) (and also (2.23)) possesses a recursive structure with respect to m, i.e., in order to
calculate Zs,s,,,,+l(V,,+l) we only use Zs,’,k(Vk) with 0_-<k-<_m. So indeed the only
solution of (2.16) is then the trivial one.

In the following lemma we shall give an analogue of the previous results in the case
a_->2.

LEMMA 2.2. Suppose that:
ASSUMPTION 2.2.1. The indices indicating regularity of the data (see (1.3.3)),

compatibility of the data (see (2.3)) and the type of the operator H (see (1.3.5-6-7-8-9))
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satisfy"

(2.36)

fl2>-a >-2,

flo=fl2,

d=/1=1+2--’,

ci C’/2 ((), 1 q,

ill-- "’ f12 -O, fl 2--2,

/30=/32--1,

Ci Ht3,t3/2 (0), 1 <= <- q,

ASSUMPTION 2.2.2. It is assumed, that the contents of Assumption 2.1.2 are valid
with y as defined in Assumption 2.2.1.

Under these conditions there are explicitly determinable operators Mk

(2.37)

L(C’/ (0) x Co(D)-+
Co-2k-(OD)

for 0 <= k <= ko,

k-o=min ([/3o-2 v], [/31+2 2])

L(Ht3"t3/2 (() x H&(D) +
Ht3o-21--(1/2)(OO))

for 0 <-_ k <- ko,

k-o=min ([flo- (1/2) v.], [ fllq-’’
2 1])

only dependent on the operators L, II, B such that"

If2> + v then"

0’t=

(2.8)
ONkNko.

Moreover, there is a constant Kcp > 0 such that ]’or all compatible triples (f, , 0)"
cp cp

(2.39)
I(f, 4,, ,/,)1

Proof of Lemma 2.2. ":ff" This part of the proof is completely analogous to the
corresponding part of the proof of Lemma 2.1. One can even use the same text as before
with, in the final conclusion, (2.18) replaced by (2.38). However, a few remarks should
be made.

It is now used, that Ps,s,v, is well-defined for 1 <- s <- p, 0 <- m <- d(y), 0 <-_ s’ <-
d(y) rn if d(y) >- O. This is the case since/3o- 2d(y) >_- a.

Further we note that v,,, is given by the formula in (2.20) for 0 -<_ m -<_ d(fl2), but that
the formula of (2.27) is only valid for 0 <-m <-_ d(y)+ 1 and it is certainly possible that
d(fl2) > d(y) + 1!

"&" Given that if k-o >- 0, the relations M,(f, 4’)= {(O/Ot)’4)}lt=o are satisfied for
0 _-< k _-< ko we now construct a function v as required in (2.3) as follows. Define"

(2.40)
v,=N,(f, g,), 0<- k <_-d(,)+ 1

v, 0, d(y) + 2 _-< k _-< d(/82) if d(/82) > d(y) + 1.
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As before the theory of Ladyzenskaja, Solonnikov, Uraltseva (1967) provides us
with a function v such that

(2.41) {-S()kv}[, t=o=Vt" 0 <= k <= d (/3 2)

for which (2.33) holds.
The proof is concluded in the same way as the proof of Lemma 2.1. ?q

COROLLARY (to Lemma 2.2). Assumption 2.2.2 is certainly satisfied if the matrices
A ij have a lower triangle form (see (2.11-12)).

This is in fact the same remark as the Corollary to Lemma 2.1.

3. Nilpotency of nonanticipative compact linear operators. Here we give and
prove a lemma with contents as indicated in the title of this section, which will be very
useful in the next sections.

Let B be a nontrivial Banach space with norm II" II. We suppose, that on B we have
a strongly continuous semi-group of bounded linear operators {U(’); r_->0} with the
following properties"

(a) existence o] a finite time-horizon T > O, i.e.,

ker U(r)B forte[O, T),
(3.)

kerU(r)=B for r >- T.

(b)

(3.2) Vre[0, T] ker U(r)=ran U(T-r).

The U(r)’s are called time shifts.
Examples of Banach spaces with time shifts and a finite time horizon T > 0 are

C"o [0, T], n"o (0, T), C2"’" ((), n2"’"o Q with Q D (0, T).

On these spaces we define time shifts in the obvious way"

(3.3)
0

(U(r)f)(., t)=
f(., t--)

for s [0, min (r, T)]
for (r, T] if r < T

(the in (., t) indicates possible other variables).
The properties a, b are easily verified in these examples. An operator A L(B) will

be called nonanticipative if:

(3.4) ’r [0, ee) A ker U(r) ker U(r).

Note that the nonanticipativity of the feed-back coupling as defined in (1.3.8) induces
"),/2nonanticipativity of the Fij s in the sense of (3.4) on C

o
[0, T] in the case of "C-theory"

and on H’/2(0, T) in the case of H-theory.
o

Now we shall prove the following result:
LEMMA 3.1. Let B be a nontrivial Banach space with time shift with a finite time

horizon T > 0 for which (a) and (b) are satisfied.
IfA L(B is nonanticipative and compact then A is nilpotent, i.e., or(A) {0}.
Proof of Lemma 3.1. This lemma is a straightforward application of Corollary

4.3.11 of Ringrose (1971, p. 177).



406 AART VAN HARTEN AND HANS SCHUMACHER

The continuous chain of closed subspaces of B mentioned in that corollary is here
given by

{ker U(z)[’r [0, T]}.

Of course ker U(z.) is closed, for U(z) is a bounded operator on B.
The system is totally ordered by inclusion"

(3.6) ker U(rl) =ker U(r2) for

The chain o% also satisfies

(3.7) 0= ker U(0) -, B=ker U(T).
Further we have the property that for any subset I [0, T],

(3.8) V1 ker U(r) ker U(inf I),

(3.9) U ker U(r)= ker U(sup I).

As for (3.8) it is clear, that ["’reI ker U(r) ker U (inf I).
Let r. now be a sequence in I such that r + inf I for n ]’ oe and let f satisfy

U(z.)f= 0 for n N.
By the strong continuity of the semi-group we have U(lim.,z)f=

limn, U(r)f= 0. Consequently fq.iker U(z)c ker U(inf I).
As for (3.9) it is clear, that f-l.zker U(z) ker U(sup I). If f ker U(zo), 7"o

sup I then U(T-r.) g because of (b).
Let - now be a sequence in I such that r ]’ Zo for n ]’ oo and define f.

u(r-z,,)g.
By the strong continuity of the semi-group we have U(T-ro)g=

lim,, U(T-r.)g; so = lim.,o f.. Consequently U.tker U(z) ker U(sup I).
The properties of given in (3.7-8-9) imply that conditions (i) and (ii) of Ringrose

(1971, pp. 166-167) are satisfied.
Now it remains to show that in Ringrose’s notation M_ M for each M e o.
If M ker U(’ro) then we have in this situation: M_=cl {ULILe o, L M}

U<o ker U(’r).
Indeed ker U(z) ker U(zo) for z < ’o since if we suppose ker U(z) ker U(zo),

then we would have ran U(T z) ran U(T- zo),

U(r) ran U(T- z) U(z) ran U(T- zo)

=> {0} ran U(T ro + 7"1) ker U(ro- 7"1)

=:) ker U(e) {0} for some e > 0

= ker U(t) {0} Vt -> 0

which would contradict (a). NowM_ M follows from (3.9). Herewith all conditions of
the corollary have been verified, i-1

A direct consequence of Lemma 3.1 is that for such an operator A the equation for
weB,

(3.10) w=Aw+g withgB



EVOLUTION PROBLEMS IN AUTOMATIC FEED-BACK 407

possesses a unique solution B"

(3.11) w =(I-A)-lg

with (I-A)-1 eL(B), Ilwll II(I-A)-llk(llgll.
This is the way Lemma 3.1 will be used further on.

4. Well-posedness if the order of the feed-back control operator is less than the
order of the diffusion operator. Here we consider the case 0 -< < 2. Wc arc now ready
to prove the following result on existence, uniqueness, regularity, and continuous
dependence on the data of a solution of (1.1.1-2-3).

THEOREM 4.1. Let us suppose:
ASSUMPTION 4.1. The indices indicating the regularity of the data (see (1.3.3)), and

the type of the operator II (see (1.3.5-6-7-8-9) satisfy

(4.1)

/3>0,

/30=/3+2,

/3 =/3 +2-v,

y=/3, 0_-<a<2

/3_->0, 1/2(/3 + 1) ,
/30=/3+1,

y=/3, 0=<c <2.

ASSUMPTION 4.2. The data are compatible in the following sense"

(4.2)

with 2= + 2, l , l .
Then there exists a unique solution u of (1.1.1-2-3) in the space"

(4.3) cZs’s(O. H2S’S(O

with 2s + 2. This solution depends continuously on the data in the following sense"

(4.4)
+

+ I(L ,
with a constant K

Note that in Assumption 4.1 the exceptional cases for are exactly as in the
uncontrolled problem (see Ladyzenskaja, et al. (1967, Thms. 5.2-3, p. 320), and Lions,
Magenes (1972, Thm. 6.2, p. 37)). Further it will be clear that the compatibility
condition of Assumption 4.2 is nececessary in order to have (4.3).

Note, that theorem 4.1 is applicable to the example of 1.2 with h, ff e C[0, T]
in the case of "C-theory". In the case of "H-theory", this is also true if D " with
n 3, see (1.3.11).

Proof of Theorem 4.1. Let v be a function for which (2.3) is satisfied with

(4.5)

with e > 0 arbitrarily small.
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Put w u-v; then

OW
(L +n)w+/o,

at
FPDE,

(4.6) Bw =bo, BC,

with

(4.7)

w(., 0) 0, IC

fosC"/(O),
0

4o C;’/2(),
o

fo Ht’t/2 O),
o

dpo H’t/2(F),
o

In this proof C > 0 will always denote some constant only dependent of L, B, l-I, fl,/, rio,
/32, ill, ill, 7, a, D.

We shall now solve (4.6). In order to do so we shall rewrite (4.6) in the form (4.10)
below.

Using the solution theory for the parabolic problem as given in Ladyzenskaja,
Solonnikov, Uraltseva (1967) and Lions, Magenes (1972, Thin. 6.2, p. 37), we see that:

(i) the uncontrolled problem corresponding to (4.6) possesses a unique solution W
with

(4.8)

o
W Ht+xa+z)/z(O),

o

(ii) the solution operator S for the uncontrolled problem with homogeneous IC
and BC is an element of:

(4.9)
__, C+,<+>/(O))

o

Now we can rewrite (4.6) in the following way:

L(Ho t’t3/: O

+ Ht+2,(t +2)/2(()).
0

(4.10) w Aw + W with A SI-I.

Equations (4.6) and (4.10) are equivalent for

w c’(O) w H’(O).
o 0
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We shall show that

(4.11) A L(oC2’s(() A L(H2’(Q))’o
and A is compact and nonanticipative.

Then Lemma 3.1 yields (see (3.15-16)) that (4.10) possesses a unique solution

(4.11)

and

L C2s’s L H2s’sA a (O)) A e (Q)),
0 0

(4.13) Iwl2. cI cIIwllz , .

Herewith the first part of theorem 4.1 has then been proven. The estimate (4.4) is a
trivial consequence of u w + v and (4.5-7-8-13) if we take the limit e 0.

So it remains to prove (4.11).
(a) Using (2.6) and (4.9) we find II

(4.14) L(C"’/2()->o 2%V()) L(H,4/2(Q) H2V’v(O))o
with =y+a=fl+a<+2=2s.

Because of the compact imbedding of

C2’() in ’4/2(O)[H2’(Q) inH4’4/E(Q),(4.15)
0 o 0 0

we obtain that A is an element of the space indicated in (4.11) and that A is compact.
Note that we used the assumption 0 a < 2 here

(b) The operator S is nonanticipative:

(4.16) Vre(O, T],u(.,t)=OforO<t<r :ff (Su)(.,t)=OforO<t<r.

For u s C(0) this is a consequence of the causal type of maximum principle valid for
equations of parabolic type (see Protter, Weinberger (1967) or Friedman (1975)). By
continuity of S, the property is then valid on the whole of the domain of S.

The operator II is nonanticipative because of the nonanticipativity of the feed-back
coupling, see (1.3.8). This immediately implies the nonanticipativity of A. I-!

COROLLARY (to Theorem 4.1). If Assumption 2.1.2 is satisfied then the charac/-
terization ofcompatibility ofthe data given in Lemma 2.1, (2.18) is valid and (4.4) can be
replaced by the estimate

(4.17)

with a constant K> 0 independent off, , . This implies continuous dependence of the
data in the usual sense.

This corollary follows from the fact, that Assumptions 4.1 and 4.2 imply Assump-
tion 2.1.1. As a consequence we can apply Lemma 2.1. Then (4.17) is found by inserting
(2.19) into (4.4).

5. The case where the order of the feed-back control operator equals or exceeds
the order of the diftusion operator

$.1. A result on well-posedness. Now we shall consider the case a _-> 2. In order to
derive a well-posedness result we have to make a number of assumptions.
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ASSUMPTION 5.1.1. The indices indicating the regularity of the data (see (1.3.3))
and the type of the operator II (see (1.3.5-6-7-8-9)) satisfy"

(5.1.1)

/3 >-2a-4_>-0,

fl C: Z, a C: Z,

flo- fl + c,

/ =/3 +2-v,

and also the choice

2a wit a 1/2( + 2 ce

is allowed.

>_-2a -4>_-0, 1/2(/3 +
11/2(- + l) Z, /3 +g-g z,

flo=fl+-l,

=+-.,
and also the choice

26 with 6 ( + 2
is allowed.

(5.1.2)

ess sup IIc,(’, t)ll < ooi 0 a <-;
0<t<T

:! 6 > 6 such that"

ess sup It- rl-llc,( t)- ci(’, r)llo < oo
O<t<r<T

ASSUMPTION 5.1.2. The data are compatible in the following sense:

(5.1.3) I(f, b, O)l cp,o,,, < m [](f, 6, 0)llct:z,t31,tl <

wit + , , .
Assumptions 5.1.1 and 5.1.2 are rather analogous to Assumptions 4.1 and 4.2.

However, in this case we have to assume more.
Introduce %(x, t; r), 1 q as the solution of the following problem:

(5.1.4) --0----2 Li, PDE,
Ot

(5.1.5) BCi =0, BC,

(5.1.6) (ffi(", r; r)= ci(’, r), IC.

Note that the cgi’s are well-defined.
Using a perturbation argument and Theorem XIV of Dunford, Schwartz (1963,

8.1), we see that cgi(., t; r) is a continuous function of for Jr, T] in L2(D) and
moreover that cgi(., .; r) C(Ox(r, T]) for all r [0, T).

Next we introduce, for 1 =< <= q, 1 -< k =< p"

Zki(t, r)= k(t)ci( t; r).

Note, that Zki is well-defined for > r.

Our following assumption requires that the Zk’s are sufficiently regular for r.
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ASSUMPTION 5.1.3. The functions Zki, 1 <-- k <- p, 1 <- <- q have the following
property:

Zk, C{0 <- r _-< <_- T} Zk, L{0 < z < < r}.(5.1.7)

Here for a domain l-I we define L(f) as the space ff.,oo(O) defined in Adams (1975,
7.49).

Now the following result will be proven.
THEOREM 5.1. Under the Assumptions 5.1.1, 5.1.2, 5.1.3 there exists a unique

solution u of (1.1.1-2-3) with the following properties:

u C2S’s ((), uH2S.(O),
(5.1.8)

Piu C[O, T], l <-j <-p Pu H(O, T), l <-_j <-p

with 2s fl +4-a. Moreover this solution depends continuously on the data in the
following sense"

p

E Ie ul 
j=l

(5.1.9) <= K
/ I(f, 6, @)1,1,1)

with a constant K > 0 independent off,

p

Ilull= , + E IIe,ull 
j=l

<_- g + 11611 , /=
+lift, 6,  )11 c"B2,1,1)

Note, that for a > 2 in this theorem, a loss of regularity in the space directions takes
place from 0 to > 0, namely"

CoO (/), u(., t) 6 C2(/)
for > 0

with/32 </0

4’ H(D), u(’, t) H2-1(D)
for > 0

with 32-1 < 3o.

The Assumption 5.1.3 is difficult to understand at a first glance. However, it is used
in a very essential way in our proof of Theorem 5.1. In the case of time-indepe,ndent
operators L, B and time independent control input functions cg and observators Ps, this
assumption can be relaxed substantially, see Corollary 5.1.c. In Corollary 5.1.b. we
shall give some concrete conditions under which Assumption 5.1.3 is certainly fulfilled.

Proof of Theorem 5.1. In exactly the same way as in the proof of Theorem 4.1,
(1.1.1-2-3) can be rewritten in the equivalent form:

(5.1.10) w SlIw + W

with

W e C+2’(+2}/2(0) W H+2’(1+2)/2(0).
o o

However, now we cannot prove that the operator $II is compact on a suitable space and
from here on we have to proceed differently. In this case we shall exploit, in an essential
way, that the control uses a finite number of observators and control inputs. This is done
by deriving a system of equations for the observation functions PkW and analyzing
existence, uniqueness, and regularity of solutions of this system of equations.
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In order to do so we observe that (5.1.10) can be written as

(5.1.11) w(., t)= W(., t)+ E (i(’, t; z){FjPjw}(T) dr.
i=1

Suppose that w satisfies (5.1.11) and that

weCa"’(O), weH2S.’(O),
(5.1.e)

eweC’[O, r], ]p eweH’(O, r), l]p.

We shall show that the functions Pkw, 1 k p satisfy the following equation:

(5.1. ((tl (wl(tl + z(t, {P}(l.
i=lj=

In order to show (5.1.13) we operate on both sides of (5.1.11) with k(t). It will be
clear that we find (5.1.13) if for 1 N k, ] N p, 1 N N q:

(t %(., t; (,,=

with
Let us show that the interchangement of the integral I and the operation of (t) is

allowed here.
Using the remark following (5.1.6) and the Assumption 5.1.3 it is found that

%(., t; ) is a continuous function of e [0, t] in the sense of the (somewhat unusual)
norm 1" I1, I" II0 + (). Consequently I1( , ; )()11. is integrable with respect
to r on (0, t).

This means that the integral o %(’, t, r)X(r) dr is well-defined in Bochner’s sense
with respect to I1"

An application of Corollary 2 of Yosida (1965, p. 134) shows that the inter-
changement of I and (t) is indeed allowed.

On the other hand suppose, that , 1 N k N p satisfies

(5.1.14) C[0 T] H(0, T)

(5.1.15) (t)=(PW)(t)+ o Z.(t, r){N}(,)d,.
i=1 ]=1

Then w defined by

is an element of

(5.1.17) H2s,(Q),

and w satisfies (5.1.11). Let us demonstrate this.
Operating with/3k(t) on both sides of (5.1.16) we find:

(5.1.18) =Pw.

Substitution of (5.1.18) in (5.1.16) gives that w satisfies (5.1.11). In order to show the
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regularity given in (5.1.17) we note that

i=1 ]=1 i=1

p

with ?i(’, t)= ci(’, t) Y (Fiijj)(t). Now we have
/=1

i C26’6(01
o

se cs’s(O
o

i H26’(O),
0

S?i 6 H2S’S(O).
o

In the case of "H-theory" and 0-< 6 < 1/2 we have used (5.1.2) here.
We shall now show that (5.1.15) possesses a unique solution in the following

function space"

9) {L2(0, T)}’ {L2(0, T)}".(5. 1. 1

As for the regularity of this solution : we shall show that (5.1.14) holds.
Let us introduce the following shorthand vector notation of (5.1.17).

(5.1.20) r/+A

with

rl PW,

(a)k ’, foZk.i(t,’r){Fiii}(’r)d’r.i=1=1

Now A defines a nonanticipative, compact, linear operator on

{Lz(0, T)}’,
(5.1.21t {C[0, T]}

o

{L2(0, T)}r’,
{ohm(0, T)}.

The only nontrivial part of this statement is the compactness of A.
It is clear, that A L({La(0, T)}" - {Lo(0, T)}’) and this implies the compactness

of A L({La(0, T)}").
It is also easy to verify that A L({oH (0, T)}’ {’L(0, T)}") which proves the

compactness of A L({H (0, T)}").
o

Now consider A as an element of L({0C6[0, T]}P). Define a sequence A<") by

replacing Zki in the definition of A by Z") ") Ck,i with Z k,i - ({0 < r < < T}) and Z(’’)k,i "-’>

Zk, in C6 ({0 _<- r _-< _-< T}) for n -> c.
It is not difficult to show that A") L({C[0, T]} ->{C+1[0, T]}’), i.e., A") is a

o o

compact element of L({oC[0, T]}) and that A<") -> A in L({oC[0, T]}p) for n --> c. A
well-known theorem (see Kato (1966, p. 158)) gives the desired compactness result for
A in this case.
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So we are in the situation that we can apply Lemma 3.1. We note that

(5.1.22)
r/ {C[O, T]} r/ {oH(0, T)}

o

and the above mentioned result is found.
We have now proved the existence of a unique solution u of (1.1.1-2-3) with the

properties of (5.1.8).
It is not difficult to deduce the estimate (5.1.9), since all operations to find the

solution u appear to be continuous in an obvious sense.
COROLLARY a (to Theorem 5.1). IfAssumption 2.2.2 is satisfied and if, moreover,

(5.1.23) f,ceC’/((), l<=i<=q f,ceH’/(O), l<=i<=q,

with + a 2, then the characterization of compatibility given in Lemma 2.2, (2.38)
is valid and (5.1.9) can be replaced by

p p

i=l
(5.1.24)

with a constant K independent off, O, O.
This follows from the fact that Assumptions 5.1.1 and 5.1.2, supplemented with

(5.1.23), imply Assumption 2.2.1 with/3 replaced by/3. As a consequence we can apply
Lemma 2.2. Then (5.1.24) is found by inserting (2.39) into (5.1.9).

COROLLARY b (to Theorem 5.1). The Assumption 5.1.3 is certainly fulfilled if:
(i) the control input functions satisfy"

(5.1.25)
distance (support ci, F) > 0, 1 -< <= q;

or
(ii) the coefficients of the operators L, B are time-independent and the control input

functions have the following form"
d

(5.1.26) ci Y ilel, d < c, 1 <= <= q
/=1

with {el; N} the eigenfunctions of the stationary uncontrolled problem"

Le he PDE, A spectral parameter,

(5.1.27) Be =0 BC,

and the il’s functions of time only"

(5.1.28) ilCx)[o, T], l<=l<=d, l<=i<=q.

In the first case, we get that % C(/ {0 =< r _-< t =< T}), 1 =< _-< q, since each
ci(’, r) satisfies the compatibility conditions of the problem (5.1.4) up to any order.

In the second case, we can even specify the form of each cCi, 1 =< <- q"
d

(5.1.29) (i(’, t; ’)= Y i,l(7")el(" Poll(t-"r) eat(t-z)

/=1

with el C(J), Al the eigenvalue corresponding to el and Poll some polynomial.
It will be clear that, indeed, in both cases Assumption 5.1.3 is fulfilled.
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COROLLARY C (to Theorem 5.1). If the operators L, B have time-independent
coefficients and if the observators Pj, and the control input functions Cg are time-
independent, i.e.,

(5..30)

with

j(t) ff;, ci(x, t) c (x)

/; C (/:5)’, /; H (D)’,

ci CV(D), Ci (D),

then the Assumption 5.1.3 can be relaxed. In this situation the Zk.’S are only dependent of
the variable t- , i.e.,

(5.1.31) Zk.(t, ) Z,(t- ), lkp, liq.

It is sufficient to require"

ZSk, Lx(O, T),

l<__k<_p, l<__i<__q
(5.1.32)

ZSk, eLl(0, T) if S > 1/2
ZSk, Lr(O, T) if 0<=8 <1/2

with r 2(1 + 28)-1,
l<-k<=p,l<-i<=q.

Proof of Corollary 5.1.c. The interchangement of k(t) and I necessary to derive
(5.1.13) is also allowed under the conditions of (5.1.32). This is easily derived by the
same reasoning as before.

In the case of "H-theory" and 0-< 8 < 1/2 we use that Ha (0, T) is continuously
inbedded in Lv(0, T) with 2(1-2t)-1 (see Adams (1975)) and that r-l+ -= 1.

Now we have for the operator A of (5.1.20),

(A)k(t) fo ZSi(t-’r)(Fq])(’r) dr

(5.1.33) IO ZSki(7)(Fijj)(t-7) dr

T

with U(r) the shift operator introduced in (3.4).
So we have the following formula:

(5.1.34) T

where Zs, F are matrices with matrix elements Z,i, Fij. We also used Assumption 5.1.3
to show the compactness of the operator A. But this can now be shown only with the use
of (5.1.32-34).

In order to prove the compactness of A in this case, we approximate A by a
sequence A(") obtained by replacing, in (5.1.34), Z by Zs’" with Zs’ {C[0, T]}TM,
n IN and ZS’"Z in the sense of {L2(0, T)}pq for n o.

It is not difficult to verify, that:

A(") eL({L2(0, T)}" =:=)>{oHl(0, T)}) that is A") eL({L2(0, T)})
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is compact. A(")+A in the sense of L({L2(0, T)}p) for n +co, so (see Kato (1966))
A L({L2(O, T)}p) is compact.

In the same way, we can show that A e L({oH(0, T)}p) is compact and that
a e L({oC[0, T]}p) is compact.

Now it is clear that the proof of Theorem 5.1 keeps holding in this situation just as
before. [3

5.2. An example which shows how bad things can be. Consider the following
problem"

0U 02U. (2U
7(x, t) 0--(x, t)-0---(0, t), FPDE,

(5.2.1) u(0, t)= u(1, t)= 0, BC,

u(., 0)= ,, IC.

Note that D =(0, 1)c , L =02/Ox 2, H cF6 with c -1, F the identity, (6u)(t)=
(O2u/Ox2)(O, t), i.e., p =q 1.

So the operators L, B have time-independent coefficients and the control function
and observator are time-independent. The feed-back control is instantaneous.

It is not difficult to give a family of solutions of (5.2.1) for special initial data fix,
x e [1, ).

We take Ox the solution of

(5.2.2) (L- a)&a =-1, (o) &a(1) 0.

Note that 4’ is well-defined and t/,a e C[0, 1].
Now consider ux defined by

(5.2.3) ua (x, t) eXtd,a (x).

It is easy to verify that ux satisfies (5.2.1) with the initial data .
Take T > 0. Then we find"

(5.2.4) [ua Io,o --> KA --1 exp (a T), Ilu, llo,o K/-I exp (a T)

with some constant K > 0 independent of A [1, co).
But it is also clear that

I(o, o a)lc c
=,1,1 I1(o, o, )11,1,al

(5.2.5)

with some constant R. > 0 independent of a [1, co).
In (5.2.5) va is defined by

(5.2.6) vx (x, t)= ux (x, t)H(At)

with/- e C[0, co),

H(r) l for0=<r-<_l,

H(r)=0 forr->2.
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Comparing the behavior for , c in (5.2.4) and (5.2.5) we see that no matter how
we choose/3z,/31,/1 it is not true that (5.2.1) possesses a solution u for which

(5.2.7) lulo,o < gol(0, 0, )l 2,1,/1 Ilull0,0--< K011(0, 0, )11"

for some Ko > 0 independent of O.
So this problem (5.2.1) is very badly posed!
A result such as Theorem 5.1 clearly can not be true here. The reason is that

Assumption 5.1.3 is certainly not fulfilled in this example.

6. Application of the theory to some examples. Let us consider the following
examples:

0u
(A 6FP)u + f, FPDE,

0t

On
(6.1) 0-- 0, BC,

u(., 0)= qt, IC.

Note that p =q 1. The control input function is taken constant in space and time"
7 , >0.

As for F and P we shall consider the following cases.
(i) e 6y, (F)[t)= (t),

(ii) P 6y, (F)(t) =/z exp (-/x (t- z))sc(z) dr,/x ,/x > 0,
(iii) P 8(1 + s(/t)), (F)(t) (t), s , s > O.
Note that (i), (ii) are special cases of the examples of 1.2, (iii) is a special case of the
example considered at the end of 1.3 (near (1.3.14)).

At the end of 1.3 it was also shown that (iii) falls within the setting for the control
operator, when the FPDE is rewritten as

(6.1.(iii)) 0u= (A + lI)u + g,
t

where II -cly{1 +sA}, c =(1 +s)-1, g=[-s?(1 +s?)-lSy[. Let us now apply our
Theorems 4.1 and 5.1 to (6.1).

Case (i), (ii): C-theory. Note that the order of II is a 0 (see (1.3.11)). So we have
to apply the C-theory version of Theorem 4.1 here. This leads to the following result. If
f Ce’e/2(O), xIl’ C2+e(/) with 0<e < 1 and satisfies the compatibility relation
O/On 0 on 0D; then there exists a unique solution of (6.1) in c2+e’(2+e)/2(O) which
depends continuously on f and . The compatibility relation follows from Lemma 2.1.

Case (iii)" C-theory. Note that the order of II is a 2 (see (1.3.14)). We apply now
the C-theory version of Theorem 5.1 to (6. l(iii)). The Assumption 5.1.3 is fulfilled here
because of the Corollary b (1 is an eigenfunction of A with Neumann boundary
conditions corresponding to the eigenvalue 0). Assumption 5.1.4 can be omitted
because of Corollary c. We find, that if f C’/2((), C2+ (3) with 0 < e < 1 and
satisfies the compatibility relation /On 0 on OD; then there exists a unique solution
of (6.1) in C2+’(2+)/2(() which depends continuously on f and .

Case (i), (ii): H-theory. In this situation the order of II is a (n/2)+ e, e >0
arbitrarily small (see (1.3.11)). So we have to distinguish between the cases: n =< 3 and
n=>4.
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In the case n -<_ 3, an application of the H-theory version of Theorem 4.1 yields: if

f e L2(Q) and e Hi(D), then there exists a unique solution of (6.1) in Hz’I(Q), which
depends continuously on f and . Note that no further compatibility conditions on q
are necessary in accordance with Lemma 2.1.

In the case n >-4, we have to apply the H-theory version of Theorem 5.1. The
Assumption 5.1.3 is fulfilled for reasons completely analogous to the ones of Case (iii),
C-theory. We now use Corollary a and we obtain the result" if fH3-6’(3-6)/2 (Q),

H3’-S(D) with a (n/2)+ e, e > 0 sufficiently small and the data are compatible,
then there exists a unique solution of (6.1) in H’/E(Q) which depends continuously on
f and q.

The compatibility of the data is always satisfied for n 4. For n 5 the data are
compatible, if O/Off 0 on OD. For n 6, 7 the data are compatible if 0P/0 0 on OD
and O/O{(A + IIo)q +fit=o} 0 on OD with Ho II in Case (i), II0 0 in Case (ii). This is
easily checked using Lemma 2.2.

It is left to the reader to obtain explicit expressions for the compatibility relations
for general n.

Case (iii): H-theory can be dealt with in an analogous way. Details are left to the
reader.

Till now we have exclusively considered the well-posedness of problems such as
(1.1.1-2-3) without worrying about (i) the construction of the solution if such a solution
exists (ii) the properties of the solution.

Let us now conclude this paper by showing that, at least for the examples (6.1(i),
(ii), (iii)) it is easy to calculate the solution. This calculation is done by using the
technique of expansion in eigenfunctions of the uncontrolled stationary problem

(6.2) f=
=0 =0 =0

Here {e,; n => 0} denotes the sequence of, in L2(D)-sense, orthonormal eigenfunctions
of A with Neumann boundary conditions, eo corresponds to the eigenvalue 0, i.e., eo is
constant {vol D}1/2.

The eigenvalue corresponding with en is denoted by -An. The numbering is such
that n -> m :::> h,, => h

Of course the coefficients f., q. and u. are defined by:

f,(t) (f(’, t), e,), n (, en), un(t)= (u(’, t), en).

Here (.,.) denotes the innerproduct in LE(D).
Substitution in (6.1) leads to the following system of equations for the un’s, n _-> 0"

(6.3)
dt

--hnUn +

u.(O) =,I,.
for n ->_ 1,

(6.4)

duo ,Fuo + Ro,
dt
uo(0) q0.

In (6.4), we have in case (i), (ii):

Ro=fo-6 qnFu,,
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and in case (iii)"

V=Cl(1-sao), Ro go- e Y
n=l

yen
go fo sc q, (1 sh,)

8yeo"

These systems of equations can be solved in an elementary way. To do this for general f
is left to the reader. In the case =- 1, f-= 0 we obtain"

u( t)= Uo(t)eo, where Uo(t) equals:

uncontrolled" 1;

case (i)" exp (-?t);

case (ii)" ((t) + tzv(t) with

1
v(t) {exp (//it)- exp (//zt)},

//1 --//2

//1,2"-1/2{--t1 +X//Z2--4e} if //1Y //2,

v(t)=exp (- 1/2/,t){1-1/2/zt} if//1--//2;

case (iii)" exp (-1 +,s?t).

(6.5)

Note that all these solutions decay for
For a given ?, the most rapid decay for + oo which is possible under (i), (ii), (iii)

arises if ? -> 4 in case (i) and if 0 < < 4 in case (ii) with tz 2x/.
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A POLYNOMIAL CHARACTERIZATION OF
(/, M)-INVARIANT AND REACHABILITY SUBSPACES*

E. EMRE-? AND M. L. J. HAUTUS{

Abstract. Based on the state space model of P. Fuhrmann, a link is laid between the geometric approach
to linear system theory, as developed by W. M. Wonham and A. S. Morse, and the approach based on
polynomial matrices. In particular polynomial characterizations of (A,B)-invariant and reachability
subspaces are given. These characterizations are used to prove the equivalence of the disturbance decoupling
problem and the exact model matching problem and also to connect the polynomial matrix and the geometric
approach to the construction of observers.

Finally, constructive procedures and conditions are given for computing the supremal (A, B)-invariant
subspace and reachability space and for checking the solvability of the exact model matching problem.

1. Introduction. The geometric approach to linear system theory has proved very
successful in solving a variety of problems (see 17] for a detailed account of this theory).
The principal concepts in this theory, which are instrumental in the description of many
results, are (A, B)-invariant subspaces and reachability (controllability) subspaces. An
alternative approach to linear system design has been developed in [13], [14], [16]. This
theory depends to a large extent on polynomial matrix techniques. It is evident that a
method for translating results of one theory to another is very desirable, because such a
method would yield a better understanding of the relations between the two different
approaches. This would be very useful, in particular since the geometric method may be
viewed as exponent of the so-called "modern control theory" and the polynomial
matrix method may be considered a generalization of the classical frequency domain
methods.

A number of papers with the objective of translating the results of geometric
control theory into polynomial matrix terms have appeared (e.g., [1], [3], [10], [12]).

It is the purpose of this paper to show that a very useful link between the two
approaches can be based on the work of P. Fuhrmann ([7], [8], [9]). Specifically, it will
be shown that using the state space model associated with a system matrix, introduced
by Fuhrmann, one can give characterizations of the concepts of (A, B)-invariant
subspaces and teachability subspaces in terms of polynomial matrices. This will be the
subject of 3 and 6. One application of the polynomial characterization of (A, B)-
invariant subspaces will be given in 4, where it will be shown that the disturbance
decoupling problem (see [ 17, Chap. 4]) and the exact model matching problem (see [ 16],
[14], [5]) are equivalent problems. Another application is given in 5, where it is shown
that the equivalence of the polynomial matrix and the geometric formulation of
observers can be derived from the results of 3. In 7, the concept of row properness
defined in [14], [16] is used to formulate a necessary and sufficient condition for the
existence of a solution of the exact model matching problem and, hence, of the
disturbance decoupling problem in terms of degrees of polynomial matrices. Also in 7
a constructive characterization of the supremal (A,B)-invariant subspace and
reachability space contained in ker C is given. Finally, in 8, the results of 3 are
extended to the situation where the system is described by Rosenbrock’s system matrix.

The preliminary 2 contains a short description of Fuhrmann’s state space model.
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2. The state space model associated with a matrix fraction representation. Let K
be a field. We denote by K[s] the set of polynomials, and by K(s) the set of rational
functions over K. If 6 is any set and p, q N, we denote by 6ep the set of p-vectors with
components in 6e and by 5epq the set of p x q matrices with entries in 5. If A is a p x q
matrix, we denote by {A} the K-linear space generated by the columns of A. If
U(s)eKqr[s] and :Kq[s]K"[s] is a linear map, then U(s) denotes the result
obtained by applying to each of the columns of U(s).

Let x(s)6K’(s). We denote by (x(s))_, the strictly proper part of x(s) and by
(x(s))_l, the coefficient of s -1 in the expansion of x(s) in powers of s -1.

DEFINITION 2.1. Let T(s) Keq[s]. Then Xr denotes the set of x(s) K[s] for
which there exists a strictly proper u(s) Ka(s) such that T(s)u(s) x(s).

In what follows, XT- plays a fundamental role (compare the closely related concept
of right rational annihilator [4]).

In particular, if p =q and T(s) is nonsingular, then

XT- {x(s) K"[s] T-X(s)x(s) is strictly proper}.

In this particular situation we define the map

zrT-:KP[s]X7 x (s) -- T(s)(T-l(s)x(s))_.

(Compare [7] and [8] where further properties of this map are given.) In the following
we consider XT- a K-linear space. We consider a linear system whose transfer matrix is
given by the left matrix fraction representation

(2.2) G(s) T-(s)U(s).
We assume that G(s) is strictly proper, T(s) K[s], U(s) Kr[s].

Define the linear maps

:X- ---, X- x(s) (sx(s)),

(2.3) Yd K -- XT- u U(s)u,

:XT- Kq :x(s)--(T-(s)x(s))-.
By definition, for x(s)XT, we have 4x(s)= sx(s)-T(s)c(s) for some c(s)6Kq[s].
Since T-l(s)x(s) and T-l4,x(s) are strictly proper it follows that c(s) must be constant.
Hence

(2.4) x(s) sx(s)- T(s)c

for some c Kq, depending on x(s).
The following result is proved in [7].
THEOrEM 2.5. The system , := ((, ., ) with state space XT- is an observable

realization of G(s). The realization is reachable iff T(s) and U(s) are left coprime.
We will call this realization Z the T-realization of G(s).
Conversely, if we are given an observable system Z (C, A, B), then we construct a

left matrix fraction representation of the transfer matrix of Z in the following way. Let

(2.6) C(sI-a)-= T-(s)S(s),
where S and T are left coprime. Define

(2.7) U(s):=S(s)B.

Then G(s)= T-a(s)U(s) is the required representation. We have the following result.
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THEOREM 2.8. The T-realization of G(s) T-I(s)U(s), where Tand Uare defined
by (2.6) and (2.7) is isomorphic to the system ,.

Proof. Using the dual of [11, Cor. 4.11], we see that $(s) is a basis matrix of XT.
Hence the linear map

:K XT :x--S(s)x

is an isomorphism. Using the equation

T(s)C=S(s)(sI-A),

which follows from (2.6), one derives easily the relations g6e 6eA, 6eB, 6e C.
In particular, g6ex =g(S(s)x)= zrT.(S(s)(sI-A)x)+zrT-(S(s)Ax)= zrT-(T(s)Cx)+
zrT-(S(s)Ax) $(s)Ax YAx.

It follows that (C, A, B) and (c, g, ) are isomorphic. [3
Using Theorem 2.8, we may transform results obtained for the particular realiza-

tion (’, , ) to any observable system.

3. (, )-invariant sulslaees. We give a characterization of the (’, )-invariant
subspaces of the T-realization of a transfer matrix G(s) T-l(s)U(s), as defined in the
previous section. For the definition of (4, )-invariant subspaces we refer to 17].

THEOREM 3.1. Let (s) be a qm polynomical matrix. Then {(s)} is an
(, )-invariantsubspace ofXT-iffthere exist Ca gqm, F1 Kr’andA K""such
that

(3.2) T(s)C1 + U(s)F1 (s)(sI-A1).

Proof. Suppose that {(s)} is an (’, )-invariant subspace, i.e.,

(3.3) {(s)} c_ {(s)} + Im .
Applying (2.4) to each column of (s), we fine that 4(s)= l(S), where

(3.4) a(s) := s(s)-T(s)C1

for some C1 Kq". On the other hand, (3.3) implies

(3.5) l(S) (s)A1 + U(s)F1

for some A K"" and F1 Kr". Combining (3.4) and (3.5) yields (3.2). Conversely,
if we assume (3.2), then

(3.6) T-l(s)(s) (C1 + T-I(s)U(s)F1)(sI-A1)-1

is strictly proper and hence {(s)} Xr. Furthermore, if we define l(s) by (3.4), then
(3.5) follows from (3.2) and, hence, {l(S)} XT-. It follows that

’(xI)’(S)) "rt’T(SXIt(s)) 7rT(XI(S) + T(s)C1) xItl(s).

Thus, (3.5) implies (3.3). El
If the matrix (s) occurring in Theorem 3.1 has full column rank, it is possible to

give an interpretation to the matrices A 1, F1, C1. For in that case there exists a K-linear
map :XT K satisfying

(3.7) (s) F.
Then (3.2) implies

(3.8) (./- -’)(x) (s)A 1.
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It follows that {(s)} is an (M- -)-invariant subspace, and that A is the matrix of the
restriction of s4- to {(s)} with respect to the basis matrix (s). In addition, F1 is
the matrix (with respect to the basis matrix (s) of {(s)} and the natural basis in Kr) of. Finally, we have

(3.9) (s)-- C1

so that C1 is the matrix of the restriction of to {(s)} with respect to the basis matrix
(s) of {(s)} and the natural basis of Kq.
The last result gives a characterization of (d, )-invariant subspaces contained in

ker.
COROLLARY 3.10. Let (s)Kq"[s]. Then {(s)} is an (M,)-invariant

subspace contained in ker iff there exist matrices F, A such that

(3.11) U(s)F (s)(sI-Ax).

Proof. According to (3.9), we must have C1 0 in formula (3.2). [3
COROLLARY 3.12. Xu is the largest (M, )-invariant subspace o]XTcontained in

ker ’.
Proof. According to (3.10), we have for an arbitrary (M, )-invariant subspace

{(s)} contained in ker :
W(s)= U(s)F(sI-A)-.

Hence {(s)}c__Xu (see Definition 2.1). It remains to be shown that Xu itself is an
(s4, )-invariant subspace. If (s) is a basis matrix of Xu then there exists a strictly
proper matrix Q(s) such that U(s)Q(s) (s). Let (F1, A1, B1) be a reachable realiza-
tion of Q(s), so that

(I)(s) U(s)FI(sI-A1)-IB1.
It follows from Lemma 3.13 that

W(s) := U(s)F(sI-AI)-1

is a polynomial matrix. By Corollary 3.10, {(s)} is an (s4, )-invariant subspace. Hence
{(s)}_ {(s)}. On the other hand, since (s) (s)B, it follows that {(s)} c__ {(s)}.
Consequently, Xu {(s)} {(s)} is an (M, )-invariant subspace. I-I

LEMMA 3.13. Let O(s) gln[s], A Knn, B Knr, (A, B) reachable. If O(s)
(sI-A)-aB is a polynomial matrix then O(s)(sI-A)- is a polynomial matrix.

Proof. We decompose the rational matrix O(s)(sI-A)- into its polynomial and its
strictly proper part"

O(s)(sI -A)- P(s) +R (s);

then

Ro := R(s)(sI-A)= O(s)-P(s)(sI-A)

is a polynomial of degree zero and hence constant. It follows that

Ro(sI-A)-XB O(s)(sI-A)-B-P(s)B
is a strictly proper polynomial and hence zero. Since (A, B) is reachable, this implies
Ro 0 and hence

O(s)(sI-A)- P(s). l
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The foregoing implies that the set of (M, )-invariant subspaces in ker is
uniquely determined by the numerator polynomial matrix of the matrix fraction
representation of the transfer function matrix:

COROLLARY 3.14. Let U(s) gqXr[s], Ti(s) gqXq[s], 1, 2, such that

G,(s) := T.1 (s)U(s)

is strictly properfor 1, 2. Let %, Mi, i) be the Ti-realization of Gi(s) fori 1, 2. Then
M Xcr is an (M1, 31)-invariant subspace o] Xrl contained in ker 1 iff M is an
(2, 32)-invariant subspace o]’Xr2 contained in ker 2.

REMARK 3.15. Theorem 3.1 may be specialized to the case U(s) 0, that is, 0.
In this case we have a realization of G(s) 0 with the same state space Xr and the same
map as before. An (M, )-invariant subspace of Xr then is just an M-invariant
subspace. Thus we obtain the following characterization of M-invariant subspaces.

PROPOSITION. Let (s) be a q x m polynomial matrix. Then, {(s)} is an sC-
invariant subspace ofXr iff there exist C Kq", A1 Km" such that

T(s)C1 (s)(sI A 1).

4. Exact model matching and disturbance decoupling. If we have an observable
system (C, A, B) with state spaceX then we may consider the problem of characterizing
the (A, B)-invariant subspaces contained in ker C. Using the isomorphism given in
Theorem 2.8, we transform the problem to the case of a suitable T-realization. For this
case we may appeal to Corollary 3.10, by which a complete characterization is given. It
is important that, as already noted in Corollary 3.14, this characterization depends only
on the numerator poly_nomial U(s). Consequently, we have the following result.

THEOREM. Let , (C, A, B) be a realization with state space X of a transfer
matrix G(s) T-l(s)U(s), and let (q, sg, 3) be the T-realization ofG(s). If , and Z
are isomorphic by the isomorphism ." X-, Xr, then M

_
X is an (A, B)-invariant

subspace contained in ker c iff there exist constant matrices F1, A satisfying

U(s)F W(s)(sI-A ),

where q(s) is a basis matrix of(M).
Thus we see how characterizations for (, )-invariant subspaces of the particular

state space model Y., can be generalized to arbitrary (observable) state space models.
In this section we use the theory developed thus far to show the equivalence of the

exact model matching problem and the disturbance decoupling problem.
PROBLEM 4.1. (Disturbance decoupling problem (DDP)). Given the system

(4.2) 2(t) Ax(t) + Bu(t) + Eq(t), y(t) Cx(t),

where (C, A) is observable, determine a constant matrix F such that if
u(t) Fx(t), >-_ O,

the output y(t) does not depend on q(t), >= 0.
The following result has been given in [17, Thm. 4.2] in a slightly different but

equivalent formulation"
THEOREM 4.3. Problem 4.1 has a solution iff there exists a subspace M of the state

space such that

AM
_
M+ {B}, {E} c_M c_ ker C. l-1

In this paper we will also consider a slightly modified problem (compare also 18]).
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PROBLEM 4.4. (Modified disturbance decoupling problem (MDDP)). Given system
(4.2), determine constant matrices F and D such that if

u(t) =Fx(t)+Dq(t),

the output does not depend on q(t).
In the modified problem, one assumes that not only the state but also the

disturbance is directly available for measurement. Similarly to (4.3) we have the
following result.

THEOREM 4.5. Problem 4.4 has a solution iff there exists a subspace Msuch that

AMcM+{B}, {E}cM+{B}, MckerC.

The exact model matching problem is defined as follows.
PROBLEM 4.6. Given transfer function matrices Gx(s) and G2(s) determine a (i)

strictly proper or (ii) proper rational matrix O(s) such that

Gl(s)O(s)=G2(s).

Problem 4.6(i) will be called the exact model matching problem (EMMP), and
Problem 4.6(ii) will be called the modified exact model matchingproblem (MEMMP). It
is the purpose of this section to show that the existence of a solution of Problem 4.1 is
equivalent to the existence of a solution of Problem 4.6(i). Similarly" Problem 4.4 has a
solution itt Problem 4.6(ii) has a solution. We will concentrate on the modified
problems. The original problems can be dealt with similarly.

First we have to indicate which MEMMP corresponds to a given MDDP and vice
versa. Let us start with system (4.2). The data Gx(s) and G2(s) of MEMMP are then
defined by

GI(S) :- C(sI-A)-IB, G2(s) := C(sI-A)-XE.
Conversely, if we are given Gx(s) and G2(s) in MEMMP, we construct an observable
realization (C, A, [B, El) of the transfer matrix [Gx(s), G2(s)]. Then C, A, B, E are the
data for MDDP. Thus, we have a one to one correspondence between MEMMP’s and
MDDP’s.

Following Theorem 2.8, we assume that

C(sI-A)-X= T-l(s)S(s)
with T(s) and $(s) relatively prime, and U(s)=S(s)B; and we consider the T-
realization (, , N) of Gl(S)= T-l(s)U(s). According to Theorem 2.8, the map
5:x S(s)x :K Xr is an isomorphism. Consequently, we introduce the polynomial
matrix R (s) := $(s)E as representative of E in Xr. Then we have G2(s)= T-I(s)R (s)
and we can state the following result.

THEOREM 4.7. Let {(s)} be an (sg, )-invariant subspace in ker , so that there
exist constant matrices Fx and A satisfying

(4.8) U(s)F1 (s)(sI A1).

In addition, assume that {R (s)}_ {(s)}+{U(s)}, so that there exist matrices B1 and D1
such that

(4.9) R (S)= xIt(s)B1 + U(s)D1.

Then Q(s) := Fl(sI-Ax)-XB1 +Dx is a solution ofMEMMP. Conversely, let Q(s) be a
solution ofMEMMP and let (F1, A x, Bx, Dx) be a reachable realization of Q(s). Then
there exists a polynomial matrix (s) satisfying (4.8) and (4.9).
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Proof. If (s) satisfies (4.8) and (4.9) then

U(s)Q(s)- (s)B1 + U(s)D1 R (s),

which implies Gl(s)Q(s) G2(s). Conversely the latter equation implies U(s)Q(s)-
R (s). Hence,

(4.10) U(s)FI(sI-A1)-IB1 R(s)- U(s)D1.

Since (A1, B1) is reachable it follows from Lemma 3.13 that

(4.11) (s) := U(s)F(sI-A1)-1

is a polynomial. Now (4.10) and (4.11) imply (4.9) and (4.8).
COROLLARY 4.12. MEMMP has a solution iff the corresponding MMDP has a

solution.
Similarly one proves
PROPOSITION 4.13. EMMPhas a solution iff the correspondingDDPhas a solution.
Thus, if we want to solve (M)EMMP, we may construct the data A, B, C, E of

(M)DDP and solve the latter problem. Then we do not only obtain a solution Q(s) of
(M)EMMP but also a realization Of this solution. In this respect, it is important to note
that the solution of (M)EMMP only depends on the numerator polynomials U(s) and
R (s). Consequently, by a suitable choice of T(s) (not necessarily equal to the original
denominator polynomial) we may try to obtain a simple (M)DDP; compare [3]. We will
formulate this idea more explicitly in 6. Also in 6, we will give existence conditions
for a solution of (M)EMMP and, hence, of (M)DDP in terms of U(s) and R (s).

The following result states that if disturbance decoupling is at all possible by a
(dynamic) control depending causally upon q(t), then it is possible by a feedback control
of the form u Fx +Dlq.

COROLLARY 4.14. Let there exist a proper rational matrix H(s) such that, if the
control u H(s)q is used in (4.2), the output does not depend on q. Then MDDP has a
solution. If there exists a strictly proper matrix H(s) with this property, then DDP has a
solution.

Proof. If the control u H(s)q is used in (4.2), then the transfer function matrix
from q to y is Gl(s)H(s)+ G(s). If y does not depend on q, then this transfer matrix
must be zero, hence

GI(s)H(s) -a2(s),

that is, -H(s) is a solution of MEMMP. Consequently, by Corollary 4.12, MDDP has a
solution.

5. Observers. We consider several formulations of the observer problem, which is
a well-known problem in linear system theory. Further references on the subject can be
found in [14], [15], [16], [19], [20], [2] and [6].

Thus far two types of formulation of this problem have appeared in the literature:
the geometric formulation (see [19], [20], and [2]) and the polynomial matrix formula-
tion (see [14], [15], and 16]).

Here, our purpose is (based on the results on the connections of the geometric
theory of linear systems and polynomial matrix approaches developed in 3) to show
explicitly the algebraic equivalence of the geometric and the polynomial matrix
formulations of this problem, including the case where some of the inputs may be
unknown.
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Let 5; (C, A, B) be a given system over R. Let C- be a subset of C satisfying
C-f’l R # . We call a rational function u(s) stable (with respect to C-) if u(s) has no
poles in C\C-. In the continuous time interpretation of E, one might choose C-=
{s e CIRe s < 0} and in discrete time C- {s e CI Isl < 1}, but also different choices
of C- are possible.

We assume that C Nqn, B e Nnr and that in addition to , we are given a
feedthrough matrix D x Nqr. In continuous time, the interpretation (Y_,, D) reads:

(5.1) 2 Ax + Bu, y Cx + Du,

and the transfer function of (, D) is

G(s) G.D(S) C(sI-A)-IB + D.
DEFINITION 5.2. Let L ". A system (,, ) (, :, , :) is an L-observer of

(, D) iffor every initial value Xo of E, Yo of X and every controlfunction u, the output of

(5.3) =+iy, =+Dy

satisfies" -Lx is stable (in particular rational).
The observer uses only the output of (Y_,, D). If one wants to consider the situation

in which partial or total knowledge of the input of 5; is available, one can incorporate
this in the problem by a suitable choice of D. In particular, if the input is completely
known, one introduces new matrices ,/ and a new output 37 of E according to

so that 7 x +/u represents the total data available for the estimation of Lx.
Let us use the following notation"

G(s) := G.,(s)= C(sI-A)-B +D,
(S) := O,,l(S) (sI- /)-IB -1-/,

GL(S) := L(sI-A)-IB.
Then we have the following result.

THEOREM 5.4. Let the system be reachable and let be observable. Then the
following statements are equivalent:

(i) (Y.,, D) is an L-observer of (:E, D).
(ii) GL(s)= G(s)G(s) and tr(a)_ C-.
(iii) There exists a real matrix Msuch that

DD O,

MA AM+BC,

L CM+DC,

MB BD

and o’(A c_ C-.

Proof. (i)=), (ii). If Xo 0, o 0, then we have

-L =H(s)a,

where H(s)= G(s)G(s)-G(s), and y,, u are Laplace transforms. Choosing, in
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particular, u e^’uo with A C, we find

:9-L= y.(s-A)-"-H(s)Uo.
Since )3-L has to be stable for all n N, h C, Uo, it follows that H(s) O.

Furthermore, if Xo O, u O, then

:-L,f (sI-)-$o.

Since (C, A) is observable, the stability of : -L implies that r(A)
_
C-.

(ii) => (iii). We use the matrix fraction representation

O’o(S) := B’(sI-A’)-IC’= T-I(s)U(s)

defined by B’(sI-A’)-= T-(s)S(s), U(s)= S(s)C’, and we consider the T-realiza-
tion (, M, ) of G’o(S) (see Theorem 2.8). Then the equation G(s)G(s)= GL(s) may
be rewritten as

Hence, if we write

(5.5)

then

(5.6)

U(s) + T(s)D’)’(s) S(s)L’.

W(s) := (U(s)+ T(s)D’):’(sI-’)-,

W(s)C’ SL’ U + TD’)D’.

Since (C, A) is observable, it follows from Lemma 3.13 that W(s) is a polynomial
matrix. Equation (5.5) implies

U(s)B’ + T(s)D’B’= W(s)(si-A’).

Hence, {W(s)} is an (M, )-invariant subspace, and

(5.7) M(s) sg(s)- T(s)D’B’ = (s)A’ + U(s)B’

(see (3.4)). We consider again the map defined in the proof of Theorem 2.8"
x S(s)x. Then we define M’ b-lW(s), so that S(s)M’ W(s). It follows from (5.7)
that

A’M’ MSfM’ dW(s) W(s)A’ + U(s)B’ M’A’ x C’B’.

Hence, A’M’ M’A’ + C’B’.
Furthermore, (5.6) implies"

T-l(s)W(s)’- T-(s)S(s)L’ + T-1UD’=
Since the left-hand Side is strictly proper, it follows that D’D 0 and

5M’C’ L’ +C’D O,

Hence,

M’C’-L’+C’D’ =0.

Finally, it follows from (5.7) that

T-l(s)U(s)’ + T-(s)(s)fix’ sT-XW(s)-D’:’.

Hence,

B’M’ W(s) (T-(s)*(s))_x D’:’
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since T-l(s)U(s) and T-l(s)(s) are strictly proper.
(iii) ::> (i). A short calculation yields

-Lx C(-Mx),

d
d-- Mx A Mx),

and the result follows from r(A)_ C- [3
The equivalence (ii):> (i) is given in 15], and the equivalence (i):> (iii), with the a

priori assumption (in the proof of (i)::), (ii)) that -Mx is stable, is given in [2]. Notice
that here the stability of -Mx is a consequence, rather than an assumption (see the
proof of (iii) ::), (i)). For the situation of availability of the whole input, this was also
shown in [6].

REMARK 5.8. The results of this section can easily be extended to systems over an
arbitrary field K, provided an appropriate definition of stable rational function has been
defined. Such a definition can be given as follows: Let :t/be a multiplicative subset of
K[s] (i.e., p(s) l, g(s) ell ::>p(s)g(s) ; 1 ). Then we say that a rational
function r(s)e K(s) is stable if r(s) has the representation r(s)= p(s)/q(s) with p(s)
K[s], q(s) l. Then the stable functions form a ring. In the situation described above
we have

{p(s) K[s]lp(s) 0=> s C-}.

In the general situation Theorem 5.4 remains valid if one replaces the condition
r(A) C- with "(sI- fi)-i is stable".

A particular example, which is relevant for discrete time systems, over arbitrary
fields, is

/:= {s" In =0, 1,...}.

An observer constructed according this multiplicative set is called a deadbeat
observer.

{i. Reaehalility snlslaees. Let (s) be a full column rank basis matrix of an
(, )-invariant subspace. Recall the interpretation of the matrices A 1, F1, C1 given in
(3.7), (3.8) and (3.9). Let B1 be any constant m x p matrix such that {(s)B1} {U(s)},
say

(s)B1 U(s)L1.

Then B1 is the matrix of the (codomain) restriction of Y3L1 to {(s)}. It follows that

(g- 3)’Llv (s)ABv

for every v e Kp. Consequently,

(6.1) (4-IL)={(s)[B,..., An-IB1]}.
This formula immediately implies the following result.

THEOREM 6.2. Let (s) be a (full column rank) basis matrix ofan (4, )-invariant
subspace. Then

(i) {(s)} is a teachability subspace iff there exists a constant matrix B such that
{T(s)B1}

_
{U(s)}, and (A1, Ul) is reachable (here A1 is given by (3.2)).

(ii) IfB is a constant matrix such that

(6.3) {(s)B1} {U(s)} (’] {xI)’(s)},
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then {q(s)[B1,’’’, A’-IB1]} is the supremal reachability subspace contained
in {(s)}.

Let us now consider reachability subspaces contained in ker c. Let (s) be a basis
matrix of such a space. According to Corollary 3.1 0, there exist matrices F1 and A such
that

(6.4) (s) U(s)FI(sI-A1)-1.
It follows from Theorem 6.2 that there exists B1 such that (A1, B1) is reachable and
{(s)B1}

_
{U(s)}, say (s)B1 U(s)L1. Hence

(6.5) U(s)Q(s) U(S)tl,

where Q(s):= FI(sl-A1)-IB1. Also, since (s) has full column rank, (F1, A1) is
observable, as follows from (6.4). Hence (F1, A 1, B1) is a minimal realization of Q(s).

COROLLARY 6.6. There exists a nontrivial reachability subspace contained in ker

iff
{ U(s)} 0 xt, {o}.

Proof. If (s) is a basis matrix of the (, )-invariant subspace Xtr and (s)=
U(s)FI(sI-A1)-1, then the supremal reachability subspace contained in Xt (or,
equivalently, in ker ) is nontrivial iff B1 0,whereB1 is a matrix satisfying (6.3). [3

According to (6.5), O(s)-L1 is a nontrivial right zero matrix of U(s).
Consequently, if the supremal reachability subspace contained in is nonzero, then
U(s) is not left invertible. The converse, however, is not true. For example, if
U(s) Ul(S), 0] where Ul(s) is left invertible, then it is easily seen that U(s) is not left
invertible, and {U(s)} 71Xtr {0}. In order to give a necessary and sufficient condition
for the existence of a maximal reachability subspace contained in ker c, we consider the
K[s]-module

(6.7) A := {v(s) Kr[s]l U(s)v(s) 0}.

This module is generated by the columns of a matrix M(s) (see 15, Thm. 3.1]).
COROLLARY 6.8. There exists a nontrivial reachability subspace contained in ker c

iff the module A defined in (6.7) is not generated by a constant matrix.

Proof. Let M(s) be a generator matrix of minimal degree, say M(s)=
Mos k +" "+Mk. Then s-kM(s)= O(s)-L1, where O(s)=Mls-1 +. +Mks-k and
L1 =-M0. We have

U(s)O(s)=U(s)L1

and U(s)L1 O, since, otherwise, [M(s)-skMo, M0] would be a generator matrix of
lower degree than k. It follows that {U(s)L1} {U(s)}f’]Xu, so that {U(s)}fqXcr # {0}.

Conversely, suppose that A is generated by a constant matrix, say D, and that
v{U(s)}f’lXtz, say v U(s)c U(s)r(s), where c is a constant vector and r(s) is a
strictly proper rational vector. It follows that there exists a rational vector q(s) such that
c-r(s)=Dq(s). Decomposing q(s) into a polynomial and a strictly proper part
q(s) =ql(s)+q2(s), we conclude that c =Dql(s), so that v U(s)c 0. Hence,
{ U(s)} ox {0}.

Now we have a procedure for constructing reachability subspaces contained in
ker . Choosing any matrix L1 such that {U(s)L1}_Xu, we have U(s)O(s)= U(s)L1
for some strictly proper O(s). If (F1, A1, B1) is a minimal realization of O(s), it follows
that q(x) := U(s)FI(sI-A 1)-1 is a basis matrix of a reachability subspace, provided the
columns of q(s) are independent. In general, it seems difficult to formulate conditions
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upon L1 and Q(s) that guarantee that (s) has full column rank. A sufficient condition
for this is that Q(s) be a strictly proper rational matrix with minimal McMillan degree
satisfying the equation U(s)Q(s)= U(s)LI. Indeed, if in this case (s) does not have
full column rank, there exists (s) with less columns than such that {(s)} {(s)}.
Since {(s)} is an (sg, )-invariant subspace, there exist F2, A2 such that (s)=
U(s)F2(sI-A2)-a. Also, there exists D1 such that (s)= (s)D1. Hence,

U(s)O(s)-- xIt(s)B1 ((s)D1B1 U(s)Q2(s) U(s)L1,

where Q2(s):= F2(sI-A2)-aDIB1 has lower McMillan degree than O(s).
THEOREM 6.9. Let L1 be a constant matrix such that {U(s)LI}={U(s)}fqXu. Let

Q(s) be a strictly proper rational matrix of minimal McMillan degree, satisfying the
equation U(s)Q(s) U(s)LI. Let (F1, AI, B1) be a minimal realization of Q(s). Then
xlz(s) := U(s)FI(sI-AI)-1 is a basis matrix of the supremal reachability space contained
in ker .

Proof. The supremal reachability subspace contained in ker c is the (unique)
minimal (, )-invariant subspace satisfying (Im ) (3 o/_ 7/"

_
o/g, where o/# is the

supremal (sg, )-invariant subspace gontained in ker . To see this, observe that an
(4, )-invariant subspace 7/" satisfying (Im ) f3 /d/"

_
7/’
_

is ( --)-invariant for
every such that is (1 -’)-invariant. Indeed, ( ")7/"

_
(4 -)//V W

and (4- Y3’) 7/’
_

7/’ + Im imply

(1-)c_ Wf3 (+Im )= o//.+ o/g.f-)im
_ .

Since {U(s)}f]Xu={U(s)L1}={xIt(s)B}_{xIt(s)}Xu, and because of the minimal
McMillan degree of Q(s), the result follows. 71

In the next section, it will be shown how Theorem 6.9 can be used for the explicit
construction of the supremal reachability subspace.

7. Constructive characterizations. Conditions for solvability and the charac-
terization of solutions of various problems can be made explicit by the use of row and
column proper matrices (see [16]). This will be the subject of this section.

If R KPq[s] has rows rx(s), ", rp(s), then deg ri(s) is called the ith row degree
of R (s). The coefficient vector of s ’ in ri(s), where ui deg ri(s) is called the ith leading
coefficient row vector, and is denoted by [ri]r. We denote by [R]r the matrix of leading
coefficient row vectors, that is, the constant matrix with rows [rx]r, ", [rp]r. Similarly,
[R ]c denotes the matrix of leading coefficient column vectors, that is, [R ]c ([R’])’. A
matrix is called row (column) proper if [R ]([R ]c) is nonsingular. A row proper matrix is
easily seen to be right invertible. Conversely, we have (see [16, Thm, 2.5.7])

LEMMA 7.1. If L(s) KPq[s] is right invertible there exists a unimodular matrix
M(s) KPP[s] such that M(s)L(s) is row proper with row degrees u, , up satisfying, <-... <= up. If L(s) KPq[s] is not right invertible, them exists a unimodular matrix
M(s) such that

M(s)L(s)=[Ll(s)]0

where L(s) is row proper with row degrees , <-. <= ’l. The number of rows of Ll(S)
equals the rank of L(s).

The row degrees u are independent of M(s) (which is not unique) and will be
called the row indices of L(s).

The following result (see [14, Property 2.2]) states a simple criterion for the
properness of a rational matrix T-(s) U(s) if the denominator polynomial matrix is row
proper.
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LEMMA 7.2. Let T(s) be row proper with row degrees 1)1, 1)q. If the row degrees of
U(s) are hi," , hq then T-(s)U(s) is proper iffh <-_ vi (i 1,. , q) and strictly proper
iff Ai < 1}i (i i, ", q).

Observe that if T is not row proper, there exists a unimodular matrix M(s) such
that T(s):= M(s)T(s) is row proper. If we define Ua(s):= M(s)U(s), we have
T-(s)U(s) T- (s)U(s), and we may apply Lemma 7.2.

Let us now consider (M)EMMP as defined in Problem 4.6. Assume that we have a
matrix fraction representation T-(s)[ U(s), R (s)] of [G(s), G_(s)]. Then the equation
for O(s) reads

(7.3) U(s)Q(s)=R(s).

In order that this equation has a (not necessarily proper) rational solution, it is
necessary and sufficient that rank U(s)=rank [U(s),R(s)]. For the existence of a
proper solution additional conditions have to be imposed. Writing down the ith row of
(7.3)

Ui(S)((S)- ri(s),

we note that a necessary condition for the existence of a proper solution is deg ui(s)>=
deg ri(s). The following result shows that this is also sufficient provided that U(s) has the
form

with U(s) row proper. According to Lemma 7.1, this can always be obtained by
premultiplying (7.3) with a suitable unimodular matrix M(s).

THEOREM 7.4. Let M(s) be a unimodular matrix such that

U(s)
M(s)R(s)

I_R(s)J
M(s)U(s)

0

where U(s) is row proper Let the row degrees of U(s) be v, 1)l and let the row
degrees ofR(s) be A, ., At. Then (7.3) has a proper solution iff R(s)=0 and Ai <-_
(i 1,..., l). Equation (7.3) has a strictly proper solution iff R(s)=0 and Ai <
(i=1,...,l).

Proof. The conditions are necessary according to the foregoing discussions. Now
assume that the conditions hold. Then there exists L grl such that U(s)L is a row
proper matrix with row degrees u, , Ul. Define

O(s) := L(UI(s)L)-IRI(S).
Then Q(s) satisfies (7.3). It follows from (7.2) that Q(s) is proper. The proof for the
strictly proper solution is similar.

We can express the result of Theorem 7.4 in a way not involving explicitly the
matrix M(s):

COROLLARY 7.5. Equation (7.3) has a proper solution iff U(s) and [U(s), R(s)]
have the same rank and the same row indices.

In [14], no explicit condition for the solvability is given. In [5], a condition is given
in terms of the kernel of the matrix U(s), R (s)]. The conditions given in Theorem 7.4
and Corollary 7.5 are directly expressed in terms of the matrices U(s) and R (s).

The set Xu is the largest (M, )-invariant subspace contained in ker c. By
definition x(s) Xu iff the equation

U(s)v(s)=x(s)
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has a strictly proper solution v(s). Therefore, using Theorem 7.4, we can give a
constructive characterization of Su.

COROLLARY 7.6. Let M(s) be as in Theorem 7.4. Then x(s)Xu iff
y(s) := M(s)x(s) satisfies the conditions

deg yi(s) < vi (i i, l),

yi(s) 0 (i=/+1,... ,q).

Here yi(s) denotes the ith component o] y(s). In particular, if we introduce the row vector
w(s) := [s-, ,1], then M-(s) W(s) is a basis matrix ofXu, where

W(s) := [ W(s)
with Wx(s) := diag (wl-a(S), Wl-X(s)).

One way of solving (7.3), already mentioned in 4, is the reformulation of (7.3) as a
(M)DDP. In doing so, it is not necessary to use the original denominator matrix T(s).
One might try to find a new denominator matrix Tx(s) such that T- (s)U(s) is strictly
proper and Tl(s) is as simple as possible. If we choose Tl(s) row proper, then according
to Lemma 7.2, it suffices for the strict properness of T-1 U, that the row degrees of Tx
are larger than the row degrees of U. If we denote the latter by A x, , A 1, the simplest
choice of Tx(s) is Tl(s)= diag (sX,+x, ., sXl+l).

For this computation, it is not necessary that U(s) be in row proper form. But if we
transform U(s) such that it has the form given in Theorem 7.4, then the dimension of
the state space will be minimal. These ideas are worked out in more detail in [3].

We conclude this section with a construction of the supremal reachability subspace
contained in ker . To this end, we consider the space

A :- {v(s)K(s)l U(s)v(s)-O},

and we choose a minimal basis for A (see [5]), that is, a basis for A (see (6.7)) which is
column proper. We define La :-[M]c. Furthermore we choose any D(s)Kl[s]
which has the same column degrees M(s) and such that [D]c L Then we observe (by
Lemma 7.2) that, if

N(s):=LaD(s)-M(s),

then O(s) := N(s)D-X(s) is strictly proper. Now we have
THEOREM 7.7. (i) { U(s)L1} Xu ( { U(s)},
(ii) O(s) is a strictly proper rational matrix of minimal McMillan degree satisfying

(7.8) U(s)O(s)=U(s)La.

Hence, if (F1, A1, B1) is a minimal realization of O(s), then (s) := U(s)Fx(sI-Ax)-1

is a basis of the supremal reachability subspace contained in ker .
Proof. (i) Since U(s)M(s) 0, it is easily seen that (7.8) is satisfied. This implies that

{ U(s)L1} c__ Xu 71 { U(s)}. Suppose that there exists a matrix L Of full column rank such
that {U(s)L1}c_ {U(s)/Sx}, and U(s)/S1 U(s)O(s) for some strictly proper O(s). Let
),/ be right coprime polynomial matrices such that ((s)- l(s)l-a(s), and/(s) is
column proper with [D] I. Then

U(s)(N(s)- LID(S)) O.

Since 0(s) is strictly proper, the columns of/(s)-/S1/(s) are linearly independent
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over K(s). But then L1 cannot have more columns than L1. Consequently, {U(s)L}
{U(s)L}.

(ii) Suppose that O(s)- lql’(s)-(s) has a lower McMillan degree than O(s) and
that N(s) and D(s) are relatively prime and that D(s) is column proper with [D(s)] I.
Then we have

U(s)(N(s)-LD(s)) O,

and hence, N(s)-LID(S)= M(s)R(s). By the "predictable degree property" (see [5,
3, Remark]), this implies that the sum of the column degrees of D(s), and hence

deg det D(s) is not less than deg det D(s), which contradicts our assumption.

8. Generalization to systems represented by Rosenbrock’s system matrix. In this
section, we indicate how the result of 3 can be generalized to the case where the system
is represented by a system matrix

T(s) U(s)](8.1) P(s)
V(s) W(s)J’

where T(s) K’’[s] is nonsingular and P(s) K(q+l)(q+r) Is]. We assume that the
transfer function matrix

G(s) := V(s)T-I(s)U(s)+ W(s)

and the matrix T-l(s)U(s) are strictly proper. If the latter condition is not satisfied, we
can obtain this by strict system equivalence (see [13, 3.1]). Indeed, if we define

U(s) := rr(U(s)),

then

O(s) := T-l(s)(U(s) Ul(S))

is a polynomial matrix. Therefore,

[ T(s)
P(s) :=

I.-V(s)
U(s)

W(s) + V(s)O(s)

is a polynomial system matrix with the same transfer matrix G(s).
In [9], it is shown that the maps

sC Xr --, Xr x (s zrr(sx (s )),

3 K --> XT U U s u,

"XT "> Kl’x(s) ’’> (V(s) T-l(s)x(s))_l
yield a realization (, M, ) of G(s) which is reachable iff T(s) and U(s) are left
coprime, and observable iff T(s) and V(s) are right coprime.

It is easily seen that Theorem 3.1 is equally valid in this situation. Instead of
Corollary 3.10 we get

THEOREM 8.2. Let W(s) be a q x m polynomial matrix. Then {(s)} is an (M, )-
invariant subspace in ker iff there exists CI K", F K"*, A K"" and an
x m polynomial matrix (s) such that

(8.3) IV1] [*(s)](si_Ax)"P(s)
F !_ (s).l

Proof. By Theorem 3.1, {*(s)} is an (M, 3)-invariant subspace of XT iff for some
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Cx, El, A1 we have (3.2) and hence (3.6). But then

xlt(s) V(s) T-(s)W(s))_l

=((V(s)C +(G(s)- W(s)F))(sI-A)-)-
((V(s)C- W(s)F)(sI-A)-)_

since G(s) and (sI-A)- are both strictly proper. Now it follows from Lemma (8.5)
that

(8.4) (s) := (-V(s)CI + W(s)Fx)(sI-Ax)-is a polynomial iff xlt(s)= 0. Combining (3.2) and (8.4) yields the desired result.
LEMMA 8.5. Let Q(s) Ktn[s], A K. If

(O(s)(sI-A-1))_l =0,
then O(s)(sI-A)-x is a polynomial matrix.

The proof is analogous to the proof of Lemma 3.13 and will be omitted.
The generalization of Corollary 3.12 can be expressed in terms of the map

Kq[s]"
r/x(s)/x(s).Kq+l[s].->
y(s)JL

COROLLARY 8.6. The largest (sg, Yd)-invariant subspace ofXT-contained in ker
is (Xp).

The proof is similar to the proof of Corollary 3.12 and will be omitted.
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MINIMAL INEQUALITIES AND SUBADDITIVE DUALITY*

ACHIM BACHEMt AND RAINER SCHRADER"

Abstract. In this note, we use a duality theorem for mixed integer programs (first explicitly stated by
Johnson (1973) for the one-row group problem) to characterize minimal inequalities. This characterization
extends earlier results, which assumed either a rational or a bounded constraint set (Blair (1978), Jeroslow
(1979), Johnson (1976)), by relaxing these assumptions either entirely or almost so. It also extends results
given first by Gomory and Johnson (1969) for the group problem.

1. Introduction. Consider the Farkas theorem [6] which states" Either

Ax=b, x>=O

has a solution or there is a u such that

uA >- O, ub <-_ 1,

but not both. The importance of this theorem in linear programming theory is due to the
fact that it gives a positive criterion for determining when a system of linear inequalities
has no solutions.

Although it turns out that Farkas’ theorem has an integer analogue (i.e., replacing
"x-> 0" by "x integer", see Bachem and Randow [2]), it does not carry over to the
NP-complete problem (cf. [15]): Is the system

Ax b, x >-O, x integer

consistent? This can easily be seen to be wrong. In 2, however, we give a positive
criterion for determining the inconsistency of

Ax +By b, x, y >= O, x integer

which yields a Farkas’ type theorem for the mixed integer case. Actually this idea was
motivated by a paper of Johnson 12]. Moreover, Jeroslow states in 10] a duality result
for mixed integer programs from which this Farkas version can easily be derived. In 2,
we slightly extend Jeroslow’s theorem to a complete analogue of the linear program-
ming duality theorem.

Besides primal methods and branch and bound algorithms, one of the powerful
tools for solving general mixed integer programs (MIP) is the cutting plane method, first
mentioned by Dantzig [5] in 1963. Intuitively it is clear that the "deeper" the cut, the
higher the efficiency and speed of convergence. So in order to develop necessary and
sufficient conditions for a valid inequality to be a "deep" cut, one reduces the theory of
valid inequalities to the theory of subadditive functions on the semigroup generated by
all feasible right-hand sides for MIP (el. Araoz [1], Blair [3], Gomory and Johnson [8],
Jeroslow [9], [10], [11], Johnson [12], [13], [14]). It is known that any such subadditive
function defines a valid inequality and, conversely, any valid inequality can be improved
by a cut derived from a subadditive function.

The concepts of valid inequalities and subadditivity are interrelated by the strong
duality theory for mixed integer programs (cf. Theorem 2) which we use in {}3 to
characterize valid cuts which are tight, i.e., which are at least supporting hyperplanes of

* Received by the editors June 27, 1978, and in revised form October 9, 1979. This research was
supported by SFB 21 (DFG), Institut fiir Operations Research, Universitit Bonn, Bonn.

Institut fiir konometrie und Operations Research, Universitit Bonn, Bonn, West Germany.
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the closed convex hull of the feasible points for MIP. This result extends the theorem of
Blair [3], Jeroslow [10] and Johnson [13] in that our result needs no assumption on the
data of MIP (cf. Theorem 3). Similar results for master mixed integer programming
problems can be found in [14].

We make no notational distinction between a vector x and its transpose. Whenever
it is necessary to know which is intended, the context makes it clear.

If A is an (m, n) matrix and d an n-vector, we denote by Ag the ith column of A, by
di the jth component of d.

2. Duality in mixed integer programming. For given real matrices A and B of
dimensions (m, n), (m, s), respectively, we denote by RHS(A, B) the set of all right-
hand sides v s’ for which the set S(v) {(x, y)lAx +By v, x, y >- O, x integer} is not
empty. The upper directional derivative (at zero) of a function /C: RHS(A, B)-->
l ID {-oo} is denoted by f’ and defined by

f’(b) := lim sup f(tb)/t
t0+

in case tb RHS(A, B) for 0 <- -< e and some e > 0. jc is called subadditive if f(v + w) _-<
f(v) +f(w) holds for all v, w s RHS(A, B) (note that RHS(A, B) is closed under
addition). As usual, we have the conventions x +(-oo)=-oo for all x s Ll{-o},
x(-oo)=-oo for positive x and (-oo)0 0.

We should emphasize the point that in the following we do not consider f to be a
fixed function but will look at systems of constraints defining a set of subadditive
functions.

Tx-xzortzM 1. Given the data A, B, c and d either there exists a subadditive function
satisfying

f(Ai) <= Ci, 1," ", n,

(2.1) f’(Bi)<=di, j=l,. .,s,

/(0)_->0,

or there exist real vectors x, y such that

Ax +By=0,

(2.2) cx + dy < 0,

x, y ---0, x integer,

but not both.
Note that if we relax the integrality of x in (2.2) and restrict f in (2.1) to be a linear

function, Theorem 1 turns out to be the well-known Farkas lemma. Additionally (2.1)
and (2.2) belong most likely to different complexity classes, unless NPc NP(NP, the
complement of NP). Before we give a proof of Theorem 1, we state some duality results
(Theorem 2), most of them due to Jeroslow [9] and Johnson [13].

Given the data A, B, b, c and d, consider the following pair of dual programs:

inf cx + dy,

(2.3) Ax +By b,

x, y >-0, x integer
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and

(2.4)

max f(b),

f(Ai)<=ei,

f’(s)<-_d,

f(0)=0,

i=l,. .,n,

j= 1,. .,s,

f: RHS(A, B) t_J {-} subadditive.

Note that we require f(0)=0, while earlier subadditive duals required f(0)-<0.
Furthermore, let G(v) be the function defined by

G(v) := inf {cx + dylAx + By v, x, y >- 0, x integer},

where v is a feasible right-hand side for the primal program (2.3) (v RHS(A, B)). We
call G the value function of (2.3).

For parts of the following theorem we shall assume that either

(2.5)
or

(2.6)

s 0, i.e., there are no continuous variables,

A and B have rational entries,

or

(2.7)
there is a bound K 6 R such that (x, y) S(b) implies
Ilxll-<- g for some norm IIx[I

holds. Often rationality of the data A and B or boundedness of the constraint set S(b)
in (2.3) are assumed, because in general the convex hull of S(b) is not closed, hence not a
polyhedron. This was noted by Meyer [17], [18] and Noltemeier [20]. Meyer [17]
proved that the assumption of one of the three conditions (2.5)-(2.7) guarantees the
validity of the following trichotomy:

(2.8)
Either (2.3) is inconsistent or the objective of (2.3) is

unbounded or (2.3) has an optimal solution.

Clearly, (2.5)-(2.7) are only sufficient conditions for the validity of (2.8).
THEOREM 2. Consider the pair ofdualprograms ((2.3) and (2.4)), where the data A,

B, b, c, and d are given.
(i) Assume one of (2.5)-(2.7) holds. Then (2.3) and (2.4) both have optimal

solutions iff they both have feasible solutions and in this latter case, (2.4) has an
optimal solution f with only finite values.

(ii) If (x, y) and f are optimal solutions to (2.3) and (2.4) resp., then cx + dy
f(b) G(b).

(iii) Let (x,y) be an optimal solution to (2.3). If xi>0 then G(Ai)=
G(b)- G(b-Ai) holds and analogously if yj >0, G(eBj) G(b- eB) holds
for all 0 <= e <= Yi.

(iv) Let f(A) (f’(B)) denote a vector with components f(Ai), i= 1,..., n, (f’(Bj),
1,..., s). If (x, y) and f are optimal solutions to (2.3) and (2.4), then the

complementary slackness condition holds, i.e., x(c-f(A))+ y(d-f’(B)) O.
This condition remains true iff is replaced by G.
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Proof. We shall require"
LEMMA 1 (Jeroslow 10]). For every feasible f of (2.9),

f(Ai <= Ci, 1," ", n,

(2.9) f’(Bi) <= di, j l, s,

f: RHS(A, B) --> R U {-} subadditive,
and all v RHS(A, B), f(v) <= G(v) holds. Moreover, G itself is feasible for (2.9).

LZMMA 2 (see also Jeroslow [9], Johnson [13]). If G is the value function for (2.3)
we have

(i) G is subadditive on .RHS(A, B);

(ii) G(xiAi) <= xiG(Ai), Vxi integer Xi > O;

(iii) G(6B) <= ,G’(B.), ’, > 0;

(iv) If G’(b) is finite for b e RHS(A, B)
G’(b) limt-,o/ G(tb)/t.

LEMMA 3. If one of (2.5)-(2.7) holds at least for one v RHS (A, B), we have

G(O) 0 iff G(v)>- for all v e RHS (A, B).

Proof. If S(v) is bounded for some v (case (2.7)), then S(0) is bounded. Hence, for
all v e RHS(A, B), (2.7) holds and $(v) is the union of finitely many polyhedral sets (see
[17]). If G(v)=- for some v, then (2.3) in unbounded over some polyhedral set with
fixed x, which implies G(0)=-c.

In the other two cases, conv (S(v)) is polyhedral (in case (2.5) see [19], [20] and in
case (2.6) see 17]) and thus the arguments of 171 (cf. Theorem 5) can be used to prove

(2.1o) inf {cx + dy lAx +By 0, x, y -> 0} - iff G(0) -.
Hence if v e RHS (A, B) with G(v)= -, we obtain inf {cx + dylAx +By v, x, y >=
0}=-, which implies inf {cx + dy]Ax + By 0, x, y->0}=-, which in turn gives
(using (2.10)) G(0)=-. Conversely, if G(v)>- for all v e RHS(A, B), we obtain
(since (0, 0)e S(0) and G-) 0-< G(0)-< 0 (cf. [9]) and thus G(0)= 0.

Proof of Theorem 1. Assume (2.2) is consistent, i.e., there is an (x, y)e $(0) and
cx+dy<O which implies k(x, y)eS(0), k e N, hence G(0)=-. If (2.1) is also
consistent, we can use Lemma 1 to derive 0 _<-f(0) =< G(0) which contradicts G(0)= -c;
thus both (2.1) and (2.2) can not be consistent. Assume (2.2) is inconsistent, i.e.,
G(0) => 0. Using Lemma 1, we obtain G is feasible for (2.1).

Proof of Theorem 2. If (2.3) and (2.4) both have feasible solutions (2, 7) and 1 we
can use Lemma 1 to derive (note that (0, 0)e S(0)) 0=f(0)-< G(0)-<_0, i.e., using
Lemma 3 we obtain G(b)>-. Assuming one of the conditions (2.5)-(2.7), the
validity of (2.8) holds which proves the existence of an optimal solution (x, y) of (2.3),
and Lemma 1 implies G is dual optimal and by definition of G: G(b) >=f(b) >= G(b)
cx + dy. Let e {1,. ., n} be fixed and let ei e n denote the ith unit vector of Rn, then
((x keg), y) S(b kAi) for all k 27 with k =< xi. Therefore G(b kAy) <-
c(x-kei)+dy and ck=G(b)-c(x-ke)-dy<-G(b)-G(b-kA)<-G(kAi)<=
kG(A) <= ck, hence equality holds all over. If xi > 0 set k 1, which yields G(Ai)= ci
and G(b)- G(b A) G(A). On the other hand, if G(Ai) < ci, x must be zero. Using
Lemma 2 (iii), the same argument holds for the continuous variables. The argumen-
tation goes through if G is replaced by f, which proves the theorem.

Note that for the complementary slackness result we do not need any assumption
on the data A and B. It is exactly this technique that we use later on to prove necessary
conditions for minimal inequalities.
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3. Minimal inequalities without using the trichotomy. We say that an inequality
cx + dy >= h with real data c, d and h is valid for S(b) if it is satisfied by all (x., y) ~S(b). A
valid inequality is called minimal if there is no other valid inequality ?x + dy => h of S(b)
with ? -_< c, a =< d and/ _-> h. Using the coefficients (c, d) of a given valid inequality as the
objective coefficients in (2.3), we call G the value function of that valid inequality.

Clearly if cx + dy >= h is a minimal inequality then cx + dy >= G(b) is a valid
inequality, hence G(b)<-h. Since for all positive e there is an (x, y) S(b) such that
G(b)<-_h <-_cx + dy <- G(b)+ e we obtain for e 0+,

(3.1) G(b)=h.

Investigations of minimal inequalities have been done in various settings, (cf. [3],
[7]-[14]). Recently Jeroslow [9] and Blair [2] gave a characterization which holds even
for the general mixed integer problem assuming a bounded feasible set S(b) [10] or
rational data A and B [13] (see also [14] for related results).

In this section we prove that the characterization given in 10] can be stated without
any assumption on the feasible set S(b).

THEOREM 3. If CX + dy >-h is a minimal inequality for S(b) and G is its value
function, then

(3.2) G(b) h,

(3.3) G(Ai) G(b G(b Ai) ci, 1,..., n,

(3.4) G’(Bj)=dj= lim (G(b)-G(b-SBj))/8, ]= 1,. .,s.
,--*0+

Clearly as mentioned above, (3.2) is an easy consequence of the minimality.
LEMMA 4. if CX + dy >--h is a minimal inequality, then S(b-xiAi)f for some

integer xi >- 1, 1,. ., n and G(b xiAi) > -c, G(xiAi)>- for every xi 1 such
that S(b xiAi) f. Analogously $(b y/Bj) for some yj > O, ] 1,..., s, and
G(b yB/) > -o, G(yIBi) >- for every yi > 0 such that S(b yiBi) J.

Proof. If xi 0 for every feasible (x, y)e S(b), cx + dy >= h cannot be minimal
because ci can be lowered to, say, i ci 1. G(b xiAi) -o or G(xiA)=- imply
G(b)=-c which contradicts G(b)= h>-; hence one part of Lemma 4 holds. The
same argument carries over to the second part.

X iAi) ::/: for someLEMMA 5. If CX + dy > h is a minimal inequality and S(b o

integer x ki>0, then (G(b)-G(b-x iAi))/x is monotonically increasing for every
monotonically decreasing sequence (x/,Ik ) with x i> x > 0 and integer. Similarly if
S(b-B/)Q for some >0, then (G(b)-G(b-SkB))/ k is monotonically
increasing for every monotonically decreasirg sequence (6k[k 6NI) with o> tk )0.

Proof. Without loss of generality x_->2. Since S(b-xkA) for all integer
0 k k

x > x > 0, we have by Lemma 4 G(b x iAi) > -c and G(xAi) > -o. Consider t.he
function F(xi):- G(b)-G(b-xiAi)-cxi. Using the subadditivity of G and Lemma 1,
we obtain for integer xi, Zi 0 such that xi + zi < x’i

F(xi + zi)-- G(b)-G(b --(Xi q- zi)Ai)--Ci(Xi + Zi)

<- G(b)-G(b-xiAi)+ G(ziAi)-ci(xi-1- Zi) (subadditivity)

<-- G(b)-G(b-xiAi)wcizi-ci(xi+zi) (Lemmas 1, 2)

<- G(b)- G(b xgAi)- cixg

=F(xi).
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Since Xi "" Zi Xi, this yields F(xi h- Zi)/(Xi + Zi) F(xi)/xi, which establishes one part of
the lemma. But the other part can be proven exactly in the same way.

LEMMA 6. I] CX + dy >= h is a minimal inequality, we have"

(3.5) sup {(G(b)-G(b -xiAi))/xil(x y) S(b), xi >0}- ci,

(3.6) sup {(G(b)- G(b yiBi))/yi](x, y) S(b), Yi > 0} di.
Proof. Because the proof of (3.5) and (3.6) use exactly the same arguments let us

only show (3.5). Let (x, y) $(b) with xi >0, then G(b)<-_ G(b-xiAi)+ G(xiAi) (using
subadditivity of G). Applying Lemma 2, we obtain (G(b)-G(b-xiAi))/xi <
xiG(Ai)/xi G(Ai) <-_ ci; hence if ti denotes the supremum of the left hand side of (3.5),
ti _-< ci must hold. Let tk := Ck for k 1, , n and k # i, then

c’x + dy ixi + c(xl, ,xi-1, 0, Xi+l, ", Xn) + dy

iXi d- G(b xiAi)

>-- G(b)-G(b-xiAi)+ G(b-xiAi) (definitionof i)

=G(b)=h

holds for every (x, y) $(b), i.e., ?x + dy => h is still valid for $(b). The minimality of
cx + dy >= h implies ? >- c, hence ? c and (3.5) is established.

Proofof Theorem 3. Lemma 5 implies that the supremum in (3.5) will be attained at
some $i > 0. Thus

Ci.i G(b)- G(b -.iAi) G(b)- G(b -Ai -(.fi 1)Ai)

<-- G(b)-G(b-Ai)+(.fi- 1)G(Ai) (subadditivity)

<-_ G(b)-G(b-Ai)+ci(fi- 1) (Lemma 1)

Ci,i (subadditivity and Lemma 1),

i.e., equality holds everywhere and we obtain C G(b)- G(b -Ai) <- G(Ai) <= Ci which
proves (3L3). To prove (3.4) we use again Lemma 5 and Lemma 6 which prove

d sup {(G(b)- G(b yB))/yl(x, y) S(b), y > O}

lim (G(b)- G(b-

Using Lemma 1 we obtain

dj lim (G(b)- G(b 6B))/6

--<_ lim G(6B)/
-0+

G’(B) <- d,
which proves the theorem.

Remark. The converse of Theorem 3 holds: if cx + dy h is a valid inequality for
S(b), and G is its value function, then (3.2), (3.3) and (3.4) imply that cx + dy h is a
minimal inequality. The proof in i 0] goes through without using the trichotomy or any
more restrictive assumption.
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EXTENSIONS OF HILDRETH’S ROW-ACTION METHOD
FOR QUADRATIC PROGRAMMING*

ARNOLD LENTS" AND YAIR CENSOR:

Abstract. An extended version of Hildreth’s iterative quadratic programming algorithm is presented,
geometrically interpreted, and proved to produce a sequence of iterates that (i) converges to the solution, and
(ii) has an important intermediate optimality property. This extended Hildreth algorithm is cast into a new form
which more pronouncedly brings out its primal-dual nature. The application of the algorithm may be
governed by an index sequence which is more general than a cyclic sequence, namely, by an almost cyclic
control, and a sequence of relaxation parameters is incorporated without ruining convergence. The algorithm
is a row-action method which is particularly suitable for handling large (or huge) and sparse systems.

1. Introduction. Linearly constrained quadratic optimization problems appear in
various fields of applications and it is not rare to encounter large-scale problems or even
huge-scale problems (i.e., problems in which the number of variables run into the range
of 10 and more, with an even larger number of constraints). Usually, the matrix
describing the constraints will be sparse, but all too often no special structure pattern is
detectable in it. In such cases the use of row-action methods is strongly suggested. A
row-action method is any iterative procedure which uses the rows of the matrix one at a
time; see Censor [4], Censor and Herman [5].

As one example of an application field in which such a situation arises, we name the
subject of image reconstruction from projections, which has had, during the last years,
an overwhelming impact on diagnostic radiology through the introduction of the
techniques of computerized transaxial tomography; see, e.g., Gordon and Herman
[14], Herman and Lent 15].

Hildreth’s quadratic programming procedure [19] is indeed a row-action method,
and therefore, it deserves the attention of solvers of large and sparse quadratic
programming problems. The capabilities of this algorithm were demonstrated in
Herman and Lent [18] where results of a numerical experiment on a large (ca. 1,600
variables, 4,800 interval constraints) are presented.

In the present paper we cast Hildreth’s algorithm into a "compact" form and
introduce into it a sequence {r(k)} of relaxation parameters (typically, 0 < r(k) < 2). The
option of using relaxation parameters has been shown to be a very important tool in
practical implementations of other row-action methods (see the discussion in 6 of
Herman and Lent [15] and the experimental results of Herman et al. in [17]), and,
undoubtedly, one would like to have the assurance that the convergence of the
algorithm is not ruined by the introduction of the relaxation parameters.

Another feature introduced here into the Hildreth algorithm is the almost cyclic
control, meaning that the rows of the matrix may be taken up, as the iterations proceed,
in a manner which is less restrictive than cyclic control. The introduction of the almost
cyclic control, though it causes some difficulties which are laboriously overcome in the
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proof of convergence, lays the foundations for the method of quadratic optimization
over pairs of inequalities (i.e., interval constraints) developed in Herman and Lent 18],
where almost cyclicality is essential. It also constitutes a contribution towards the
question raised by D’Esopo in [9, p. 41], regarding generalizations of cyclic controls.

Thus, our main task here is to supply a proof of Hildreth’s procedure with
relaxation parameters under almost cyclic control. The proof presented here does not
rely on any full-row-rank assumptions. In this way the difficulties, discovered by
D’Esopo and reported in the erratum [19], with Hildreth’s original proof are
completely circumvented. Although D’Esopo recognized the difficulty, it has not been
taken care of in a satisfactory manner in his work on Hildreth’s procedure [9]. There
exists yet another proof of the convergence of Hildreth’s algorithm given by Bregman
[3]; but being completely differently structured, Bregman’s proof covers only the cyclic
case and does not lend itself to a modification which will allow for the incorporation of
relaxation parameters. In our proof, which differs from previously given proofs, we also
pick up along the line an interesting intermediate optimality property of the iterates of
the algorithm, which has important consequences due to the fact that, in practice, the
algorithm is always stopped after a finite number of iterations, and a particular iterate is
taken as the approximate solution to the problem.

As far as the literature goes, it is worthwhile to mention that only a handful of
textbooks on optimization present the Hildreth algorithms at all (see Hadley [13],
Kunzi and Krelle [21], Luenberger [23]). In Gorenflo and Kovetz [11], Herman and
Lent [18], and Wendler [30] applications of Hildreth’s algorithms were made, while
rate-of-convergence results were reported in Oettli [27]. We would like to believe that
this paper, along with the development in 18] and the presentations in [4] and [5], sheds
more light on the benefits which Hildreth’s procedure promises for large and sparse
systems applications.

In 2, almost cyclicality and relaxation parameters are introduced and the
extended Hildreth algorithm is presented and discussed along with a geometric
interpretation. In 3, our convergence theorem is formulated, and duality theory is
invoked to yield some preliminary results concerning the dual sequence. Also, the
convergence of the differences of iterates to zero, a cornerstone in the convergence
proof, is established.

In 4, the convergence of a sequence of constraint sets is proved, and then the
proof of convergence of the sequence of iterates produced by the extended Hildreth
algorithm is concluded. In 5, an intermediate optimality property is illuminated, and a
concluding discussion is presented in 6.

2. Almost cyclicality, relaxation parameters, and the extended Hildreth
algorithm. Hildreth’s quadratic programming procedure 19] is an iterative method for
finding an approximate solution of the problem"

(2.1)
min 1/2(By, y) + (y, d)
such that Gy <= h,

where B is a positive-definite n n matrix, G is an m n- matrix, y R", d R and
h R’; (.,.) stands for the inner product in the n-dimensional Euclidean space R n.

Using the Choleski decomposition with B D7"D and letting y D-ix B-d, the
problem (2.1) is transformed into the following"

Standard Problem

(2.2)
such that Ax <= b,
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where A GD-1 and b h + GB-d;II stands for the Euclidean norm in R n.
The application of Hildreth’s algorithm to a given quadratic optimization problem

is governed by a sequence of indices which specifies the row of the matrix to be taken up
at a given iterative step. This sequence will be called the control of the algorithm. The
following definition was introduced in Lent [22].

DEFiNiTION 2.3. Let I {1, 2, ., m} be a finite set. A sequence {ik}k_-o is almost
cyclic on 1 if

(i) ik I for all k => 0, and
(ii) there exists an integer C, called an almost cyclicality constant, such that for all

k->0, Ic_{i/l,..., ik/c}.
An almost cyclic sequence on {1, 2, ., m} is called cyclic if C m.
Almost cyclic controls are less restrictive than the cyclic control, and they add

another important option as to how the application of the method to a particular
problem will be carried out. In Herman and Lent [18], almost cyclicality is essential.
Various other almost cyclic controls can be employed as, for example, the Aitken’s
double sweep method see, e.g., Luenberger [24, p. 158].

We now give the extended version of Hildreth’s algorithm for solving the standard
problem (2.2). Remarks concerning the application of the algorithm to the general
quadratic programming problem (2.1) are given in the discussion presented in 6,
below.

We will assume throughout that ai 0 for all ! {1, 2,. , m}, where ai R
forms the ith row of the matrix A. Denoting S {xlAx <-_ b}, the feasible set of (2.2), it
will be assumed throughout that S .

ALGORn’HM 2.4 (Extended Hildreth algorithm).

(2.4.1) Initialization" z co) R + arbitrary (R + stands for the
nonnegative orthant of R) and x(- -Arz (o.

(2.4.2) Typicalstep" x(k+l)’-x(k)+(k)aik, z(k+l)=z(k)--c(k)eik with

(k) () r() bik --(aik,

where e is the vector with 1 in the ith place and zeros elsewhere, and {r(k)} is
the sequence of relaxation parameters, all of which are assumed to be positive.

(2.4.3) Control" The sequence {ik}o is almost cyclic on I {1, 2,. ., m}.

This compact presentation of the extended Hildreth algorithm paves the way for a
nice geometrical interpretation which was reported in Herman and Lent 16]. First, let
us show that for the special case of a cyclic control (i.e., ik k (mod m)+ 1) and with
unity relaxation (i.e., rk) 1 for all k) the extended Hildreth algorithm (Algorithm 2.4),
as formulated above, does coincide with the original (and traditional) representation of
Hildreth’s algorithm; see, e.g., Hildreth [19], Luenberger [23], Oettli [27], Wendler
[30].

To do this, observe that a=Arei and that x()=-Arz for all k. This last
fact is easily seen to be true because x()=-Arz() from (2.4.1) and by induction,
x(+a)=x()+c(k)ai=-Arz()+c()Are=-Arz+. Given k, we make here the
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temporary abbreviation ik, SO that
(k+l) (k) (k)

Z --Z --C ei

(2.5) =z

Now,

-’z
(k) + [max (O, zk)

-(ai, x (k)) (ai, A T"z (k))

(2.6) =(ai, E azk)) E (a,, a)z"
/=1 j=a

(k)Y dz

where dij (ai, a) is a typical element of the m m matrixAA, and d, (ai, ai) 0 for
all L

Substituting this in (2.5) and writing it componentwise we get
(k+l) k)z =z ill#i,

(2.7)
zl.k+l)=max O,zk)---iii bi+ 2 diiz}k) ifj=i.

It is in the form (2.7) that Hildreth’s procedure has been presented in the literature with
the initialization z<) >- 0 and the update rule x <k) =-Az<k), and with z k), the vector of
dual variables, "leading" the execution of the algorithm at each iteration.

The form in which the extended Hildreth Algorithm 2.4 is cast here emphasizes its
primal-dual nature (see Luenberger [23]) and enables us to give the following geometric
interpretation. Assume for the time being that r<k) 1 for all k. Observe that, because of
the initialization (2.4.1) and by induction, z <k R’ for all k. Now consider the nature of
the kth step, which produces x <k+) from x k). Again, abbreviate ik for the control
index taken at this step and let Hi----{xl(ai, x)<= bi} be the half-space associated with
the ith constraint of the standard problem. We distinguish between two possibilities.

If x(k)Hi, i.e., x <k) violates the ith constraint, then bi--(aix(k))<O and C
(k)--

(bi-(ai, x’)))/llaill. This implies that X (k+l) is the orthogonal projection of X (k) onto the
bounding hyperplane OH/of the half space Hi (see Fig. 1).

If x <k) Hi, then again an orthogonal move towards OH is made. The move is given
by z k)ai unless this would result in crossing the hyperlane OHi, in which case we "stop"
at the hyperplane (see Fig. 2). Observe that if x <k) OHi then x <k+) x <k)

In Hildreth’s algorithm, X (k+l) H/always and the absolute value of z <k+x)i has been
made as small as possible--consistent with that condition.

The Hildreth algorithm is specifically designed for approximating the minimum-
norm (shortest, least-distance) element of a polyhedral convex set when the set is
described in terms of large numbers of intersecting hyperplanes. Different descriptions
of the feasible set suggest the’use of different algorithms. When the set is defined as the
convex (respectively, conical) hull of a point set, then the method of Wolfe [32]
(respectively, Wilhelmsen [31]) might be used, provided that storage for the necessary
tableaux is available. If the vertices of the convex set are known, then the method of
Bazaraa, Good and Rardin [2] is applicable.
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FIG.

oint or point 2.

/

oH,

FIG. 2

For the minimization of more complicated quadratic functions (e.g., least squares)
over the canonical set R_, the (iterative) S.O.R.-like method of Cryer [6], or its
extension of Mangasarian [25], is a possibility. These algorithms update the iterates on a
component-by-component basis, and do not require any auxiliary tableaux.

It is not simple, then, to compare the performance of the Hildreth algorithm with
that of other large-scale programming algorithms. The three classes of algorithms
mentioned correspond to three different classes of problems, and there seems to be no
real competition between them.

3. A convergence theorem for the extended Hildreth algorithm, the dual problem
and convergence to zero of the differences. The following theorem for the extended
Hildreth algorithm will be proved.
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THEOREM 3.1. Assumptions: (1) S {x lAx <= b} # ai # O ]:or all I
{1,2,... ,m}.

(2) {i}%o is an almost cyclic sequence on L and
(3) there exist el, e2>0 such that el <--r(k)<=2--e2 for all k.
Conclusion: The sequence {x {k)} produced by the extended Hildreth algorithm (2.4)

converges to the solution of (2.2).
In the sequal, the necessary theory is developed and it is not until (4.15), in 4, that

the proof of this theorem is completed.
The dual problem to the standard problem (2.2) is

max (z)
(3.2)

such that z e R +,

where (z) --- minxR- L(x, z), with the Lagrangian
i=1 zi(Y aijxj-bi) and therefore/=I

(3.3) (z) =-1/2IIATzlI2-(b, z).

The standard problem (2.2) and its dual (3.2) are related by the duality theorem (see,
e.g., [24])

(3.4) min llx 2 max (z).
xS zc=R

Next, we show that the extended Hildreth algorithm (2.4) defines a feasible ascent
method in the dual variables, i.e., the sequence of dual vectors {z (k)} produced by (2.4) is
feasible for (3.2) and the values of (z (k)) increase monotonically and converge. From
this, the convergence to zero of the differences of the iterates (primal and dual) follows,
as is shown by

LEMMA 3.5. If 0<r) <_-2-e, e >0, then for the sequences {z()}, {x (’)} and {c ()}
produced by (2.4), we have

(a) z) R"*+ for all k,

(b) (P(z (+I)) --> (z()),
(c) lim_ [CP(z(+1))-cP(z(k))] O,

(d) c()---- O, and

(e) (x(+l)-x ()) O, (z(k+l)-z ()) O.
ko k-+

Proof. Again, abbreviate i.
(k+l)(a) By induction, z) R "/ from (2.4.1), c (k) < zl). from (2.4.2), so that z

zl-) -c(_>-0 and all other components of z/1) remain unchanged.
(b) From (3.3) and from xk)= --ATz) for all k, we get

(3.6) dP(z(k+l))--dP(z(k))=][aill2c(k)[ bi-(ai’ x(k)> C)]-
To bound the right-hand side, we go back to (2.4.2). Note that

(3.7) c(k) <__ r(k) bi -<ai,

where strict inequality can hold only if C
(k)-- Zk), which is nonnegative because of (a)
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above. Hence,

(3.8) di)(Z(k+l))--dP(Z(k))>[lail]2[(k)]2(--r--l1) _->0

because 0 < r(k) < 2.
(c) From (b), ((I)(z(k))} is monotonically increasing, and (3.4) shows that it is

bounded from above, so the conclusion follows.
(d) Let Ila, I]: => a > 0 for all i. Then, from (3.8) it follows that

f)(Z(k+I))--()(Z (k)) >_ 1/4ae[c(k)]:
so that (c) implies c (k)-)0.

(e) This is immediate from (2.4.2) and (d). The interested reader may wish to
consult Daniel’s book [7, 4.2, 6.2 and 6.3] for a general discussion of the significance
of convergence to zero of the differences sequence of a sequence of iterates.

Remark 3.9. Conditions on the relaxation sequence {r(k)}, similar to those appear-
ing here, are abundant in various iterative methods; see, e.g., Gubin et al. [12], Polyak
E28].

4. A convergent sequence of perturbed constraint sets and the convergence o
Hildreth’s extended algorithm. Here we introduce a sequence of slack vectors
which serve to construct a sequence of perturbed constaint sets S(k). These sets
converge (see, e.g., Valentine [29, p. 39] for a definition of convergence of a sequence of
sets) to the constraint set of (2.2). The intermediate optimality property of the iterates
produced by (2.4) is established with respect to the sequence

DEFINITION 4.1. q(O)= 0, and

(k) if j ik,q.
(k+)

qi =-- c( )lla ll=
r(k----7--+ bi-(ai, x if f ik i,

where ik is the constraint index taken up at the kth step, abbreviated by i.
Next, define the vectors b (k) by

(4.2) b(k)___ q(k) + Ax(k),

and use them to construct a sequence of perturbed constraint sets S(k) by

(4.3) S(k) {xlAx <= b (k)}.
Note that by construction, s(k) for all k. (The nonnegativity of q(k) follows by
induction using (2.4.2).) The next result proves the convergence, in some sense, of the
perturbed constraint sets.

LEMMA 4.4. Let {ik}k=O be almost cyclic on I ={1, 2,..., m} and assume the
existence ore1, 62>0 such that el --< r(k)----< 2--e2 for all k. Then, b (k)--) b as k -c.

Proof. We shall show the convergence componentwise. Let I be fixed. Taking
any given k, denote by l(k) the most recent iteration, -_< k, with the property il t.
Because of the almost cyclicality of {ik} k-_O we know that k C <- l, where C is an almost
cyclicality constant. (We have assumed implicitly that k > C.)

From (4.1) we learn that

qk) qk-1) ql+l),
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SO that substituting into (4.2) we get

bk) qk) +(at, x()

(4.5) q+l +(at, x (k)

+ b, + (a,, x (k)- x(l)).
r (l)

The first summand on the right-hand side of (4.5) tends to zero as k because also
goes to infinity and Lemma 3.5 applies. The inner product can be expanded as

k-1

(at, x(k)--X (l)) Z (at, x(]+l)-x(/))

with at most C terms in the sum, therefore, and because of the convergence of the
differences x(k/l)-x (k to zero (Lemma 3.5(e)), this inner product tends to vanish with
k - c, and we are left with b

We conclude the proof of the convergence of {x ()} by appealing to some theorems
of convex analysis. We will need the following

THZORZM 4.6. Let T={y[Ay<=d} and T’={y’lAy’<-d’} and assume T’ is
nonempty. Then, there exists a constant a, which depends only on A, such that ]:or any
y T there exists a y’ T’ with the property

(4.7) Ily y’ll--< c II(d d’)+ll,
where the upper plus notation means, for any vector v, (v+)i max (0, vi).

This is Daniel’s [8] statement of Hoffman’s [20] theorem.
We adopt some additional notations: x* will denote the point in $ with minimum

(k)norm, (k) will denote the point in S closest to x (k), and x, will denote the point in S(k)

(see (4.3)) closest to x*.
THEOREM 4.8. Under he assumptions of Theorem 3.1 the following hold"
(a) IIx(ll-llx*ll as k ,
(b) II(-x(ll- 0 as k-o, and

Proof. (a) Write

(4.9) Ilx*ll I111 I1-xll + IIx 11.
Applying Theorem 4.6 with Sk as T, S as T’, and x as y, we have

(4.10) IIx <)-<>11 ll(b <)- b)+ll;
and because of Lemma 4.4 there exists, for any positive e, a Kt K(e) such that

(4.11) IIx*ll + IIx()ll, k egl(E).

To get an inequality in the opposite direction, write

(4.12)

where the leftmost inequality in (4.12) is justified by Theorem 5.1, which describes the
intermediate optimality property of the iterates. Now, apply again Theorem 4.6, this
time with S as T, S(k) as T’ and x* as y, to get

(4.13)

Once more, the right-hand side can be made less than e > 0 because of Lemma 4.4, and
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so (4.12) becomes,

(4.14) [[x(k)l[<-- e /llx*l[, k

and the required result follows from (4.11) and (4.14).
(b) Follows now from (4.10) and Lemma 4.4.
(c) Follows from (4.9) and from (a) and (b).
Proof of Theorem 3.1. We show here that limk+ x (k) x*. Write

(4.15) IIx * x >11 -<- Ilx * >11 + IIx) 11.
The second term on the right-hand side is taken care of by (b) of Theorem 4.8.
Concerning the first summand, (c) of Theorem 4.8 ensures that, for the sequence
{} S,

I111 + IIx*ll as k-.
Since $ is a closed and convex set and x* is the only point in $ which has minimum
norm, it follows readily that (k_+ x* as k --> , thereby completing the proof.

5. An intermediate optimality property. Here we use an argument due to Everett
[10] to show that the iterates x (k produced by applying Algorithm 2.4 to the standard
problem (2.2) are optimal in the sense that each x (k minimizes the objective function
f(x) 2 over the perturbed constraint set S

Convergence of the sequence of iterates, or even rate-of-convergence results do
not tell us too much about the nature of any particular iterate, and it is well-known to
practitioners that sometimes results which are acceptable in terms of the real-world
problem can be obtained by picking an iterate from a sequence generated by some
algorithm whose very convergence is in doubt. Therefore, we consider the intermediate
optimality property, giving information on the nature of the iterates {x (k)} individually,
to be of some interest to the user of the algorithm who stops the iterations at some
instant and takes a certain iterate as the approximate solution to the problem. (By the
teal-world problem we mean a problem that is modeled by the optimization problem,
for example, the problem of image reconstruction from projections--see Herman and
Lent [15]).

THEOREM 5.1. X
(k) produced by the extended Hildreth algorithm (2.4) minimizes

f(x) over the perturbed constraint set S(k.
Proof. x (k optimizes the Lagrangian L(x, z (k) (see 3), therefore,

(5.2) f(x(k))+(Ax(k)-b,z(k))<=f(x)+(Ax-b,z (k)) forallxR",

that is,

f(x (k)) <-_ f(x) + (Ax, z(k))--(Ax (k), z(k)).
It is not difficult to see that, for every k =0, 1, 2... and for every ]eI=

{1,2,... ,m},

(5.3) qlk. .zi(k}=0,
where q(k are the slack vectors of Definition 4.1 and z (k} are the dual vectors. (Using
induction on k with (2.4.2) and Definition 4.1, it follows from the definition of c(} that
ql"k+l) Z}k+l, -’0).

This enables us to write

f(x())<-_ f(x) + (Ax, z(k))-(Ax (k) + q(k),
(5.4)

=f(x)+(Ax-b(k),z (k)) forallx R".
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For x eS(k), we have Ax-b(k)<o,= whereas z(k)R m+ for all k (Lemma 3.5).
Therefore,

f(X (k)) <=f(X) for all x S(k). [

6. Conclusion. Hildreth published his algorithm more than twenty years ago [19],
but it was not until very recently that it was applied to a highly significant, huge-scale,
sparse problem [18]. The essential simplicity of the extended Hildreth algorithm
presented here makes it an easily programmable and low storage demanding method.
Assuming row generation, capability, core storage need be provided only for the x
vector, while the dual vector z and the data b can be stored on disc. The extension to
almost cyclic control and the introduction of a relaxation sequence, along with its
row-action nature, make this algorithm particularly attractive for large and sparse
quadratic programming problems. A convergence result for the application of the
extended Hildreth algorithm to the general problem (2.1) follows readily from
Theorem 3.1, but this is not to say that the algorithm is recommended for use on general
quadratic problems. The presence of the matrix B- in the transformation from (2.1) to
(2.2) obviously limits the applicability of the method. Even if the problem involves a
simple, known B- it is unlikely that sparseness will be preserved through the Cholesky
factorization.

The Cholesky factorization is, therefore, used here only as a theoretical tool and it
is only for problems of the form (2.2) with large and sparse A, or problems that can be
reduced to this form, that the extended Hildreth algorithm presented here is recom-
mended.
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EXISTENCE AND UNIQUENESS OF REALIZATIONS OF NONLINEAR
SYSTEMS*
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Abstract. Necessary and sufficient conditions for the existence of either analytic or smooth symmetric
realizations of nonlinear input-output maps are given. It is also shown that two minimal realizations are
diffeomorphic.

1. Introduction. Let G be a group with a multiplication R G - G, and let p be a
function p" G --> R. In the present paper, we state a theorem (Theorem 3) which gives a
necessary and sufficient condition of G to be represented as a group of diffeomorphisms
{ba}a on some (canonically defined) manifold X such that p(a) h (ba (x0)), where h
is a function h:X--> R and x0 X. We apply this theorem for solving the nonlinear
realization problem.

input output

F.

The realization problem can be formulated as follows. Given a system ("black
box") with an "input" and "output" (see Fig. 1), we put some functions (controls), with
values in a set f, at the input and get some functions (with values in R r) at the output.
The set of pieces of input functions (on finite intervals) can be regarded as a semigroup S
with multiplication being concatenation. We assume that the output function y at time
> 0 is uniquely defined by the piece u of a control function on the interval [0, t]; i.e.,

the following map is given

(1) p:SR r.
The triple (S, p, R r) will be called an input-output system.

We ask whether there exists a manifold X (state space) with a distinguished point
Xo X and functions f:X t --> TX, h X R such that the control system

(:z) c f(x, u), x(0) xo, y h(x)

realizes our system (S, p, R r). This means that for any u $,

(3) p(u) h(u(Xo)).
Here and below, b is a diffeomorphism X X, b(x) o(t,, x), where o(t, x) is the
solution of b f(q, u), 0(0, x) x, and tu denotes the period of action of u.

There is a wide literature known as "linear realization theory" devoted to the
linear case of the problem (cf. Kalman et al. [4]).

A realization theory was also developed for some special classes of nonlinear
systems, such as bilinear systems (let us only mention the paper by d’Alessandro, Isidori
and Ruberti [2]) or systems on groups (cf. Brockett [1]).

Recently, an important step in the extension of linear theory to the general,
nonlinear case was made by Sussmann [10] (cf. also Sussmann [8], and Hermann and
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Krener [5]). Roughly speaking, the main result of [10] can be formulated as follows: if
the system (S, p, R) has a realization (symmetric in the nonanalytic case), then it has a
minimal realization which is unique up to a diffeomorphism (for the definition of a
minimal realization see 2).

In this paper, we give sufficient and necessary conditions for existence of realiza-
tions of the system (S, p, R). We also show that two minimal realizations are
diffeomorphic. Our construction gives a minimal realization; that is, essentially, our
result implies the result of Sussmann [10].

In our approach, we use some ideas of Lobry [6] and Sussmann [9] on group
theoretical approach to control systems.

Throughout the paper we use the convention that for any set A, the symbol A
kdenotes the Cartesian product A=A ... xA, k-times, and A kJk_-i A The

symbols A, A have the set theoretical meaning onlyeven if A has some algebraic
structure. Composition of functions , 0 is denoted by r 0, and we often write r 0(x)
instead of (rp g0(x).

2. Pieeewise constant controls. Let fl be a set of admissible values of controls (its
elements will be denoted a, ). First we shall consider the case of piecewise constant
controls, so we do not assume any structure in fl.

Denote by

(4) a (tga)... (t2a2)(tlax)

the function [0, tr) 12, a(-) ai for - [tri_, cri), where tr/= )-",/’= t], (17"0 0), ti R+
[0, o) and k >_-0. The set of all such functions will be denoted by $ and its elements by
a, b, c, d. S has a natural structure of semigroup with multiplication

(5) ba "-(Tmm)’’" (TX[l)(tkol.k)" (tXggl),

where b (r,43,,) (/3). The identity e in S is an empty sequence (4)..
There is a natural action of R/ on S,

(6) ta ((ttg)ak) ((ttl)al)

(expansion). We identify a (1 a).
The semigroup S can be extended to a group denoted by Gs, which is defined in the

following way (cf. [6]). The elements of Gs are formal sequences of the form (4) with

t R and multiplication defined by (5), where we identify (tlc)(t2ce)--(tl + t2)ce and
(0a) e. The element ta is defined by (6) for > 0, and by ta ((ttx)a). ((tt)a) for
t<0.

Define the input-output mapping of a system as a function p:S R r.
The triple (S, p, R ) will be called an input-output system or simply a system.
Let us denote _b (bx,. ., b,,), m >- 1, _a (ax,. , ap), p => 1, _t (tl,’ to),

t, e R+, and 00 RP+ R as 4, (0b, 0,b’), where

(7) 0’(!) p(b(tap) (hax)).

It is useful to view (tpap) (ha) as a basic control, and b as measure experiments.
We shall say that the system (S, p,R ) is of class C (C-smooth) for k

0, 1,. , oo, o if

the functions g are of class Ck, la_, b S
(A1) (have analytic extensions onto R in the case of k to).
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Above and throughout the paper "analytic" will mean real analytic. Define

(8) rankp=suprankDO(t_), _a,b_ $
a,b,I

In order to obtain the existence of realizations we shall assume that

(A2) rank

We shall call the system (S, p, R r) time-invertible if

Va, ::l3, Va, b, Vt > O; p(b(O3 )(ta )a p(ba p(b(ta)(t )a ).

Let s be a function lq lq and let c E S be defined on the interval [0, t). By cs we shall
denote the function from $ defined by cs(z) s(c(t-z)) a.e. in the interval [0, t). The
above condition can then be expressed in the following equivalent form.

(A3) There is a function s" i’- fl such that
p(bcca) p(ba) p(bcca) for any a, b, c 6 S.

By a Ck realization (k 2,..., c, w) of the system (S, p, Rr), we shall mean a
quadruple (X, f, h, Xo), where X is a Ck manifold (Hausdortt, without boundary), and f
is a function f:Xf TX such that, for any a f, the function b(t)(x) (see (3)) is
well-defined and of class C with respect to (t, x) R X (i.e., the vector field f(., a) is
complete and 4(t) is a Ck flow). The function h"X R is of class C, and Xo is a point
of X such that the input-output mapping of the control system (2) is equal to p, i.e.,
p(a) h((Xo)) for every a S.

The realization (X, f, h, Xo) will be called reachable (weakly reachable) if for any
Xa X, there is a S (a Gs) such that b (Xo) xa. Here, for a Gs of the form (4), we
define b r r (b(-t)-I)(tkOtk b(tlOl with b(t for < 0 (inversion of time). The
realization will be called observable if for any x a, x X, x X2, there is b $ such that
h(4(x)) h(cbtb(X)). A reachable and observable realization will be called minimal.
A weakly reachable and observable C realization will be called C’-minimal (minimal
in the class C). The realization is symmetric if for any a f, there is/3 12 such that
f(’, a) =-f(’,/3).

We shall say that two realizations (X, L h, Xo) and (X’, f’, h’, x) of the system
(S, p, R r) are Ck-diffeomorphic if there is a Ck diffeomorphism X"X X’, which carries

-1, /,-1(X, f, h, x0) to (X’, f’, h, x), i.e., f’= (D,. f) , h h x h’(Xo).
THEOREM 1. a) Every C-smooth, k 2,..., c, time-invertible system (S, p, R r)

with finite rank has a minimal, symmetric, C realization (X, f, h, Xo), where dim X
rank p.

Any two minimal, C realizations of the same input-output system are C-diffeomorphic.
b) Every C system (S, p, R ) with finite rank has a C’-minimal realization such

that dim X rank p.
Any two C’-minimal realizations of the same input-output system are C-diffeomorphic.
Remark 1. Conditions (A1) and (A2) are necessary for the existence of a C

realization. In fact, (A1) follows from the definition of a C realization, and (A2) is a
consequence of the inequalities

(9) rank p _-< max max {rank Dff (_t), rank D4,t((_t))} _-< dim X,
g,b,t
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where O" R P+ -X and Oo"X R are defined by

(10) . (_t)

(11) $_b (ob,..., $b,), ob’(x) h(,(x)).
(By (3) we have 0 06 O,.)

Axiom (A3) is necessary for the symmetry of a realization.
Remark 2. Any Ck minimal realization of the system ($, p, R r) satisfying (A3) is

symmetric, i.e., Vc, ::1/, f(., c) -f(.,/), where/3 s(c). In fact, if f(x, ce) -f(x, ),
then there is a E S and > 0 such that {t) (to) (Xo) (Xo) (by reachability),
and so there is b E $ such that h(&o &(t (to &(Xo)) h(oa(X0)) (by obser-
vability). This means that p(b(ta)(t)a) p(ba), which contradicts (A.3).

3. General controls. Now we shall consider systems with more general classes of
control functions. To have solutions of realization (2) to be well-defined, we should
choose controls regular enough and have some regularity of f(x, or) with respect to a.

Assume that f is a metric space. Let c([-1, 1]; f) denote the set of measurable
functions q:[-1, 1]--> 12 which have the closure of the set of values {q(t), tEl-l, 1]}
compact. Let 0//c c([- 1, 1]; f) be a class of functions containing constant functions.
We define a semigroup as the set of functions which are piecewise of the form
u(t) q(/zt), where q E 0//and /x > 0. More precisely u E iff

(12) u (tq,) (t0),

where ti >- 0, qi E 07/, and

2r ri),) for 7" E [O’i--1, O’i)
(O’i-1 +

(13) u(7") qi
ti

(cri 21-x tj). We.denote elements of by u, v. Note that the representation (12) of the
function u is not necessarily unique (e.g., if 0//is the set of continuous functions and
1(1)=o2(-1), then there is a continuous function qEq/ such that (h+t;)o=
(t202)(/1X)).

Multiplication and action of R+ on S can be defined by (5) and (6), analogously to
the case of $. There is a natural imbedding S S.

The semigroup can be extended to a group G in the following way. We define
elements of G of the form (12) (formally), where t e R and q e q/. Multiplication and
action of R+ on G are defined by (5) and (6). For u of the form (12) and < 0 we define

tu ((th)ql) ((ttk)qk),

We identify elements u of the form (12) with t E R/ if they define the same functions on
the same interval. We also identify the product (tu)((-t)u) with the identity, i.e., the
inverse is defined by u-x= (-1)u.

Similarly as in the previous case, the triple (, p, R), where p is a map --> R , is
called an input-output system. We use the notation and repeat all the definitions from
2, replacing a E by 0 E 07/, S by , and Gs by Gg. Time-invertibility is defined by (A3)

(replacing $ by S), where we additionally assume that for any function o E the
function q* defined by q*(7")= s((,o(-7")) belongs to

Additionally, we shall say that the system (S’, p, R ) is continuous if the following
two conditions are satisfied.

(A4a) For any functions u, u, k => 1, from : defined on the interval [0, T) and such
that Uk(t)--) u(t) almost everywhere on [0, T), we have p(Uk)-p(u).
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(A4b) For any u, _v the function g(t., a) (d/dt) 0/p(_.)(_t, t)/t= is continu-
ous with respect to the variables (_t, a) 6 R P+ x f (jointly) together with the first deriva-
tive with respect to _t (here (_u, a) denotes the sequence (u a,. , up, a), a (la) s S).

For the case of the system (, p, R ) of class C, the map: R can be extended to
Gg, and functions 4 can be defined by (7) for _a, _b, s G (we shall use the notation
_u, _v s G and O)._ The extended map/ is defined as follows. For u (tq) (tlq),
we define

(14) p(u) O (_t),

where t_ (q,..., t)R, ((1o),..., (1o)) S and e denotes identity (one-
element sequence).

Although the representation u (to)... (to) is not unique, the definition of
the extended map/ is correct by the uniqueness of analytic extensions and the fact that
a restriction onto a hyperplane of an analytic function is analytic. The same arguments
imply that the formula (7) holds for _a, b and ! R.

We shall call an analytic system (, p, R r) completely continuous if the conditions
p+l p+l(A4a) and (A4b) are satisfied where, in (A4b), is replaced by Gg, R + by R and

p by,6.
We shall say that a realization (X, f,h, Xo) of the system (S, p, R r) is continuous if

f(x, a) is continuous with respect to (x, a)Xf together with the first order
derivative with respect to x. The notion "realization of (, p, R r),, includes the fact that
the system (2) has a (unique) solution on any interval [0, T] for any control function
0 6 defined on [0, T]. it is well-known that the following "approximating property"
holds for a function f(x, a) of the above described regularity. If Uk is a sequence of
functions from :q defined on the interval [0, T), and blk(t)- Ig(t) almost everywhere on
[0, T)(u ), then bk(Xo)- b(x0).

THEOREM 2. a) Every continuous Ck-smooth (k 2, 3,’.., cx3), time-invertible
system (S’, p, R r) with finite rank has a minimal, continuous, symmetric Ck realization
(X, f, h, Xo), where dim X rank p.

Any two minimal, continuous Ck realizations of the same input-output system are
Ck-diffeomorphic.

b) Every completely continuous C system (, p, R r) with finite rank has a C-minimal, continuous realization (X, f, h, Xo), where dim X rank p.
Any two C-minimal, continuous realizations of the same input-output system are

C’-diffeomorphic.
Remark 3. It is not difficult to see that conditions (A1), (A2), (A4a) and (A4b) are

necessary for existence of a continuous, Ck realization. Axiom (A3) is necessary for the
symmetry of the realization. In the case of minimal realization (A3) is also sufficient for
its symmetry (by arguments as in Remark 2).

4. Minimal representations of abstract systems. In this section, we state a general
theorem of the type of Theorems 1, 2 with semigroups S, replaced by a group G. We
shall derive both Theorems 1 and 2 from this theorem.

Let G be a group with a surjective map R G G. For the notational convenience
we denote this map by (t, a) ta, though it is not assumed to have any properties of
multiplication (e.g., we do not assume that tl(t2a) (qt)a). Let p be a map p" G R .
The triple (G, p, R) will be called an abstract system. A system of class Ck and rank p
are defined as in 2, where R/ is replaced by R and S by G.

By a Ck representation (k 1,. , , to) of the system (G, p, Rr), we shall mean a
quadruple (X, {(a}aCi, h, Xo), where
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(i) X is a Ck manifold (Hausdorff, without boundary) with a distinguished point
xoX;

(ii) , a G, are C diffeomorphisms of X, such that

(5) o,
and the map g,_: R p +X defined by

(16) 4, (_t) (tpap).,.(tlal)(Xo)
is of class C for any _a e G;

(iii) the function h:X-+ R is of class C"
(iv) the "input-output map" of the representation is equal to p, i.e.,

(17) p(a) h((Xo)) for a e G.

The representation is called transitive if for any x, x2 e X there is a e G such that
(xx) x. it Will be called distinguishable if for any Xl, x e X, xa # xz there is a e G
such that h((x,))# h(a(X2)). A transitive and distinguishable representation is
called minimal.

We call two representations (X,{}o,h, xo) and (X’,{cb’},h’,x) C-diffeomorphic if there is a C diffeomorphism h"X -+ X’ such that q’,, X ’ for
a e G, h h’ h’ and x X(Xo).

THEOREM 3. Every C-smooth, k 1, 2,. , co, w, abstract system G, p, R ) with
finite rank has a minimal C representation (X, {}, h, x0) with dim X rank p.

Any two minimal C representations of (G, p, R) are C-diffeomorphic.
Remark 4. It is easy to see that C-smoothness of (G, p, R ) and finiteness of the

rank are also necessary for the existence of a C representation.

S. Proo of Theorem 3.
Existence. We shall construct our representation in 3 steps" set theoretical (without

using axioms (A1), (A2)), topological (using only (A1) with k 0) and smooth (using
(A1) and (A2)). Similarly, Theorems 1 and 2 could be considered at these three levels
(replacing vector fields by one parameter groups of transformations).

A. Set theoretical representation. We define the following equivalence relation in
a

a b , p(ca) p(cb) Vc G.

Our state space X is defined as the quotient space

X G/-..,

and [a denotes the equivalence class of the element a G. We define

(18) ,(x)=[ab], h(x)=p(b), Xo=[e],

where x [b]. it is easy to see that these definitions are correct, conditions (15) and (17)
are satisfied, and the representation (X, {a}aa, h, x0) is minimal (we shall call this
representation canonical). Note that the mappings Ca are invertible since, o ,-1(x)= [aa-lb] x [a-lab] ,- ,(x).

B. Topological representation. We shall introduce a topology in X and prove that
are homeomorphisms, and h is continuous.
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(19)

and

(20)

where

(21)

Define 0" R p X and @b"X R’r by

lita q) (,oao)...(tlal) (Xo)

Oh’ ([a])= h (b,([a]))= p(bia).

Obviously, we have Ob O, where 0 is defined by (7).
We define the topology in X as the strongest topology such that are continuous

for every _a e G. A subset U cX is open in this topology iff 1 (U) is open for any _a.
The mappings 0b" X R are continuous with respect to this topology since, by (A1),
the mappings 0 0o are continuous.

To prove that the topology is Hausdorff, take Xl, X2eX, xl x2. From the
definition of X there is b e G such that Oh(x1) Oh(x2). The conclusion follows from
continuity of the map O. The continuity of h is a consequence of h oe, which follows
from (18) and (21). To show that a’XX is continuous, we prove that if a subset
U cX is open in X, then the set V S1 (U) is open in X, i.e., O (V) is open for any _a.
In fact, from (15) and (16) we have Ca a(_t) =,(_s’), where .a’= (a, ..., ap, a’),
t’= (tl,. , tp, t’) and a (t’a’). Therefore, the set _S (V)c R maybe identified with
the set O, (U) f) (R x {t’}), which is open in R x {t’} by openess of U. Continuity of the
inverse follows from

C. Representation of class C. Structure of n-manifold on X. We shall show that
any point x of X has a neighborhood homeomorphic to an open subset of R ". By
transitiveness of the group of mappings {a}, and the fact that Ca, a G are
homeomorphisms, all we have to do is to prove the existence of such a neighborhood for
one point x X.

Take _a, _b, _to such that

rank D0(to) n rank p.

The function 0 0 Og has p independent variables ! (tl, tp), where p is, in
general, greater than n. We fix p n of these variables (the fixed variables will be equal
to their values at the point .to) and leave the remaining n of them, (th,..., tg.),
varying. We choose the variables _z in such a way that the differentialD(.to), taken
along these variables only, has the full rank n. (In other words, the rm x n submatrix of
Dff (_to) which consists of columns with indices ix," in, has the rank equal to n.) We
obtain the reduced functions ff" R" X and o Ob_o .R ., R r, where

o(z) (t_ (z)).

Clearly, the map gb is of class C and rank Dg (_to)= n for r0 corresponding to .to.
Therefore, there is a neighborhood U R" of the point _zo such thatD has the full
rank on U, the set M q(U) is an n-dimensional submanifold of R" of class C and
o/U" U -->M is a C diffeomorphism between U and M.

Denote O ,/U, 0" U-a X. The function 0 is injective which follows from the
injectivity of /U O O. Thus O is a continuous (by continuity of Oo) bijection
between U R" and V O(U). We shall show that O is a homeomorphism between U
and the open subset V O(U) of X. By the remark at the beginning of this paragraph,
this will imply that X is locally homeomorphic to R ".
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We have only to prove that 0 is an open mapping, i.e., for any open subset U’ c U,
the set V’ 0(U’) is open in X. We show this for U’= U and V’= V (the proof in the
general case is analogous).

Assume that V 0(U) is not open in X. From the definition of the topology in X it
follows that there exist q => 1 and _c Gq such that the set 0_21 (V) is not open in R q. Then
there is a point _s’ R q such that

(22) _s’ U1 t21 (V) and s’ int U.
Denote c (S’qCq) (s’c). By the assumption that the map R x G - G is surjective,
we have that c- (s’c’) for some s’ e R and c’ e G. Consider the map

c,,(z,_s) O,c_ (_t(z), s’,_s),

where _ac’_c is the sequence (al, , ap, c’, c, , Cq), and_t(z) is the function R" R
defined before. Since _s’ e O- (V), then there is a point _r’ e R" such that

o (z’) 4,. (t(z’)) 0.(’) 4,(xo)

and so

Os,c,(4,,, (z’)) 4,-(0,, (z’)) xo.

Therefore, by the definition of O,c,(r_, _s) and (16) we find that

(23) ,,(z’, _s) 0_c ().

Similarly, from the fact that (S’qC,)... (s’cl)(S’’)= e, we obtain

(24) g,, (z, _s’) , (_r).

From (24), the fact that rank D/(z’)= n and assumption (A2), it follows that
~brank DO,(_, _s) n

0- This meanson a neighborhood W R n+q of the point (y’, _s’), where 0;’_c qo’_c.
that the level sets {(z,_s)e Wl,,(_r,_s)=const} are submanifolds of WcR"+ of
dimension q (actually, they form a foliation of W of codimension n). The level
submanifold passing through (_r’, _s’) intersects the n-dimensional submanifold U x {’}
transversally (cf. Fig. 2) by the fact that rank D(_’)= n, (24) and the formulas

g level submanifolds

"rl

FIG. 2
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4 O 4_, 4’_ 4- 4ac’. Similarly, the level submanifolds, which are close to it,
intersect U ’} transversally. We shall use this fact to get a contradiction.

Take a point _s"Rq close enough to _s’ such that _(") V and the level
submanifold passing through (y’, _s") intersects U {’} (this is possible by (22) and the
transversality of the level submanifolds and U {_s’}). We denote the point of inter-
section by (!", _s’). We can assume that (_r", _s’) and (!’, _s") lie in the same connected
component of the level submanifold.

We have that the point xl Oc,_ (_r’, _s")

_
(f’) (cf. (23)) does not belong to V, and

the point x2 _c,_(_r", _s’)

_
(_r") (cf. (24)) belongs to V. Therefore, Xl x2.

Now, by the distinguishability of the representation (X, {ba}aG, h, Xo), there is an
element b G such that

This implies that

and

h b(X1) 7 h bb(x2), that is, Ob(xl) 4,a(x2).

6c’_ (Z",_S’) e g’a_c’_ (Z’,

where _b’= (bl," ", b,,, b).
To complete the proof of the openness of V, it is enough to note that the latter

sentence contradicts the following lemma.
LEMMA 1. Let f W R k and : W R +’ be maps of class C 1, where W c R is

an open subset and is of the form ]r= (/, f). Assume, that rank D(x) rank Dr(x)=
const n on W. Then the connected components of the level submanifolds of f and
coincide. In other words, iff(x’) f(x") and x’, x" arefrom the same connected component
of the set N {x U, f(x =/(x’)}, then (x’) (x").

Proof. We have to show that the set of points x N such that iV(x)= ]r(x’) is closed
and open in N. Its closedness follows from continuity of the function f. To show that it is
open, we take a point x" belonging to N such that )(x") f’(x’). Since Df has the constant
rank, we may change the coordinates in a neighborhood of x" in such a way that the
function f will depend only on the first n variables. Therefore, the differential Dfwill be
of the form Df (LI’ "’ Ln’" 0) and so

Df \f’,,l, f,,, fx,,+l," f’.,

in a neighborhood of x" W and, locally, N {x xi x i, 1,. , n }.
By the fact that rank D.[(x)= rank Dr(x), we find that f’xi 0 for i> n, i.e., the

functions [ do not depend on the variables xi, > n. This and the equality ](x")- ](x’)
imply that locally around x", ](x)=](x’) for x N (by the form of N). The proof is
complete.

C-difierentiable structure on X. We endow X with a structure of a C manifold
by introducing a differentiable structure of class C (see Sternberg [7]). Define as
the set of real valued functions o, each defined on an open subset of X, such that the
function o O (see (19)) is of class C for any _a G. It is easy to see that o satisfies the
Ck differentiable structure axioms [7]"

(i) if ff is defined on U and V U is open, then q/V ;
(ii) if V U U and q is a function defined on V such that q/U for any a,

then q ;
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(iii) for any xX there are open subsets W cX, U cR (x W) and a
homeomorphism g" W U R such that for each open subset V c W and for any

g-1 Ck.function q V R, we have" q e 0% iff q is of class The neighborhoods W, U
and the homeomorphism g in condition (iii) can be constructed as in the proof that X is
locally homeomorphic to R (g -1, W 0(U)). We shall prove the nontrivial part of
this condition" if q g- e Ck (i.e., e ck), then q .

Take any _a e G and note that q 0o q O 0-1 0_a (on the set 0 (V)). We
have q 4’ Ck (by the assumption) and - Ck by the equality - _
o (o_b)-I O_bo- ()-1 and the assumption (A1). Here is treated as a
map into the submanifold M t(U) (see the proof that X is n-manifold) and all the
mappings are defined on suitable chosen subsets determined by V. Therefore, q

_
Ck and so q .

It remains to prove that &, a G, and h are Ck-smooth. To prove that & is of
class Ck we show that for any function q" X- R, q C, we have q & Ck. In fact, if
q C, then

_
C for any _a (by the definition of the differentiable structure on

X). Take q O&a o and note that &a o#_(t)=Oo,(t_’), where _a’=(a,..., ap, a’),
!’ (tl," , t,, t’) and a (t’a’). Since q _, Ck, then 0 & O_a Ck and so q &
Ck. The rank condition rank D&(x) n follows from the equality
D&(x) D&-(y) Id, where y &(x). The property h Ck follows immediately
from (A1) by the equality h

_ , which is a consequence of (18), (19) and (21). The
fact that Ck (see the definition of a Ck representation) is an immediate
consequence of the definition of the Ck structure .

Uniqueness. It is enough to prove that any minimal, Ck representation
(X’,{&},o, h’,x’o) of the abstract system (G,p,R ) is Ck-diffeomorphic to the
canonical representation (X, {O}o, h, x0) constructed in the existence part of the
proof.

We define our candidate for diffeomorphism X" X X’ by

(25) X(&, (Xo)) &’ (x).
X is well-defined by the distinguishability of (X’, {&’}o, h’, x). In fact, let &(Xo)
&b(Xo) and &’(x) # &(x). Then there is c such that h(&’ O’(Xo)) # h(&’c &(Xo)),
i.e., h(& &(Xo)) # h (& &b(Xo)) and so &a(Xo) # &b(Xo)a contradiction. If
X(& (Xo)) X(&b (Xo)), then for any c, h (&o & (Xo) h (&’c &’ (x))
h (&’c &,(x)) h (&c &b (Xo)), and by the distinguishability of the canonical
representation &,(Xo)=&b(Xo), i.e., X is an injection. By the transitiveness of
(X’, {&’a}O, h’, x), the map X is onto X’, which implies that X is a bijection XX’.

From the definition of X, we have

’ X(tb(Xo))"-" ! (tb(XG) ! (XG)"- X(ab(Xo))--/%( a(tb(Xo)ab

h’ X(Ob (Xo)) h’o O (x) p(b) h (Cb (Xo)),

i.e., O’ X X Oa, h h’ x, and X(Xo) X(O(Xo)) &’(Xo) Xo.
It remains to prove that X is of class C, and DX is nonsingular (i.e., X is a Cg

diffeomorphism). To prove the first fact we take any function " X’ - R of class Ck and
also show that X Ck, i.e., X b_ Ck for any _a G. This follows from the
form of the last function in"

(0 o/(#[o(_t))-- ( / t tpap Xo

o(’ (xG))(tao)’" "(tlal)

and from the Ck-smoothness of the representation (X’, {}, h’, x).
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Nonsingularity of DX follows from the equality 4’ 4’’-b h, 6_, which is a
consequence of (7), (15), (16), (17) and (25), where 4, ’0 (4’bl, ", ,bm) and ’b’(x)
h’(b,,(x)). In fact, for any xX we may choose _a, _b,! such that rank D6(_t)= n and

4’0 (_t) x (see the proof thatX is n-manifold). From this and the Ck-smoothness of _,
and 4’, we obtain that rank Dx(x)= n. The proof is complete.

COROLLARY 1. Theorem 1 holds with replacing R by a Ck finite dimensional
manifold Y.

Proof. The corollary follows from the proof of Theorem 3 as there we do not use the
linear structure of R r.

COROLLARY 2. Let (G, p, Y) be a C abstract system with finite rank. If
(X, {ba}ao, h, Xo) and (X’, {b’a}aO, h’, x’o) are, respectively, minimal and distinguish-
able (transitive and minimal) representations, then there is a Ck one-to-one immersion

(xo) x(submersion onto) X X X’ such that X qba qba X, h h X and X
Proof. By Theorem 3 we may assume that (X, {ba}aa, h, Xo) is the canonical

representation of the system (G, p, Y), coflstructed in the proof of Theorem 3. We
define X by X(qbb(Xo))=C’b(X). The proof that X has the required properties is
analogous to that for the uniqueness part of Theorem 3.

In the proof of the dual version, we cannot assume that the representation
(X, {b}a6, h, x0) is canonical. However, analogous arguments can be used since the
property that a function o"X - R is of class Ck iff 0 C, ’_a G holds for any
transitive Ck representation. This property follows from the fact that for any x X,
there are _a and_t* such that rank Dff (t*) dim X (see e.g., Corollary 3) and ff_ (_t*) x;
i.e., Og is a C submersion in a neighborhood of _t*.

In [9], Sussmann has proved that the orbit of a family of vector fields is an
immersed submanifold. From Theorem 3 and Corollary 2 we obtain a generalization of
this result in the case of complete vector fields.

COROLLARY 3. Let G be a group with a surfective mapR G G (see the beginning
of 4) which acts Ck-smoothly on a manifoldX. The latter means that there is a family of
Ck diffeomorphisms {b} such that (15) is satisfied, and the mappings O"RPX
defined by (10) are Ck-smooth. Then each orbit of this group Gxo {x Ix cb (Xo), a G}
is a Ck immersed submanifold ofX and dim Gxo supra rankD(_t).

Proof. Let (G, p,X) be an abstract system with p(a)= &(Xo). Clearly it is Ck-
smooth and has finite rank. Define its representation by (X, {ba}, h, Xo), where
h id" X X (it is Ck-smooth and distinguishable). We take any minimal represen-
tation (X’, {b’}, h’, x) of the system (G, p,X) (it exists by Theorem 3) and define
an immersion ,’X’X by Corollary 2. Obviously, we have that ,(X’)= Gxo. To
complete the proof note that for some _a, _b, _t, rank D4 (_t)= dim X’, i.e., (by O
4 ff) rank D4 (_t) => dim X’ dim Gxo. The converse inequality is obvious since p_ is
a map into Gxo.

Remark 5. The following property follows from the definition of the canonical
manifold X and the definition (18) of the diffeomorphism b.

If p(bca)=p(bc’a) for any a, be G, then

6. Proof of Theorem 1.
A. Existence. The system (S, p, R r) can be extended to an abstract system

Gs, , R r). We define

/(a) p(),

where S is obtained from a (tkOk) (tlCel) Gs by replacing the elements (tioi)
with ti <0 by (-t, s(ai)). By the definition of ,6, the Ck-smoothness of the system
(S, p, R ) implies Ck-smoothness of (Gs, , R ) and rank/ rank p.
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We define X, h, x0 as elements of a minimal Ck representation (X, {)a}aaGs, h, Xo)
of the abstract system (Gs, , R r) (we use Theorem 3). Consider elements of the group
Gs of the form (t, c), R. They form one parameter subgroup of Gs :(tla)(t2a)
(tl + tz)a and so b(t,) is a flow. From the Ck-smoothness of the representation or from
the definition of the canonical Ck structure on X (see the proof of Theorem 3), it
follows that b(t,) is a C flow. We define f(., a) to be the vector field corresponding to
the flow b(t). By the definition, we have that b(t, (t and so b a for any a S.
Therefore, p(a)=ff(a)=hoca(Xo)=hoc(Xo) for any aS. This gives that
(X, f, h, x0) is a C-smooth realization of the system (S, p, R r).

By the definition of the map/ and from (A3), we obtain that (bcsca) (ba) for
any a, b Gs. This and Remark 5 imply that bsc id, i.e., bs (b)-1. In particular,
(ftB) ((ftc))-1 for B =s(a) and tR. This means that f(., 3)=-f(., a), i.e., the
realization is symmetric.

From the above it follows that for any a Gs we have b b, where d S. this
fact and the minimality of the representation (X, {b}G, h, x0) give that the realiza-
tion (X, f, h, Xo) is minimal.

Uniqueness. A C minimal realization (X, f, h, Xo) of (S, p, R r) defines a C
minimal representation (X, {bta}Gs, h, Xo) of the abstract system (Gs, , R), where

b(t) b(t) for a (tka). (rice1); b(ftc) is a flow generated by f(., a)
and/5 is a map" Gs R defined by

/(a) h b(Xo).

It is enough to prove that the abstract system, defined as above, is the same for any other
minimal Ck realization (X’, f’, h’, x) of (S, p, Rr). The conclusion will then follow from
Theorem 3.

The equality

(26) h (Xo) h’o c’ (x ), a Gs

will be proved by induction with respect to the number of negative ti in a
(ta)... (tlal). Suppose that this was proved for any a Gs with the number of
negative ti less than or equal to s. We shall show that this implies

(27) h b(-,,,)a (Xo)= h’o $’(-,)a(Xo)

for any > 0 and c S. From the teachability of the first realization, there is a b S such
that

(28) $(Xo) ck-to,(xo).
We also claim that

(29) $’ (Xo)= $(’-,) (Xo).

In fact, if this does not hold, then

since 4() is one-to-one. Therefore, by observability of the second realization there is
d S such that h’ cbtl(,)(x’o) h’ cba’(x). Nowwe can use the induction assumption
for both sides of the last inequality (d(ta)b S and da has the same number of t < 0 as
a). We obtain that h cka()(Xo) h aa(Xo), which contradicts (28) and proves that
(29) holds.
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From (28) and (29) we find that Ckb(xo) (c(--toz)a (X0) and tfc’b (XD) -"tc(--toz)a (X6
for any c S. The latter two equalities and h bb (X0) h’ bt’b (x) (since cb $) imply
that (27) holds. This completes the proof of (26).

B. Existence. We extend the system (S, p, R r) to an abstract system (Gs, p, R r),
where

if(a) (_t).

Here a (tkak)" (tlCl), _a (al," ", Ck) and_t (tl," ", tk), and the function 0 is a
particular case of 0 with _a =_a and _b e(m 1).

By the fact that a restriction into a hyperplane of an analytic function is analytic and
by uniqueness of analytic extensions, the map is well-defined (it agrees with the
identifications (tl + t2)a (tl)(t2a)). The same arguments imply that the equalities

qtbd(!) ff(bi(tpap) (hal)) for ai, b S

can be extended to R p. We define the functions 4,, with ai, bs Gs by (7). The
analyticity of the system implies that the rank of the abstract system (Gs, tO, Rr), which is
of class C’, is equal to the rank of (S, p, R r). TO prove this we show that every minorM
ofD(_t) of order n + 1 is equal to zero, for any _a, b G and _t R. In fact, by the
definition (7) of the functions and the form (4) of elements of Gs, the minorM can be
expressed as a linear combination of products of expressions (d/dr)6(_r), where
(_r) p((%a) (ra)). From the fact that rank of the system (S, p, R) is equal to
n, we obtain thatM 0 for any z Rq+ in the expressions (8/Sr)b(r_). By analyticity of
the functions , this implies that M =0 for any value

_
R, i.e., M 0 for any

_a, b Gs and s R We define X, h and Xo as elements of a minimal C represen-
tation (X, {ba}as, h, Xo) of the system (Gs, if, e r) (Theorem 3). The vector fields
f(., a), a s f, are defined as the infinitesimal vector fields of the flows b(t,) defined by
this representation. We have b =&a for any a Gs. Obviously, the realization
(X, f, h, Xo) is of class C and weakly reachable (this follows from the transitiveness of
the representation (X, {4’},s, h, Xo)).

To show that it is observable, take x, x2 s X, Xl x2 and assume that h <b (Xl)
h b(x2) for any a s S. By transitiveness of the representation, there are ba, b2 Gs
such that bb(xo) x and bb(xo) x2, which gives h bb(xo)= h ab(Xo) for any
a s S. This means that

0(,,,,..,,)(1, h, ., t)= ..’, t)0(,-1, ,.)(1, tl,

for any e R+,/" 1, , k. By uniqueness of analytic extensions, this equality holds
for any e R,/" 1,. , k which implies that h b,(Xo) h b0(Xo), i.e.,
h rk,(Xl) h rk,(x2) for any a Gs. But this contradicts the distinguishability of our
representation and so the realization is observable.

Uniqueness. Let (X, f, h, Xo) and (X’, f’, h’, Xo) be two minimal Co" realizations of a
system (S, p, R ). As in the case of k 2,. , oe, we show that the extended maps

fi(a) h ck(Xo), fi’(a) h’ ck’ (X’o), a e as
are equal. This follows immediately from uniqueness of analytic extensions (from R k

+ to
R k) of the functions h rrk(,,.,,,,) ok[tl,,,1)(Xo) and h (x) asl(tkOtk
functions of the variable (h, t) (they are equal on R+). Therefore, we have
Co’-minimal representations (X, {b}o, h, Xo) and (X’, {ba’}O, h’, x6) of the same
abstract system (Gs, fi, R). By Theorem 3, they are Co’-diffeomorphic and so our
realizations are also Co’-diffeomorphic. The proof is complete.
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The uniqueness part of Theorem 1 can be slightly generalized as the following
corollary states.

COROLLARY 4. Let (X, f, h, Xo) and (X’, 1’, h’, X’o) be two Ck, k 2, 3,. ., oo, to,

realizations of an input-output system (S, p, Rr). If they are, respectively, minimal and
observable (reachable and minimal), then there is a Ck one-to-one immersion (sub-
mersion) onto X" X --> X’, such that DXf f’ X, h h’ x and X’o X(Xo).

If k to, then reachability can be replaced by weak reachability.
Proof. The proof is analogous to the uniqueness part of the proof of Theorem 1,

where, instead of Theorem 1, we apply Corollary 2.
The dual versions of Corollaries 2 and 4 relate to the problem of quotients of

manifolds (cf. Sussmann [11]). Namely, every system of complete (forward and
backward) Ck, k =oo, to, vector fields {f(., a)}a on a Ck manifold X and a finite
system of real valued functions h 1, , hr of class Ck define an equivalence relation of
"indistinquishability" on X by

xl x2 : Vb Gs, hi tfb(X1)-- hi tDfb(X2), 1,’" ", r.

COROLLARY 5. /f {f(’,a)}a is a transitive system of vector fields (i.e.,
Vx 1, x2, b Gs, bb (x 1) x2) andXis connected, then the equivalence relation is regular,
i.e., the quotient X/.-- admits a (unique) structure of a Ck manifold such that the
canonical projection X --> X/. is a Ck submersion.

Proof. Let x0 be any point of X and denote h =(hi,"’, hr). The quadruple
(X, {4f}aa, h, x0) is a Ck transitive representation of its own abstract input-output
system (Gs, p, R), where p(a) h ck(Xo). By Theorem 3, this system has a minimal,
Ck representation (X’, {4}a6, h’, x). From Corollary 2, there is a Ck submersion

X X --> X’ such that 4’ X X bf and h h x. It is easy to see that if X(xl) ,,’(X2),
then xl--- x2. The converse is also true, which follows from the distinguishability of the
second representation. Therefore, X factorizes through a canonical map ," X/-- --> X’,
which is a bijection and carries the structure of a Ck manifold of X’ onto X/---. The
proof is complete.

The solution of the existence problem given by Theorem 1 can be regarded as
complete only in the analytic case. In the case 2 -< k -< oo our condition is necessary for
the existence of symmetric realizations only. A necessary and sufficient condition for
the existence of any Ck realizations is given by the following theorem (it is an easy
consequence of Theorem 3).

THEOREM 4. Let k 2, , oo, to. The input-output system (S, p, R ) has a Ck

realization if and only if the map p can be extended to a map if" Gs --> R r, which satisfies
(A1) and (A2) with S replaced by Gs, and R/ replaced by R.

Proof. Suppose the map can be extended to a map/7" Gs -> R r, which satisfies (A1)
and (A2). Thus the triple (Gs, P, R r) is a Ck abstract system. By Theorem 3, it has a Ck

representation (X, {b}, h, x0). This representation defines a C realization
(X, f, h, x0) of the system (S, p, R), where f(., a) is the infinitesimal vector field of the
flow

Conversely, if the quadruple (X, f, h, x0) is a C realization of the system (S, p, R r),
then the map p can be naturally extended to Gs by the formula

p(a) h og)f(xo) h f f

where a (tkc) (ta), and( is the C flow defined by f(., ce). Then condition
(A1) follows from the definition of a C realization, and condition (A2) can be proved
as in Remark 1.
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7. Proof of Theorem 2.
A. Existence. Analogously, as in the proof of Theorem 1, we extend our system

(S, p, R r) to an abstract system (Gg, , Rr). The extended map/" Gg - R is defined by

t(u) =p(a),

where 6 is obtained from u Gg by replacing the elements (tii) with t/< 0 by
(-tip*), where for q 6 , p*(r) s( (-r)). By the assumptions on the system ($, p, R
the abstract system (Gg, , R r) is of class Ck and rank/ rank p. Let (X, {b}u, h, x0)
be a Ck, minimal representation of this system, which exists by Theorem 3. We define a
realization of the system (S, p, R r) as a quadruple (X, f, h, x0), where f(., a) is defined as
a vector field corresponding to the flow

Before showing that the quadruple (X, f, h, x0) has the desired properties, let us
prove that bu =ba for any u Gg, where b, ba are diffeomorphisms from the
representation (X, {b},, h, x0). By the definition of the element t $, it is enough to
show that (tq) (--tq*) for < 0 and .

But

(t,*) b(t,),(-to*) (to*)
-1 -1

where (tq) is defined as in (A3). By (A3) and Remark 5, we find that qbuu =rb,u
id, i.e. b, bXa Therefore ((tq)s (to) and so

Now we shall prove that f(x, a) is continuous with respect to (x, a), together with
the first derivative with respect to x. We fix x and show this locally around x. Take
u, v,q and tR+ such that rank DO (_t) dim X n. We have 0 0_, where
0" R"+ -* X, 0"X-R are defined by O(!) ((tpup)...(tlUl) (Xo) and 0 (x)
(h b(x), , h b..(x)). The sequences _u, _v, _t may be chosen such that g/u_(t) x. In
fact, if Og (!) x x, then there is u Gg such that b (x) x. By the fact that b ba,
we have also cba(xx)=x, where . Take v a-a and note that b b bSa. We
define new _u,_v,! by _u’=(ux,..., u,, t),_t=(tx,..., to, 1), _v’ =(vg,..., Vmg) and
achieve the desired property.

The map O"X-R may be treated as a substitute of local coordinates in a
neighborhood of the point x. In fact, it is C-smooth (by C-smoothness of the
representation); and, by rank D4,(_t)=n, it is a local diffeomorphism into an n-
dimensional submanifold of RTM. The map O" R -X can be treated (locally around _t)
as a local chart, after reducing the number of variables to n (fixing p n variables) as in
the proof that X is n-manifold. We denote the reduced function by 0(). Define the
function

d
g(_z, a) =-(ff ff(,> g(z_))/t=o=D-(y)./(y, a),

where y g (_z). From the assumption (A4b) it follows that is continuous with respect
to (_z, a), together with the first derivative with respect to _z. This and the fact that
_z=l(y) can be treated as local coordinates around xX give that f(y,a) is
continuous with respect to (y, a), together with the first derivative with respect to y
(note that DO (y) is invertible).

The diffeomorphisms bu, u defined by the representation and the diffeomor-
phisms b f, defined by the equation 2 f(x, u) coincide. For u S, this follows from the
definition of f(x, a). An analogous fact for u S follows from the continuity assump-
tion.
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In fact, let (x)(x) for some u s g and x X. By the minimality of the
representation, there are v, w G such that x Cw(Xo) and

h &v ru(X h &v u w(Xo) =(vuw).

Since ff(vuw)= p(uff) with tT, ff , thus we obtain

(30) (h o)((x)) : p(uff).

Now, we approximate the function u by a piecewise constant function. By the
approximation property and the assumption (A4a), we find that h Cv $(x)#
p(ga,)=ff(vaw) for some a S. This means that h o&v o$ # h o$ Ca, which
contradicts the equality $ &a and proves that Sru u for any u g.

Havin.g r, Su for u , we conclude the proof easily. The equality h $ (Xo)
p(u),uS follows from the corresponding equality for the representation
(X, {,}a, h, Xo). The Ck-smoothness of the realization (X, f, h, x0) follows easily
from the Ck-smoothness of the representation. Minimality of (X,f, h, xo) is a

consequence, of the minimality of the representation and the fact that for any u Gg,
there is t e S such that Ca. Symmetry of the realization follows from the fact that
(-t) (t) for R+ and/3 s(a) (note that (-)= (tB)).

Uniqueness. The proof is analogous to part A of the proof of Theorem 1, where
a s II should be replaced by q s q/, S by S, and Gs by Gg.

B. Existence. We define an extension of the system (S; p, R r) as a triple (Gg, 0, Rr),
where the map/" Gg -> R is the extension of p defined in 3. Clearly, (Gg, , R r) is an
abstract system of class C and rank ,6 rank p (the latter can be showed analogously as
in part B of the proof of Theorem 1).

Let (X, {,},a, h, x0) be a minimal C representation of the system (Gg, , R r) (it
exists by Theorem 3). We define a realization of the system (, p, R r) as a quadruple
(X, f, h, Xo), where f(., a) is defined as the vector field corresponding to the flow (t).

The proof that the realization is continuous is analogous to that in part A of this
proof. The only modification is that we need only _u, _v s G (except _u, _v S), because
the assumption (A4b) holds on the group Gg. Therefore, we take _u’=
(UI," ", Up, U), _t’’-- (tx," ", tp, 1) and _v’ (vlu-1, ", l)mU-1). The proof that u
for u is also a modification of part A of this proof (replacing inequality (30) by
(h o)((x)) p(vuw) with v, w Gg, and using (A4a) for the approximation of u by
a S). It also follows that Cu =ru, for u Gg by the fact that -1=-1 and
&o-1 ()-1 for v e g.

Now from the fact that (X, {&u}, h, Xo) is a C minimal representation of
(Gg, , R r), we obtain easily that (X, f, h, Xo) is a C’-minimal realization of the system
(S’, p, R r). (Observability follows analogously as in part B of the proof of Theorem 1).

Uniqueness. The proof is analogous to the proof of Theorem 1, where a e f
should be replaced by q e q/, and a Gs by u Gg.
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CONVERGENCE RATES FOR CONDITIONAL GRADIENT SEQUENCES
GENERATED BY IMPLICIT STEP LENGTH RULES*
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Abstract. Conditional gradient algorithms with implicit line minimization and Goldstein-Armijo step
length rules are considered for the problem mina F with f a bounded convex subset of a real Banach space.
When the Fr6chet derivative F’ is uniformly continuous on fl, the iterates x,, generated by any of the
algorithms comprise an "extremizing" sequence in the sense that the quantity, (F’(x,,),x,,)-
infya (F’(x,t), y), converges to zero as n--> . This ensures that every limit point of {xn} is an extremal, and for
compact fl it then follows that {x,,} converges to the set of extremals in fl. Weak counterparts of these results
are also established. Convergence rate estimates are derived for convex F and Lipschitz continuous F’. These
estimates are closely related to results obtained in an earlier investigation of two explicit step length formulas
for conditional gradient methods. Once again, the growth rate of the function a(o-)=
inf {p (F’(), x :) x , IIx 11->- } at an extremal , determines how rapidly the functional values F(x,,)
converge to infa F.

1. Introduction. This paper continues an analysis of conditional gradient
algorithms for the problem

(1.1) F()= inf F(x)
x

with D. a bounded convex subset of a Banach space X, and F: X --> R a real functional
with a continuous Fr6chet derivative F’. In [1] it was shown that the behavior of
conditional gradient sequences {xn} generated by either of two simple explicit step
length formulas is sensitive to the rate at which the function

(1.2) a (tr) inf (F’(sc), x sc)x
IIx-6ll_->

grows with increasing tr > 0. If F is convex and F’ is Lipschitz continuous then for both
of the algorithms in question, the functional values F, F(x,,) converge to inf, F like a
term of order o(1 In), geometrically, or in finitely many steps, depending on whether

(1.3)

or

(1.4)

or

(1.5)

a(cr)>0 forcr>0

:IA > 0, a (o-) _-> Atr2

:lAs > 0, a (tr) -> Astr.
In the general case where (1.3) is not satisfied, one still has F, infeF O(1/n). An
extremal is said to be strongly nonsingular, regular, or strongly regular (relative to F
and the norm on X) according to whether (1.3), (1.4) or (1.5) holds. The geometric
content of these conditions is developed at length in 1 ], along with their relationship to
classical notions of nonsingularity in optimal control theory.

It is established below that the same growth conditions (1.3)-(1.5) also control the
convergence of conditional gradient sequences generated by the implicit line mini-
mization step size rule and two other related implicit schemes originally proposed by

* Received by the editors September 29, 1978, and in revised form June 11, 1979.

" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650. This
investigation supported by National Science Foundation Grant ENG 78-03385.
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Goldstein [2], [3] and Arrnijo [4]. Moreover, the convergence rate estimates obtained
here for the implicit rules are related in an interesting way to estimates derived in 1] for
simple explicit step length formulas requiring no line search. In particular, when the
Lipschitz norm of F’ is known, the best a priori convergence rate estimates for the
explicit formulas are identical to the sharpest estimates established in 3 for exact line
minimization, and for limiting cases of the Goldstein-Armijo rules.

Less can be said here about the line minimization and Goldstein-Armijo rules
when F is not convex or F’ is not Lipschitz continuous. In all cases, the descent property
holds (i.e., F. F.+I); consequently, if F is bounded below on l, {F.} always converges
downward to some limit -> infn F > -. Moreover, if F’ is uniformly continuous on f,
then strong limit points (and sometimes weak limit points) of {x.} in ft are extremals,
and this leads to nontrivial convergence theorems for {x’,} under compactness assump-
tions on f. The concept of nonsingularity introduced in [1] is also important in this
analysis.

2. The algorithms. As in [1], let T" f 2n denote the set-valued operator defined
by

(2.1) T(x) { ft (F’(x), ) inf (F’(x), y)}

as x ranges over f c X. By definition, {x’,} = f is called a conditional gradientsequence if
and only if there exist corresponding sequences {’,} c l and {to.} c [0, 1] such that

(2.2) x’,+l= x’, + to.(Y. x.), ’, T(x.).

Different versions of the conditional gradient method are obtained from each of several
different rules which relate the step length parameter to,, to n, x’, and . at each stage.

In the classical line minimization step length scheme, the implicit constraint,

(2.3A) to, 0 if (F’,, x, ,) 0,

F’(2.3B) F(x,+x)= min F(x,,+to(,,-x,)) if( ,,x,-,)>0
0ta:l

is imposed along with (2.2) at each n at the very least, this condition ensures the descent
property, F, =>F,+, guarantees that {x,} terminates at x if x is an extremal (i.e., a
fixed point of T), and is known to force convergence of F, to infn F under suitable
convexity and smoothness conditions on f andF [5]. Other more tractable implicit step
length constraints have been proposed for feasible direction methods by Goldstein [2],
[3] and Armijo [4]. In the present context, Goldstein’s rule first fixes a 8 in (0, 1/2] and for
to > 0 puts

F(x)-F(x +to(-x))
g(x, :; to)

w(F’(x),x-.)

wherever (F’(x), x-) O, i.e., wherever x is not an extremal for F in f. If F’ is
continuous, then g is continuous in to with x and ’ fixed, and a straightforward
application of the mean value theorem shows that lim.,_.0+ g(x, a; to) 1. Consequently
if g(x, $; 1) < 6, it follows at once from the intermediate value theorem that the set

W(x, )= {to e (0, 1]16<=g(x, 2; to) <-__ l 6}

1A referee for [1] guessed that Goldstein-Armijo rules would generate geometrically convergent
gradient sequences whenever the explicit step length formulas in [1 produce such sequences. The investiga-
,tion reported here was prompted by that conjecture.
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is not empty, in which case the corresponding set

(2.4A) {{0}Ws(x, )= {1}
W(x, )

if (F’(x), x 2) 0,
if (F’(x),x-Y)>O and g(x,Y.; 1)>_-,
if (F’(x),x-Y)>O and g(x,Y; 1)<$

is also not empty. Goldstein’s rule now requires that

(2.4B) to, Ws(x,,

at each n

_
1. In the closely related Armijo scheme, two parameters 8 and/3 are fixed in

(0, 1/2] and (0, 1) respectively, and to is determined as follows:

(2.5A)

or

(2.5B)

where

(2.5C)

to, 0 if ,, x, :,) 0,

to,, =/3"" if (F’,,x,-Y,)>0,

m, =min {m =OIg(x,, , /3 ") >-- 6}.

The existence of m, is assured by the fact that lim,o..o+ g(x, ,; to) 1.
Conditions (2.4) and (2.5) impose the descent property F, F,+I, ensure that {x,}

terminates at xv if xv is an extremal, and otherwise guarantee that the decrement
F,+I-F, is a "sufficiently large" fraction of the leading linear term in Taylor’s formula.

(2.6) F,+-F, =w,(F,Y,-x,)+ (F’(x, +(Y,-x,))-F,Y,-x,) d

with to, # 0. This last observation gains significance when one considers that, for
quadratic F, (2.4) and (2.5) "approach" (2.3) in the limit as 8 1/2 and/3 - 1. Even for
nonquadratic F, one still tends to think of the Goldstein-Armijo rules as approximate
line minimization schemes. This rough interpretation is at least partially vindicated by
the a priori convergence rate estimates of Theorems 3.1 and 3.2 in the next section.

Note 2.1. To conform with Armijo’s original scheme in [4], one would put
6 =/3 1/2 in (2.5). The slightly more general treatment given here is similar to Polak’s
development in [6].

Note 2.2. For 6 (0, 1/2), it is always possible to find an to, ff/’ (x,, ,) in (2.4) with
simple line search algorithms (e.g., iterated bi-seetion) requiring only finitely many
evaluations of F. Similarly, for 6 (0, 1/2] and/3 (0, 1), the implementation of (2.5)
requires just finitely many evaluations of F. However, the number of such evaluations
can be expected to increase without bound as 6- 1/2 in (2.4), or as /3 1 in (2.5).
Consequently, these limiting cases, like exact line minimization, are primarily of
theoretical interest. For a further discussion of various step size algorithms within the
general framework of feasible direction methods, see [7].

3. Convergence rates for convex functionals. The following result is a slightly
revised version of Lemma 5.1 in [1].

LEMMA 3.1. Let [3. and q. satisfy

(3.1)
O<q_q,
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for 1 <-n < N. Then

1
0</, <

l+q(n-1)

for l <=n <-_N. Furthermore, if (3.1) holds for all n >-l, and if lim,_qn =c, then
I o(/n).

Proof. In [1].
THEOREM 3.1. Let be a bounded convex subset of a real Banach spaceXand let

F: X R be convex andFrchet differentiable. Furthermore, suppose thatF’ is Lipschitz
continuous on , with Lipschitz norm

IlF’(x)-F’(y)I[
(3.2) L sup < o.

xy

Finally, suppose thatthe sequences {xn}c , {,}c , and {to,} c [0, 1] satisfy (2.2) and
the line minimization rule (2.3) at each n >- 1, and put

r, F,- inf F.

Then:
(i) {r.} decreases monotonically to O, with

(3.3A) 0_-<r,_-< rl

l+q(n-1)

]’or all n >= 1, where

(3.3B) q=min 1, LID2 >0

and D diam f.
(ii) WhenFhas a minimizer satisfying the strong nonsingularity condition (1.3), :

is necessarily a unique minimizer, the sequences {x,} and {,} converge strongly to , and
r, =o(1/n).

(iii) When satisfies the regularity condition (1.4), {r,} converges geometrically to O,
with

(3.4A) 0 <- rn rlh

]:or all n >- 1, where

(3.4B) h=max , 1-2(Lx/A)(I+Lx/A)2 -,1

Moreover, IIx.- 11 o(, "/=) and
(iv) When satisfies the strong regularity condition (1.5), there is an integerNo such

that

(3.5A)

]or all n > No. Moreover,

(3.5B)

x. =x. =s

log(Llr/A2)
No=<l

log (l/As)
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where

(3.5C) ,L =max , 2(LD/A)(I+LD/A)
,1

Pro@ The proof closely follows the pattern established in [1]. (See Note 3.1,
below.) Under the stated hypotheses, inf F > -oo and r,, _-> r+ _>- 0 for n N 1. In all cases
(i)-(iv), (Fr/, xr/-ir/)= 0 => xr/ is an extremal (and therefore a minimizer of
F) :: x xr+ and r,, 0 for n _->N + 1. On the other hand, if

(3.6) (F’,, x,-,)>0

for 1 =< n -< N, then r, > 0 and IlY, x,l{ > 0 or n in this range, in which case (2.6) and
(3.2) give

r,+-r, min {F(x, +w(X,-x,))-F(x,)}
0_<o_<1

min oo(F,i-x,}+ (F’(x,,+o’(i-x,))-F,i,-x} do"

(3.7)
=< min {w(F’,,

-< min
2

for l=<n-<_N. Observe now that for any e >0 there is a y e f such that F(y)<
infa F+ e; hence it follows from (2.1) and the convexity of F that

(F’,,x,-Y,)=(F’,x,-y)+(F’,,,

=> (F’,,, x, y)

>_-Fn -F(y)

>=r.-e
for n => 1. Since e can be arbitrarily small here, this means that

(3.8)

for n => 1. Together, (3.7) and (3.8) yield the fundamental inequality

0 < (r. +1/rl) <--_ (r./rl) q. (r./rl)2(3.9A)

for 1 <_- n < N, with

(3.9B) q. min
LillY,, x.II2’

Since diam 1 D < o, it follows from (3.9B) that

(3.10)
1

q, >= q rain
LD2’

Lemma 3.1 now establishes (i).
If (1.3) holds at a minimizer : it follows from (i) and from Lemma 5.2 in 1 ] that : is

the only minimizer of F, and x. converges strongly to :. Moreover, the operator T in
(2.1) satisfies the continuity condition of Theorem 3.2 in 1] and therefore Y. converges
strongly to , in which case lim._.oo IlY. x ll 0. If (3.6) holds for all n _-> 1, then (3.9)
also holds for n -> 1, with limn_.oo q. az. Part (ii) now follows from Lemma 3.1.
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If (1.4) holds at :, then T satisfies the Lipschitz continuity condition of Theorem
3.6 in [1], and therefore

(3.11)

for n 1. The triangle inequality now yields

(3.12)

Moreover, since F is convex
r, =F,-F()(F’(),x,-),

and therefore, by (1.4),

(3.13)

Consequently, (3.9) and (3.12) give

(r+/r)N 1-min 1,
(L/A)(I+L/A)

(r/r)

for n 1. Finally, it follows from (3.11) and (3.13) that

and

I1. 11 \As r.

This completes the proof of (iii).
Condition (1.5) implies (1.4) with A As consequently (iii) gives

=r rhs
for n => 1, with As in (3.5C). It now follows from (3.13) and (1.5) that

0<11 -11<( /A)xXn 1

for n 1. Furthermore, one has

tllx 1111 11 <EL F’(), ->(3.14) (F’(), , )

AII -11,
and therefore

2/n(Lr/A,) IIx 11 I1 11
for n _-> 1. If n > log (Lrl/A)/log (1/As), then (Lr/A)A’ < 1 and (3.15) implies that
x- s. Finally, s is the only minimizer of F over f; hence it follows from (2.3) that
xk k s for all k > n. This proves (iv). Q.E.D.

THEOREM 3.2. Let 12 andFsatisfy the hypotheses of Theorem 3.1. Suppose that the
sequences {x}cl2, {}c12 and {con} [0, 1] satisfy (2.2) and Goldstein’s rule (2.4)
with 8 fixed in (0, 1/2], or Armi/o’s rule (2.5) with and fixed in (0, 1/2] and (0, 1)
respectively. Then conclusions (i) through (iv) of Theorem 3.1 hold once again, except
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that (3.3B), (3.4B), (3.5B) and (3.5C) are now replaced by

(3.3B’) g=8.min 1, LD2j>O,

(3.4B’) h max { 1 8, 1

(3.5B’) No <- 1 +

and

(Lx/A)(1 + Lx/A)2

log (Lr/CA)
log (1/h)

(3.5C’) =max {1-3, 1-
(LID/As)(1 +LD/As)2

respectively, where C 28 for Goldstein’s rule (2.4) and C 2/3(1-8) for Armijo’s
rule (2.5).

Proof. As in the proof of Theorem 3.1, one has infn F> -oo and r, => r,/ >- 0 for all
n 1. Furthermore, it is immediate from (3.8) that

(3.16) 0 <<- rn+ <= (1 8o.)r.

for either (2.4) or (2.5). If <F+x,xr+,-ir+,>=O, then Xn=XN+l and r, =0 for
n >= N + 1, as before. On the other hand, if <F’, x 2>> 0 for 1 _-< n _-< N, then r, > 0
and (2.4), (2.6) and (3.2) yield either

(3.17A) w. 1

or
F,,-F,,+ 1 L ll Z.-x.II=1-6>_- >- 1--to,w.<F’., x. -Y.>- 2 <F., x.

In the latter case, one has

(3.17B) 1 >w. >28 (F., x,,-2.)>6, r.
"Lll,e,,_x,,ll= =’

in view of (3.8). It now follows from (3.16) and (3.17) that

0 < (r,+1/rl) --< (r,/r) q, (r,/rl)2(3.18A)

for 1 _-< n -< N, with

(3.18B)

and

(3.19)

/ c
q. r16. min LIIZ.-x.II=’

C =23.

Similarly, if (F’,, x, L)> 0 for 1 -< n =_6 N, then r, > 0 and (2.5), (2.6) and (3.2) yield
either m 0 and

o,, =/ 1(3.20A)

or m. > 0 and
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In the latter case, one has

(3.20B)

1__> o, =/3"- -> 2/3(1- 6)

_->2/3(1-6).

because of (3.8). Consequently (3.16) yields (3.18) with

(3.21) C 2/3(1- a).

From here on, one proceeds exactly as in the proof of Theorem 3.1, with a single
exception. In part (iv), the inequality (3.14) still gives , : when (L/A,)IIx,,- 11 < 1;
however, , no longer automatically implies that x,+a . Nevertheless, (1.5), (2.2),
(3.17) and (3.20) do yield

(3.22) (L1/A,)IIx, -[[ < C <- 1 => , and Xn+l-- ,
where C is specified by (3.19) for Goldstein’s rule (2.4), or by (3.21) for Armijo’s rule
(2.5). As in the proof of Theorem 3.1, one also finds that

(3.23) 0 <-IIx. -< (rl/as)a 7,

where as is given by (3.5C’). The estimate (3.5B’) now follows from (3.22) and
(3.23). Q.E.D.

Note 3.1. Apart from conclusion (iv), the proof of Theorem 3.1 after inequality
(3.7) is a rewording of the proof of Theorem 5.2 following (5.14) in [1]. Furthermore, in
case (iv), estimates comparable with (3.5) and (3.5’) can also be established for the
explicit step size formulas of [1]. In particular, the estimate (3.5) holds for the rule of
Demyanov and Rubinov in Theorem 5.2 of [1 ]. Thus, (Lx/A)llx, < 1 once
again, and according to (4.2) in [1] one has

w, 1 or 1 > o, >
(F’, x, 2,)

>
1

Lxllx,-2,112 (L/a)llx,-ll
if x, # : and 2, .

Consequently (Lx/A)llx, :ll < 1 ::> x for k > n. In all four eases considered,
the a priori convergence rate estimates derived here for exact line minimization are
therefore identical to corresponding estimates for the explicit rule of Demyanov and
Rubinov in the limiting case L L, and also for the implicit rules of Goldstein and
Armijo in the limit as a - 1/2 and/3 + 1 (best estimates obtained for the other explicit
formula in [1] are similar but not identical).

Note 3.2. It is explained in Note 5.1 of [1] how convergence rate estimates may
sometimes be sharpened when l) satisfies conditions of the uniform convexity type and
IlF’(x)ll is bounded away from 0 on f. This observation applies to the present analysis as
well.

4. Convergence theorems for nonconvex functions. The extremals of F in f are
the zeros of the functional " ll + [0, m] defined by

(4.1) (x) (F’(x), x)- inf (F’(x) y)
yf

as x ranges over f. Unless F is convex, an extremal need not minimize F even in a local
sense, and conditional gradient algorithms need not generate minimizing sequences.
On the other hand, extremals for F are always global minimizers of in l, and if F’ is
uniformly continuous the conditional gradient schemes of 2 always produce "extre-
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mizing" sequences {xn}, i.e. (xn)0 as n .. Moreover, it can be shown that
continuity of F’ implies lower semicontinuity of , and consequently every limit point
of {x,} is an extremal if (x,) 0. For compact f, this means that {x} must converge to
some subset of the extremal set

(4.2) { e n o}

and, under certain circumstances, may converge to some particular element in f,.
Finally, if F’ is weak-strong continuous (i.e., if IIF’ -F’()II converges to 0 whenever x,
converges weakly to :), then is weakly lower semicontinuous and therefore (xn) 0
implies that every weak limit point of {x,} is an extremal. For weakly compact f, this
ensures that {x,} converges at least weakly to the set fLi, and may converge to some
specific extremal in fLI,. Theorem 1 of [2] occupies a central position in the following
development of these results. However, additional ideas from [1], [5] and [8] are
required to complete the analysis; in particular, the concept of nonsingularity intro-
duced in [1] has some importance here, as it does in 3.

LEMMA 4.1. Let X be a real Banach space and suppose that F: X R has a
continuous Frdchet derivative on f c X. Then the associated functional : [0, ]
defined in (4.1) is lower semicontinuous. Moreover, ifF’ is weak-strong continuous on f,
then d is weakly lower semicontinuous.

Proof. Suppose that x, x e f. For all n -> 1 and all z e f, one has

(x,,) (F’,,, x,,)- inf (F’,,, y)

(4.3) -> (F’, x,, z

(F’,, -F’(x), x,, z) + (F’(x), x,, z).

Consequently if F’ is continuous, it follows that

for all z s , and therefore

lim (x,,) => 0 + (F’(x), x z

(4.4) lim (x,,) _-> (F’(x), x)- inf (F’(x), z) (x).
n-.oo z

wk.
Furthermore, if F’ is weak-strong continuous and x, x, then F’(x,) -F’(x) 0, x, z
is bounded, and therefore (4.4) follows once again from (4.3.) Q.E.D.

Note 4.1. In reflexive spaces, uniform continuity and compactness of F’ on the
closed ball B(0; r) implies weak-strong continuity of F’ on B(0; r-e) with r > e > 0.
This result and other general sufficient conditions for weak-strong continuity of
gradients are established in [8] (where weak-strong continuity is called strong
continuity). As a concrete illustration, consider the quadratic functional

F(x(" )) a(t)x(t) dt +- K(t, r)x(t)x(’) dt dr

on the Hilbert space X 2([0, 1], g), with a(.) fixed in X and K(.,.) s
2([0, 1] x [0, 1], R1). The derivative Of this function is represented by

VF(.)=a(.)+] K(., r)x(r) dr
Jo
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at x(.)X. Since the kernel K is square-integrable, it follows that the associated
operator F" X X* is Lipschitz continuous and compact, and therefore weak-strong
continuous.

Note 4.2. For deeper and more general results on the continuity properties of
minimum sets, see [9].

THEOREM 4.1. Let 11 be a bounded convex subset of a real Banach space Xand let
F" X- have a uniformly continuous Frdchet derivative F’ on fL Let the sequences
{x} , {,%} f and {to} [0, 1]satisfy (2.2) and also the line minimization rule (2.3),
or Goldstein’s rule (2.4) with fixed in (0, 2], orArmi/o’s rule (2.5) with and fixed in
(0, 1/2] and (0, 1) respectively. Then the sequence {F(x)} converges monotonically down-
ward to some limit l>= infc F >-o, and

(4.5) lim (x) 0
n-oo

where c is defined in (4.1).
Proof. If F’ is uniformly continuous on the bounded-convex set f, then F’ is

bounded on f and it follows from the mean value theorem that infa F > -oo. For any of
the rules (2.3), (2.4) or (2.5), one also has F---F+ for all n _-> 1; consequently {F,}
converges to some _-_ infa F. Furthermore, in all three cases (xt) 0 => q(x,) 0 for
n >-,N.

Suppose that q(x)> 0 for n -> 1. Condition (4.5) can be established for the line
minimization rule (2.3) by a minor modification of the proof of Theorem 1.1 in [5, p.
118]. Thus, it follows from (2.3) that for all co [0, 1],

F,,+x -F,, <-_ to<F’,,, ,, x,,) + to(F’(()-F’,,, ,, x,,)

<-- to (F’,,, ,, x,, + to llF’(() F’,, liD,

where " is somewhere on the line segment joining x. to x. + to(Y.-x.), and where
D diam l<. For to (0, 1], this yields

0< (x.)F",,yF"+,

Since list x,,ll <= toll2, x, <-- coD, and since F’ is uniformly continuous, there is an co > 0
so small that IIF’(ff)--F’. II--< e/D for all n => 1, where e is any given positive number. For
such an co,

O < +

and therefore

0 _<- lim (x.) lim (x.) _-< e,

because F, implies that F,-F,+I 0. Since e can be arbitrarily small here, these
inequalities give (4.5) for the line minimization rule (2.3).

Again, suppose that q(xn) > 0 for n => 1. Condition (4.5) can be established for the
Goldstein and Armijo rules (2.4) and (2.5) by a method of proof similar to that devised
for Theorem 1 in [2]. Thus, it follows at once from (2.4) or (2.5) that

F.-F.+I >-&o.(x.)>-O



CONVERGENCE RATES 483

for n 1, and since F,-F,/ 0, this gives

lira o,(x,) 0.

Therefore if (4.5) is false, there is an e > 0 and a subsequence (nk} such that

lim o, 0,(4.6A)

while

(4.6B) b,, -> e.

For k sufficiently large, one must then have w. < 1; consequently (2.4) and the mean
value theorem give

F,,-F,,+ (F’(k)-F’.,,,x,,-,)

>= 1
IIF’((k)-F’II" D

(x.)
and therefore

(4.7A)
e6

IIF’(ff) F’ > 0

for large k, where rk is somewhere on the line segment joining x. to x. +w.(. x.),
and so

(4.7B)

But, in view of (4.6A) and the uniform continuity of F’ it follows from (4.7B) that

lim IIF’(&) F’ 0,(4.8)
k-,oo -k

which contradicts (4.7A). This contradiction establishes (4.5) for Goldstein’s rule (2.4).
Similarly, if (4.6) holds, then Armijo’s rule (2.5) and the mean value theorem

produce

6 > F,, -F(x.,, +/3-,1o,(Y. x.)) _>- 1
IIF’(ff)- F’. II’ D

-1.<F., x. .> (x.)

and therefore

(4.9A) I[F’(ff)-F

for large k, where ’k is now somewhere on the line segment joining x. to x.k +
/3-Xo.k (:.-x.), and consequently

(4.9B) II
Once again (4.8) follows from (4.6A), (4.9B) and the uniform continuity of F’. This
contradicts (4.9A) and establishes (4.5) for Armijo’s rule (2.5). Q.E.D.

COROLLARY 1. Let l’l. denote the extremal set (4.2) and put

(4.10) La, {: e II,x, F(:) l}.
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Then L is closed and every limit point of {x,.} belongs to L. Furthermore, if every
subsequence of {x,.} has a limitpoint in f thenL is not empty and {x,,} converges strongly
to L. in the sense that every open neighborhood ofL. contains all but finitely many of
the x.’s equivalently,

(4.11) lim {min o,

In particular, ifL consists of a single element , then {x,} converges strongly to .
Proof. According to Lemma 4.1, (P is lower semicontinuous and therefore 12 is

closed. Since F is continuous it follows thatL is also closed. Furthermore, xnk --> : l’l
implies that

0 lim (x,,,,) lim (x,,,,) _-> O(s) _-> 0

and

l= lim F(x.)=F();
koo

consequently, : e L. By hypothesis, {x,} has a limit point in fl, therefore L is not
empty. Finally, if {x,} does not converge strongly to L, there is an open set Az L and
a subsequence {x,} with range in W’ the complement of W. But {x,} has a limit point
: [1, and since A#’ is closed this gives the contradiction : e’ c L,. O.E.D.

COROLLARY 2. Suppose that F is weakly continuous and F’ is weak-strong
continuous. Then the setL in (4.10) is weakly closed and every weak limitpoint of {x,}
belongs to L. Furthermore, ifevery subsequence of {x,} has a weak limitpoint in fl, then
L is notempty and {x,} converges weakly toL, i.e., every weak open neighborhoodWof
L contains all butfinitely many ofthe xn’s. In particular, ifL consists ofa single element, then x, converges weakly to . Finally, if every extremal in L satisfies the strong
nonsingularity condition (1.3), then {x,} converges strongly to L.

Proof. The first part of the proof is identical to the proof of Corollary 1, with strong
topological concepts replaced by their weak counterparts. If every : L satisfies (1.3),

wk.
then x,k s => a ([[x, :]1) "-> 0 ::> [[xn :[[--> 0. It follows that every weak limit of {x,} is
also a strong limit point, and the rest is now immediate from Corollary 1. Q.E.D.

Note 4.3. In reflexive spaces X, weak-strong continuity of F’ on the closed ball
B(0; r) implies weak continuity of F on B(0; r). (See [8].)

Note 4.4. At each x fl, the continuous linear functional (F’(x),.) is weakly
continuous; therefore if 12 is nonempty and weakly compact, the set T(x) is nonempty,
and it follows that for each fixed x l’l, there are corresponding sequences {x}, {2,} and
{w,} which jointly satisfy (2.2), and (2.3) or (2.4).

Note 4.5. If F’ is continuous but not uniformly continuous, it is still true that

xn --> : ::> (x,) -> 0 (:) => r L, provided infn F > -oo and the remaining condi-
tions of Theorem 4.1 are satisfied. This can be shown by a straightforward modification
of the proof of Theorem 4.1; however, the additional labor required scarcely seems
worthwhile, for the following reason: if D is compact, uniform continuity of F’ follows
automatically from the continuity of F’; on the other hand, if fl is not compact, the
inclusion of all limit points of {x} in L does not ensure convergence of {x} to Lo.

Note 4.6. For convex F, (4.5) implies that lim._o Fn inf. F, because of (3.8)
(cf. part (i) of Theorem 3.1 and 3.2 for Lipschitz continuous F’).
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Note 4.7. An extremal is said to be nonsingular in 1] if and only if s is the unique
minimizer of the associated linear functional (F’(:), .) over f, i.e., if and only if
T() {:}. For compact convex fl, nonsingular extremals are also strongly nonsingular
[1, Thin. 3.3]. If 1 is strictly convex (resp., uniformly convex) in the sense of [5], then
any extremal is automatically nonsingular (resp., strongly nonsingular) provided
F’() # 0 (e.g., see [1, Thm. 3.4]).

When f is compact, it follows from Corollary 1 of Theorem 4.1 that {x,} can
diverge only ff F has the same value on two or more extremals. However, even when.
this happens, {x,} may still converge.

LEMMA 4.2. Let the hypotheses of Theorem 4.1. hold. Furthermore, suppose that
every subsequence o[ {x,} has a limitpoint in II, and that all extremals in the setL. satiffy
the strong nonsingularity condition (1.3). Then

(4.12) lim Ilx. 2.11 o,

and therefore
(4.13) lim IIx, +x x, 0.

Proof. If (4.12) is false, there is an e > 0, a : e 12 and a subsequence {x,k} such that
: and

(4.14)

for k >= 1. According to Corollary 1 of Theorem 4.1, : belongs to L.; consequently it
follows from (1.3) and Theorem 3.2 in [1] that x, : :ff , :, and therefore

0, This contradicts (4.14) and establishes (4.12). Since to, e [0, 1], (4.13)is
immediate from (2.2) and (4.12). Q.E.D.

LEMMA 4.3. Suppose that {x,}c fl satisfies (4.13) and that every subsequence of
{x,} has a limit point in 1). Let L denote the limit point set for {x,}. Then {x,} either
converges to some point of f or else L has infinitely many elements with

(4.15) inf II - ll=0.
!LnL

Proof. The following argument is an elaboration on part of the proof of Theorem 1
in [2]. Since every subsequence of {x,} has a limit point in f it follows that L c 12 and
that {x,} converges to if and only if L {:}. Suppose that L has more than one element
and that (4.15) is false. Put

and

(4.16)

inf I1 - nil > 0E 31-
,L

As : ranges over L, (4.16) describes a family of pairwise disjoint open balls with

(4.17) dist {B (:), B(r/)} >- e

for : # ft. According to (4.13),

(4.18) ::lNx n =>Nx =), [IX,+l-X,[[ < e.
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Suppose now that

(4,19) :tN n _->N => x, tO B().
aL

For any fixed L, there is a k max {N, N2} such that Xk B(). The corresponding
set Sk {n > k [x,_ B(:)} is bounded below by k and is also nonempty since x, must
belong to B(r/) for some r/L, r/rs so, and for infinitely many values of n > k. Thus Sk
has a least element m, and by construction one has rn 1 -max {N, N2}, x,,_
and xm B(rl) for some r/L with r/# :. But this is impossible, in view of (4.17) and
(4.18), and so (4.19) cannot hold. On the other hand, if (4.19) is false, {x} has a limit
point " in the complement of U t.B(se), which is impossible, since " must belong.to L
by definition. This contradiction proves that if L has more than one element, it must
have infinitely many elements and condition (4.15) must hold. Q.E.D.

THEOREM 4.2. Let f, F, {x,}, {,} and {to,} satisfy the hypotheses of Theorem 4.1
and suppose that l is also compact. Furthermore, suppose that the extremal set Lo in
(4.10) has finitely many members, , and thateach is nonsingular (see Note 4,6). Then
{x,} converges strongly to one of the i’s.

Proof. By Theorem 3.3 of [1] every : L, satisfies the strong nonsingularity
condition (1.3). Consequently, (4.13) follows from Lemma 4.2. According to Corollary
1 of Theorem 4.1, all limit points of {x,} are in the finite set L,; hence {x,} must
converge to one of the ’s by Lemma 4.3. Q.E.D.

THEOREM 4.3. Let 1, F, {x,}, {,} and {w,} satisfy the hypotheses of Theorem 4.1.
Furthermore, let F be weakly continuous, let F’ be weak-strong continuous, and let f be
weakly compact. Finally, suppose that every member of the extremal set L in (4.10)
satisfies the strong nonsingularity condition (1.3), and that

(4.20) inf I1 - > 0.

Then {x,} converges strongly to some : L.
Proof. Every subsequence of {x,} has a weak limit point in f. Moreover, by

Corollary 2 of Theorem 4.1, every weak limit point s of {x,} belongs to L, and is
wk.

therefore strongly nonsingular. Consequently x. se =), a (llx= 0 IIx=  11-,
0, in view of (1.2)-(1.3). Thus, every weak limit point of {x} is also a strong limit point
of {x,} and therefore (4.12) holds. Finally, (4.15) is impossible according to (4.20);
hence it follows once again from Lemma 4.3 that {x,} converges strongly to some
se L,. Q.E.D.

Note 4.8. For compact f, condition (4.13) holds if and only if L, has finitely many
elements. However, for weakly compact I) (4.20) does not imply that L, is finite.

Note 4.9. When F’ is Lipschitz continuous, the conclusions in Theorem 4.1 and its
corollaries and Theorems 4.2 and 4.3 also hold for conditional gradient sequences
generated by the explicit step length formula of Demyanov and Rubinov (cf. [1] and

Note. 4.10. The quadratic functional in Note 4.1 has a weak-strong continuous
derivative on the reflexive space L2([0, 1], R), and is therefore weakly continuous (see
Note 4.3). Furthermore, every closed, bounded convex set f in a reflexive space is
automatically weakly compact. Finally, if f is uniformly cOnvex, then every extremal se

is automatically strongly nonsingular provided F’(s) 0 (see Note 4.7). Thus, Theorem
4.3 can help to explain the behavior of projected gradient processes for certain
nonconvexF (e.g,, indefinite or negative Semidefinite quadratic functionals with regular
kernels in L2 spaces) on certain noncompact sets l (e.g., closed balls in L2 spaces).
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CONTROLLABILITY AND STABILIZABILITY IN MULTI-PAIR SYSTEMS*

DAVID P. STANFORD," AND LUTHER T. CONNER, JR."

Abstract. In this paper discrete-time systems of the form

x,+,= Cex, + DpU,,
in which the pair (Cp, Dp) is selected from a finite set {(Ci, D Ni)}i=1, are studied. Such systems, called
"multi-pair systems," arise naturally in the study of multi-rate sampled-data systems. It is shown that the set
of points reachable from zero (the controllable set) is a subspace under certain hypotheses, but not always.
When this is the case, an extended version of the controllability canonical form is obtained, and it is applied to
the study of state deadbeat response and more general forms of stabilizability.

1. Introduction. This paper studies multi-pair systems L {(Ci, Di)}/N=I with C a
real n x n matrix and D a real n x m matrix. These systems are linear discrete-time
systems of the form

Xk+ CpXk -k DpUk,

where, at each stage of the iteration, we select a pair of matrices (Cp, Dp) as well as a
control uk. In contrast to the usual time-varying discrete-time system Xk+l
Cx +Du, the pairs (C,, Dp) are to be selected from a given, fixed, finite set
{(C, D)}iN_- 1, and the selection is, in general, not dependent on the time k or the selected
control uk. Such a system arises from a linear control system of the form

2 =Ax +Bu,

where A is a real n n constant matrix and B is a real n m constant matrix. We apply
to this problem the method of multi-rate sampling, in which each sampling interval
length is selected from a fixed finite set {sl, sz,’", sty} of positive numbers. As
explained in [2], we obtain a set of N pairs (C, D), in which

C e s’A and Di e tA dt B.

The pairs (C, Di) describe values of x at sampling instants by the formula

x,+ Cpx, + Dpu,
where x, and xk/l are the values of x at the beginning and end of a sampling interval of
length Sp, and u is the constant control applied during that interval.

It also appears that in a sense these multi-pair systems include a discrete version of
"variable structure systems" as described in [5]. Given a pair (A, B) with A n x n and B
n x m, we could choose N Z/, C A and Di B for all in { 1, 2, N}. In this way
the choice of N different feedback matrices F for the single pair (A, B) is effected. It is
probably true that our work on controllability in [3] and in this paper has no
applicability to variable structure systems, but the feedback selection in [2] and
convergibility properties discussed in the last section of this paper may be applicable.

The stabilizability of multi-pair systems through feedback has been investigated in
[2]. Pre-contractiveness and contractiveness of the closed-loop system are introduced,

* Received by the editors August 9, 1979, and in final revised form January 25, 1980.
r College of William and Mary, Williamsburg, Virginia 23185. This research was supported by NASA-

Langley Research Center under Grant No. NAS1-14972.

488



MULTI-PAIR SYSTEMS 489

and the selection of feedbacks is discussed. In [3], the property of complete control-
lability for a multi-pair system is defined, and it is shown that under certain hypotheses,
complete controllability implies the capability through feedback of a state deadbeat
response. It is conjectured that this implication holds whenever the Ci’s are nonsingular
and the Di’s are of full rank.

In this paper we show that the set of points reachable from zero under a multi-pair
system (the "controllable set") is a subspace of R whenever all C’s are nonsingular.
This set is a subspace for more general systems, but not for all systems.

We next introduce the "controllability canonical form" for multi-pair systems, and
we apply it to the study of state deadbeat response and more general forms of
stabilizability. An interesting corollary to this work is the converse to the conjecture
from [3] mentioned above.

2. Controllable sets. Given a sequence {Ci}/N=i Of real n x n matrices and a
sequence {D}=I of real n x m matrices, we study the discrete-time system

L" xk+ CiXk -t- DiUk,

with x, R and Uk C:3. R m. The system is completely determined by the C’s and D’s,
and so we define, for n, m, N, Z/,

X(n, m, N) {L= {(Ci, Di)Ir=llCi real n x n, Di real n x m}.

The multi-pair systems arising from the sampled-data problem in the introduction have
the property that the Ci’s are nonsingular and the Di’s all have the same rank. Thus we
may as well assume the D’s are of full (column) rank, and we define

Y(n, m, N) {L {(C, Vi)}i=l ;(n, m, N)IC nonsingular, Di full rank}.

Throughout this paper n, m, and N denote positive integers, N denotes
{ 1, 2, , N}, and, for k Z/, l"k denotes the set of all k-termed sequences with terms
in/Q, and Uk denotes the set of all k-termed sequences with terms in R m. We let F
denote U{Glk z+}.

Suppose L {(C, Di)}= e N(n, m, N), k e Z+, u e Uk, and c e Fk. For x e R , the

trajectory ofx under u and a, denoted T(L, x, u, ), is the sequence {x} i--1, where xl x,
and X+l C,)x +D(ou for e k-. For e k + 1, the ith term of T(L, x, u, ) is denoted
by T(L, x, u, a). The terminal point .of T(L, x, u, ) is Tk+I(L, x, u, ), denoted by
TP(L, x, u, ).

For L {(C, D)}; e N(n, m, N), k e Z+, and 7 e Fk, e/, we define C(7, i)
C(kC(k-I"’C(, and C(7) will denote C(% 1). We define the controllability
matrix

P(L, 3’)= [Dr(k), C(T, k)D(k-1), C(T, k- 1)D./(k-2), C(T, 2)Dr(i)].

As observed in [3], the column space of P(L, /) is the set of all TP(L, O, u, y) with

u Uk. We denote this space by S(L, y). The controllable set of L is the set S(L) defined

by

S(L) U{S(L, /)13’ e F}.

S(L) is thus the set of all points in R" reachable from 0 in finitely many steps. In [3], we
investigated the case L 6 X(n, m, N) and S(L)= R (i.e., L 6 (n, m, N)). Whenever
S(L) R , we call L completely controllable, and we write L 6 (n, m, N).
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For L (n, m, N), the controllability set, $(L), is not, in general, a subspace. If,
for example,

L= 2 0
0 0

we obtain $(L)=span{e,e}Uspan{e}, where the e’s represent standard basis
vectors in R.

The basic result of this section is that if L
R ’. We first note that C$(L)c $(L) for eN, since if x is reachable from 0, then
Cx Cx +D0 is reachable from 0.

For a e Ih and/3 lk, (fl, a) e Ih+k is defined by

(fl, )(i) { fl(i), <= <-- k,
a(i-k), k+l<=i<-_h+k.

THEOREM 1. IlL {(Ci, Di)}/N= G Z(n, m, N), with each Ci nonsingular, then S(L)
is a subspace of R".

Proof. Suppose L ={(C,Di)}i= 6Z(n, m, N), with each Ci nonsingular. Let r=
max {rank (P(L, 3’))[3’ 6 F}, and let a F such that rank (P(L, a))= r.

For any y F,
rank (IF(L, a), C(a)P(L, y)])= rank (P(L, (y, a)))= r,

so that C(a)S(L, y) S(L, a), and S(L, y) C(a)-IS(L, a). In particular, S(L, a)=
C(a)-xS(L, a). Since C(a)-1 preserves dimension, S(L, a)= C(a)-iS(L, a). Thus we
have S(L, y) S(L, a) for all T6F. Henee S(L)= S(L, a) is a subspace of R

If L E(n, m, N) and if, for each /, an m n feedback matrix F is selected, we
may select controls Uk Of the form, Uk FXk + Vk, to produce the system

Xk+l (Ci -]" OiFi)Xk q- Oil)k.

DThis system corresponds to the sequence {(C +DF, )}=, which we will denote by
L(F), where F {FI F2," , F}. It will be convenient to define

A u {F {Fi}= l[Fi a real m x n matrix}.

In [3], we saw that the application of feedback to a system in Z(n, m, N) may
produce desirable properties, although the resulting system may not be in Z(n, m, N).
Hence the study of systems in the more general E(n, m, N) may be useful in handling
the multi-rate sampled-data system. We now show that the use of feedbacks does not
affect the controllability set of a system. Our proof, which follows Wonham [6], employs
the notation

D column space of D.
THEOREM 2. If L E(n, m, N), F e A, and 3’ F, then S(L(F), 3/) S(L, 3’).
Proof. Let L {(C, Di)}i E(n, m, N), and F Ar. For /, letH Ci + DFi.

Then for V a subspace of R ", we have

(1) HiV CV+DiFV c CV+D.
Thus, for k Z/ and 3’ Fk,

S(L(F), 3") lv(k + H(3", k)/)v(k-l +’’" + H(3", 2)/)v(1

(9(_+... +H((9(+H(9())....
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Using (1), we obtain

(2) S(L(F), 3") c lv(k + C(3", k)l)vt,k-l +’’" + C(’y, 2)/v1 S(L, 3").

Now (2) holds for any system L E(n, m, N), and any F AN. Hence

S(L, 3’)= S(L(F)(-F), 3")c S(L(F), 3").

Thus S(L(F), 3")= S(L, 3"). [3
Much of our work is valid for all systems L for which S(L) is a subspace of R n. We

define

,*(n, m, N)= {L ,(n, m, N)IS(L is a subspace of Rn}.

Theorem 2 says that if LE*(n, m, N) (as in the case of multi-rate sampling), and
F A, then L(F) . X,*(n, m, N). We have the following corollary.

COROLLARY. IlL E(n, m, N), then S(L(F)) S(L) for eachF AN. Moreover, if
L E*(n, m, N), then there is 3" F such that

S(L(F), 3")= S(L(F))= S(L)= S(L, 3").

Proof. Suppose L X(n, m, N). Then

S(L(F)) O{S(L(F), a)la F} (.J{S(L, a)la F} S(L).

Now suppose L X*(n, m, N). If dim S(L, 3") < dim S(L) for all 3" F, then, since F
is countable and proper subspaces are nowhere dense in R n, Baire’s category theorem
(see [7]) is contradicted. It follows that there exists 3" F with S(L(F), 3")= S(L, 3")=
S(L) S(L(F)). [

For the system

{(i: 0 il I:l)(Ii i] Ii])tL= 1 1
0 0

S(L) span {e, e2}, and so L X*(3, 1, 2). However, L cannot be obtained by adjoining
feedbacks to a member of X(3, 1, 2).

For L X(n, m, N), trajectories under L are governed by the following theorem.
THEOREM 3. Let LX(n, m, N). Suppose x and y are in R. Then there is a

trajectory from x to y if and only if there is k Z/ and a Fk such that y C(a )x S(L).
If so, there is u Uk such that y TP(L, x, u, ).

Proof. For any a Fk, u Uk, and x R",

Ti+(L, x, u, o)= Co,i)C,,,,-) C(1)x + T+(L, 0, u,

Thus TP(L, x, u, a)= C(a)x + TP(L, O, u, a), and the theorem follows.
COROLLARY. If L X*(n, m, N) and x, y S(L) S(L, 3") with 3" Fk, then there

exists u Uk such that y TP(L, x, u, 3").
Proof. The corollary follows since C(3")S(L) S(L).
If a single pair (CiD) is selected from a system L X(n, m, N), it is clear that S(L)

contains each member of the controllable space of that pair; i.e., each member of

Si(L) column space of [Di, CiDi,"’, C’-iDi].
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Thus if L E*(n, m, N), S(L) SI(L) + S2(L) +" + SN(L). The following is an exam-
ple where this inclusion is proper.

and so

l([i 0 il [i])(I: il I!l)tL= 0 1
1 0

S(L)= R3 # Sl(L) + S2(L) span {el, e2}.

For LE(n, m,N), S(L)=U{S(L, 3’)13’F} is the union of countably many
subspaces of R n. In every example we have investigated, S(L) is in fact the union of N or
fewer subspaces of R n. We suspect that this is the case in general, but we have been
unable to prove that S(L) is always the union of finitely many subspaces of R n. We have,
however, related this property to that of possessing a bound for the number of steps
required to reach members of S(L) from 0.

DEFINITION. For L E(n, m, N), the bound of L, if it exists, is the number

b(L) min {klx S(L) implies there is y Fi, for /, such that x $(L, y)}.

These bounds were used extensively in [3], where we saw, for example, that if n -< 3 and
L E(n, m, N) is completely controllable, then b(L) exists and is not more than 4.

THEOREM 4. LetL Z(n, m, N). ThenL has a bound b(L) ifand only ifS(L) is the
union of finitely many subspaces ofR.

Proof. Suppose b(L) exists. Then $(L)= tA{S(L, 3’)13’ Fi and i b(L)} is a finite
union of subspaces.

Now suppose S(L)= LJ{W.[] 1, 2,. , r} with each V a subspace of R ". Then
for each j ,

W/= U{W/f’l $(L, 3")13"
Again invoking the Baire category theorem, there is a k Z+ and a 3’(i) in Fkj such that
W W fq S(L, 3"(i). Hence

U {S(L, 3"()[j E F} = U{Wlj E F}: S(L),

and so b(L) exists and is not larger than max {ki[] }.

3. Controllability canonical form. In this section we adapt the controllability
canonical form (see [1]) to multi-pair systems. We describe a condition on L which is
necessary and sufficient that feedbacks F exist for which L(F) has a controllability
canonical form which is block diagonal.

DEFINITION. Suppose L= {(Ci, Di)}=I X(n, m, N), G is n x n and nonsingular,
and J {J1, J2," , JN}, where each Ji is m x m and nonsingular. Then

L, denotes the system {(GCiG-1, GDJ)}r= 1.

L denotes L, with each J I.
THEOREM 5. If L

_
E(n, m, N), then S(L,) GS(L) and, for L

_
X*(n, m, N),

b(L,,) b(L).
Proof. For k 6 Z+ and 3" Fk, P(L,, 3") GP(L, 3")Jr, where Jv

diag {Jvk), Jvk-1), ", Jvl)}" Thus S(L,, 3") GS(L, 3"), and the theorem follows.
THEOREM 6. If L X*(n, m, N) with dim S(L) r < n, then there is a nonsingular
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G such that

with each Cil r r and each Dil r m. The system (LG)I {(C/l, Dil)}= is completely
controllable.

Proof. Let Z l, Z2,"’,zr be a basis for S(L) and extend to a basis Z=
{Zx, z2, , zn} of R n. If G is the matrix of transition from the standard basis of R" to Z,
then, since CiS(L) c S(L) and Di c S(L) for N, LG has the required form. Clearly

and the complete controllability of (LG)x follows, l-]

DEFINITION. L {(Ci, ivDi)}i=l ,*(n, m, N), with dim S(L) r, is in controllability
canonical form (CCF) provided

0 Ci2J
and Di

with Cil r r and D, r x m for each N.
To characterize those systems which have a block diagonal CCF, we introduce the

concept of L-invariance. The idea is an extension of "(A, B)-invariance" [6].
DEFINITION. Let V be a subspace of R and L {(Ci, Di)}= *(n, m, N). V is

L-invariant provided CVc V+ Di for each N.
We note that any subspace invariant under each C is L-invariant, and so in

particular S(L) is L-invariant. In the following example we exhibit a system L and a
subspace V which is L-invariant, but which is not invariant under any of the Ci’s.

L 11 -1
0 15

(3, 1,2),

and

The following theorem is a repeated application of Lemma 4.2 in [6], and we do not
prove it.

THEOREM 7. LetLE*(n, m, N) and Va subspace ofR. Then Vis L-invariantif
and only if there is an F AN such that V is invariant under each C +DF.

THEOREM 8. Let L ,*(n, m, N). The following are equivalent:
(1) There is F AN such that L(F) has a block diagonal CCF.
(2) There is an L-invariant subspace V with R S(L)O) V.
Proof. Let L= {(C, Di)}= with dim S(L)= r.
Suppose (1). Let F AN and G nonsingular, such that

L(F)G.._{(Ifil 0 ] [ 1]
N

0 Ci2 1 )}i=1 isincCF"
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Clearly,

is invariant under each Ci + DiF and S(L(F))O) V R n. Thus by Theorems 2 and 7,
S(L) V R" and V is L-invariant.

Now suppose (2). Choose basis Z- {zl,’"", zr,..., zn} of R such that $(L)=
span {zl,..., z,} and V--span {z,+,..., z,}. Choose F cAN so that V is invariant
under each C, / DiFf. If G is the matrix of transition from the standard basis of R to Z,
then L(F) is in block diagonal CCF. lq

In the example preceding Theorem 7,

S(L) span

so that $(L)@ V R. If we choose

and

then

F=F2=[5 -10 -3],

((ii o il Iil) (Ii il Ii])tL(F) 1 0
0 0

is in block diagonal CCF.

4. State deadbeat response. In [3] it was shown that any completely controllable
system in E(n, m, N), with n <-3, is capable through feedback of a state deadbeat
response, and it is conjectured that the result holds for arbitrary n. In this section, we
investigate systems in E*(n, m, N) which are capable of a state deadbeat response on
subspaces of R ". Our results include a converse to the conjecture mentioned above.

DEFINITION. Let L s E(n, m, N) and V be a subspace of R ". Then L has state
deadbeat response on V (L SDR on V) provided there is F AN such that L(F)=
{(H/, Di)}iN=l has the property that for each x s V, there is y sF with tt(3,)x =0. If
V R n, we say L s SDR.

THEOREM 9. IfL SDR on V, then there is an F Aand a single 3" F such that
L(F) {(H/, Di)}= satisfies H(3")x 0 for all x V.

Proof. Let F s AN such that L(F)= {(Hi, D)}= has the property that for each
x V there is a s F with H(3,)x O. Then

V U (V NS (H(a))),
al"

where NS(A) denotes the null space of A. Suppose dim (V f3 NS(H(a)))<dim V for
each a s F. Then since F is countable, Baire’s category theorem is contradicted. It
follows that there is 3’ s F such that V V
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DEFINITION. If y F satisfies the conditions given in Theorem 9, we say L SDRv
on V (or L SDRv, if V R n).

Clearly, L a SDRv on V if and only if L(F) SDRv on V for all F AN. Also, by
extension of Theorem 9 in [3], L SDRv on V if and only if Lo.j e SDRv on GV.

The following theorem shows that, for L X*(n, m, N) and L SDRv on S(L), the
terminal point of a trajectory under is independent of the initial point in S(L). If the
conjecture referred to at the beginning of the section is correct, then it will follow from
Theorem 11 that every system in X(n, m, N) has this property.

THEOREM 10. Suppose L X*(n, m, N) and Fk. enL SDR on S(L) if and
only if there is F An such that, for each u U,

TP(L(F), x, u, )= TP(L(F), O, u, ) for each x S(L).

Proof. The theorem follows, since TP(L(F), x, u, )= H(T)x + TP(L(F), O, u, T),
as shown in the proof of eorem 3.

We observe that if F is selected according to Theorem 10, then, for z R" and
u U, TP(L(F), w, u, ) is independent of w in z + S(L). Moreover, if S(L) S(L, ),
then

H(T)z + S(L)= {TP(L(F), z, u, T)lu e U}.

Finally, if in addition L e X(n, m, N) and u e U, then TP(L(F), w, u, ) H(T)z + S(L)
if and only if w e z + S(L).

We may now apply the controllability canonical form for multi-pair systems to
obtain the following theorems. Proofs may be found in [4].

THEOREM 11. Suppose L X*(n, m, N) and Lo is in CCF. en for F, L
SDR on S(L) if and only if (Lo) SDR.

THEOREM 12. Suppose L X*(n, m, N) with dim S(L) < n, and

so e O.  , the mo e, g 0
some e Fh and L SDR on S(L) or some e F, then L e SDR here (, ).
ToN 13. Suppose L e (n, m, N). en L e SDR on V implies V c S(L).
CooA. Suppose L e (n, m, N). ff L e SDR, then L is completely conol-

fable.
This corollary, in conjunction with the result in [3], gives the following"
Coo. Let L e (n, m, N), ith n 3. en L is completely conollable i[

and only iL e SDR.

g. Sm.The stabilizability of multi-pair systems was investigated in [2].
In this section we extend some of the concepts introduced there in order to describe the
action of the system on a subspace ol R. Using the controllability canonical form, we
relate the properties of the system on S(L) to those of the system on all o R.

DEFINITION. A set {H, H2," H} of real n x n matrices is convergent on the
subspce V o[ R provided that, for each x V, there is a sequence {p} with each
p N such that

k i=k

A system L E(n, m, N) is convergible on V provided there is an F eA such that
L(F) {(H, Di))=l satisfies the property that {H, HE,’’., H) is convergent on V.
When V R, we say {H, H,...,H is convergent, and L is convergible.
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Clearly, if L is convergible on V, then L(F) is convergible on V for all F Ar. Also
the following theorem is easily verified.

THEOREM 14. Suppose L ,(n, m, N). For, any V, G, and J {J1, J2, , JN}, L
is convergible on V if and only if L,s is convergible on GV.

Again applying the CCF we obtain the following theorems.
THEOREM 15. Suppose L ,*(n, m, N) andL is in CCF. Then L is convergible on

S(L) if and only if (L)I is convergible.
THEOREM 16. Suppose L ,*(n, m, N) with dim S(L)= r < n, and

N

0 Ci2J’ i=1

ffL is convergible, then the Ci2’S are convergent. Furthermore, ifsome finite product of the
Ci2’s is zero and L is convergible on S(L), then L is convergible.

Theorems 14, 15, and 16 remain valid when "convergent" and "convergible" are
replaced by "exponentially convergent" and "exponentially convergible." The relevant
definitions are these"

DEFINITION. A set {H1, HE,’’’ ,HN} Of real n x n matrices is exponentially
convergent on a subspace V of R provided there is a B > 0 and an a (0, 1) such that,
for each x V, there is a sequence {pi}i with each p/ satisfying

for all k e Z+.

A system L E(n, m, N) is exponentially convergible provided there is an F e AN such
that L(F) {(H, D)}i satisfies the property that {H1, H2," , Hr} is exponentially
convergent.

Of course the equivalence of norms in R makes the property of exponential
convergence norm-independent.

We remark that the notion of contractiveness of a set of matrices, introduced in [2],
is relevant here. {H1, , Hr} is contractive relative to a norm I1" on R ", provided that
each nonzero x in R satisfies IIn,xll<llxll for some e/. Contractiveness is norm-
dependent, but contractiveness relative to any norm implies exponential convergence.
The following analogues to Theorems 14 and 15 can be easily verified.

THEOREM 17. Suppose L e ,(n, m, N) and I1" is a norm on R . For any V, G, and
J {J,..., J}, L is contractible on Vrelative to I1" if and only ifLa.s is contractible on
GV relative to I[" II-, where Ilxll - - IIG- xll for each x R .

THEOREM 18. Suppose L *(n, m, N) with dim S(L) r < n, and La is in CCF.
Then the following are equivalent:

(1) There is a norm II" on R such that L is contractible on S(L) relative to II. II.
(2) There is a norm II" on R such that (La)I is contractible relative to II"
It would be useful to explore further the convergibility of multi-pair systems. It can

be shown that every completely controllable system in ;(2, 1, N) is contractible relative
to some norm, and thus is exponentially convergible. We suspect this can be made more
general. Finally we list some other basic questions concerning convergibility which we
have not yet resolved.

Let H denote a set {H, H., , H} of real n x n matrices.
(1) Does exponential convergence of H imply that His contractive relative to

some norm on R n?
(2) Does convergence of H imply the existence of a single sequence {p}oo__



MULTI-PAIR SYSTEMS 497

such that

lim 0?

(3) Does contractiveness of H relative to some norm on R imply the existence of
a finite product A of the Hi’s such that the spectral radius of A is less than 1 ?

It is not difficult to see that an affirmative answer to (2) implies a like answer to (3).
The converse is also true, for suppose (3) has an affirmative answer. Let H=
{H1, H2,’’’, Hv} be convergent. Then H is pre-contractive (see [2]), and it follows
that there is a finite set {A 1, , AM} of finite products of the Hi’s which is contractive
relative to the Euclidean norm. Hence by (3), some finite product of the Ai’s, and hence
of the ’s, has spectral radius less than 1.
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HARDY SPACES OF ANALYTIC FUNCTIONS AND FEEDBACK
STABILITY OF SCALAR CONVOLUTION SYSTEMS*

S. MOSSAHEB"

Abstract. By use of the theory of HP-spaces of analytic functions, stability of single input single output
convolution systems under constant gain feedback is studied. Various LP-stability results are discussed. These
are considerable generalizations of the known results on stable systems. It is shown that corresponding to the
classical Nyquist diagram the gain space may be partitioned into mutually disjoint sets, on each of which the
stability of the closed-loop system is independent of the gain. It is proved how some seemingly different
systems fall into the category of those which are considered in this paper. Finally, the extension of some of the
above stability results to more general systems is pointed out.

1. Introduction. A particular graphical test has been developed by Callier and
Desoer [3] for the closed-loop stability under constant gain feedback of delayed systems
whose transfer functions are the sum of rational functions and the Laplace transforms of
a series of delays plus those of integrable functions. The derivation of this test is based
on some deep properties of almost periodic functions. As is apparent from the
pioneering work of these authors, the behavior of the almost periodic part of the
transfer function makes it practically impossible to consider simple encirclement
criteria as a means of checking stability and instead they give a remarkable test to this
end [4]. This test is expressed in terms of the argument of the return difference operator,
and depends on the particular value of the feedback gain. In this paper we give a
different test of stability based on the amplitude of the return difference operator, and
also complete some of the work of Desoer and Wu on the LP-stability of the systems
under consideration. We shall also show that having considered one value of the
feedback gain k one can obtain a maximal interval I containing k such that for any k’ in
I the stability of the closed-loop system for k’ is the same as that for k. We then give a
useful result which enables one to reduce some seemingly different systems, e.g. those
whose transfer functions contain the ratio of two exponential polynomials, to those
which we discuss in this paper. The extension of some of the above work to more general
systems is pointed out in an appendix.

The research reported here was carried out under the supervision of Professor A.
G. J. MacFarlane at Cambridge. i am greatly indebted to him for his constant help and
advice. It is also my pleasure to thank Professor C. A. Desoer for pointing out an error
in the original version of this work. Finally, I thank the referee for drawing my attention
to some of the work of Professor F. M. Callier which precedes and is related to Theorem
6 below (see the remarks at the end of this theorem), and for his detailed suggestions
which have lead to a clearer presentation of this paper.

2. Background materials and notations
2.1. Unless it is clear from the context all functions, measures, etc. are real. The

Laplace transform of a distribution T is denoted by T. For o-_>-0 we write R (tr)=
{s" Re s > or}, R (r) {s" Re s r}, D {z" Izl < 1}, D {z" Izl =< 1}, D D\{1}, C
{z.[z[= 1}, C C\{1}. R (0) and/(0) are abbreviated to R and/.

2.2. For cr => 0 we shall write A(o-) for the algebra, under convolution, of locally
bounded measures on [0, ) which are of the form drn(t)=f(t)+Y’.n=oan$(t-tn),

* Received by the editors March 26, 1979, and in final revised form January 16, 1980.
5" Postgraduate School of Studies in Control Engineering, University of Bradford, Bradford BD7 1DP,

West Yorkshire, England.
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where 0 to < tl.<..., and Ildmll I e-’l[(t)l dt /Eo lal e-" < oo. Then for
O0 stReswehaved(s)=f(s)+=oa, e d(s)isanalyticonR(),bounded

and continuous on () and limll I(s)l 0, while lim E a, e-’ ao.
We write A in place of A(0). The following theorem shows when an element of

A() is invertible [8, pp. 141-150].
THEOREM. dm A() is inverable in A() g and only g inf ld(s)l > 0.

2.3. We write H2 for the space of all analytic functions f on R such that
supx>o (oo If(x +/y)l dy)/=llfll.< o. H2 has the following properties [9, ch. 8].
f H2 if and only if there exists 4’ L2(0, 0) such that/(s) #(s) (this fundamental fact
is due to Paley and Wiener). If f H2 then the boundary values f(/y) exist almost
everywhere, f(y) L2(-oo, oo), Ilfll,:-Ilf(]y)lk’, and for x > 0 we have

x.. )2dw.f(x +/y) .I f(/w) /(y w

If/(/y) L2(-c, oo) is real then the above integral defines f(x +/y) as the real part of an
element of H2.

2.4. We write H(D) for the space of all analytic functions f on D such that
supo [f(z)[ Ilfll,: < . n(D) has the following properties [9, Ch. 5]. For f H(D),
the boundary values f(e’) exist almost everywhere and log [f(e)[ is integrable on
[-r, zr]. Let {,} be the set of zeros of f in D, , 0, each of order m, and let mo be the
order of the zero of f at the origin. Then

f(z)=pB(z)F(z)S(z), wherep =exp (]a)

B(z)=z 1-I
.= 1 :zJ

1 If ei* + z
F(z)=exp rei,_z log l/(e/)l ab],

i/ei/ z
S(z)=exp

=ej6-z dm()],

with a arg (f/B)(O),

where dm(qb) is a positive singular measure on [-r, r]. The infinite product defining
B (z) converges uniformly and absolutely on any compact subset of the complex plane
which does not contain any accumulation point of the sequence {:,} nor any point of the
closure of {1/:n}. in particular, B is analytic on D and continuous at every point of C
which is not a limit point of {:,}. Also IB(z)J 1 a.e. on C and IBI < 1 on D. The function
f cannot be continuously extended from the interior of D to any point of C which is in
the support of din, nor to any point of C which is a limit point of {:, }. Thus, if f has no
zeros on C1 and is continuous there, then dm(qb)= AS(b) db for some A >0. Finally if

f H(D), then for any r, 0 =< r < 1, and O [-r, r] we have

f(rei)=
1 : 1-r2

1 + r2-2r cos (O-ok)
f(e’) dck

e + r e/a1_ f(e,) Re e.i. re-J ab.
2r
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3. System description. We consider a scalar feedback system with input u, errore
and output y. These are real-valued functions on [0, ) and satisfy

(3.1) y g * e, e u- ky,

where denotes convolution, g is a real distribution on [0, oo) and k is a real scalar gain.
We assume that g has Laplace transform (s) and

p(s)
(3.2) (s) (s)+q(s)’

where p(s) and q(s) are polynomials in s such that deg p <deg q, p and q have no
common zeros and are real on the real line, and l(s) is the Laplace transform of an
element of A as in 2.2 with r=0. Note that if q has any zeros in the open
left-halfplane, then p(s)/q(s)= h(s)+p(s)/q(s), where h(s)is the Laplace transform
of a real integrable function, p(s) and q (s) satisfy the above conditions on p and q, and
ql has all its zeros in R. So without loss of generality we may assume that q has no zeros
in the open left halfplane. Note also that the zeros of p and q appear in complex
conjugates. Denoting the zeros of q by s,..., sn, each counted according to its
multiplicity and putting rl max {Re si" 1 <= _-< n } we see that g s A(r) for all cr > rl.

The following result is due to Desoer and Wu [6]. Their proof is based on
Gronwall’s inequality and is rather complicated. We give a short proof.

PROPOSITION 1. If 1 + kao O, then ]’or every locally integrable function u on (0,
(3.1) has a unique solution in y and e. If u is Laplace transformable then so are y and e.

Proof. Any solution y must satisfy (8(t) + kg) y g u. From 1 + kao 0 we have
inf<) I1 +k(s)l>0 for some or>0. Hence by the theorem in 2.2, there exists
dmsA(r) such that dm.(8(t)+kg)=(t), and thus y=dm.g.u and e=
u k dm g u. These satisfy (3.1), so existence and uniqueness follow. If u is Laplace
transformable so is dm g .u and thus so are y and e.

From now on we assume that 1 + kao 0 and k 0. Let us denote by T the above
input-output map; thus, y Tu. By Propos,ition 1, T is defined by an element dh A(o,)
for some r > 0 and y u dh. Note that dh(s) (s)/(1 + k,(s)) forRe s _>-r, while the
same equation gives a continuation of d/ to/. We shall denote this continuation by d/
as well. From the proof of Proposition 1 it follows that if u is Laplace transformable on
R then )(s) dt(s)a(s). Note also that 1 + k,(s) is analytic on R except at the zeros of
q(s) where it has poles, and in the complement in R of the union of any neighborhoods
of these points it is bounded. It will be of interest to know when dh A.

PROPOSITION 2. The following are equivalent.
(i) dh A,
(ii) dt2t(s) is bounded on ,
(iii) infs I1 / k(s)] > 0.
Proof.

(i) => (ii). This is obvious, since Ildhlla, s .
(ii) =)> (iii). This follows from I1/(l+k,(s))l=ldl(s)-l/kl and the fact that

k0.
(iii) ::> (i). Let n be the number of the zeros of q. Then d(s) h(s)/h2(s), where

h(s)={q(s),l(s)+p(s)}/(s+l)n, h2(s)=q(s)(l+k,(s))/(s+l) and hi and h2 are
the Laplace transforms of elements of A. In view of the theorem in 2.2 it suffices to
show that inf Ih(s)l > 0. First we observe that by (iii) there exists some r > 0 such
that inf {Ih.(s)l: s q, Isl--> r} > 0. We show that for any r > 0 we also have inf {Ih(s)l:
s e/, [s -_< r} > 0. If not, by continuity of h on/ we would have h.(So)= 0 for some
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So in R. Since 1 + k,(s) does not vanish on R we must have q(so) 0. But then p(so) O.
The contradiction establishes the proposition.

4. L-stability. In discussing stability of delayed systems of the above type, Callier
and Desoer defined the system to be stable if dh A. Desoer andWu have proved that if
this requirement is satisfied the operator T defined by y Tu is bounded on all
LP-spaces, 1 -< p _<-co. A much stronger result holds. From now on, Lp, 1 -< p --< oo shall
mean L (0, oo).

THZORZM 1. The following are equivalent.
(i) T is bounded on Lp for all 1 <- p <= o;
(ii) T is bounded on L for some p, 1 <= p <-

(iii) T is bounded on L2"

(iv) dh A.
Remark. (iv) ::> (i) is already in [6]. Another proof of it depends on the following

fact which is an easy case of Marcinkiewicz interpolation theorem [12, pp. 111-112].
Fact. Let S be a linear map defined and bounded on Lp and L" for some p and p’,

1 <-p < p’. Then S can be continuously extended to L for all r, p < r < p’ so as to be
bounded there.

Proof of Theorem 1.
(i) ::> (ii). This is obvious.

(ii) (iii). Suppose T is bounded on Lp for some p, 1-<p-<oo. Let q be the
conjugate of p, i.e. l/p+ 1/q 1 [ifp 1 thenq c, andifp c then q 1]. We show
that T is bounded on Lq. Since 2 is either equal to p or lies between p and q, (iii) follows
from the above fact.

First suppose that 1 < p < oo. Let fLq, g L be continuous and of compact
support in [0, m], where m is an arbitrary positive number. Define b(t)=f(m -t) and
(t) g(m t). Then b and ff are in Lq and L respectively, have compact support in
[0, m] and II[IL" IlfllL", i[@[ILP Iigll/.p. It follows from the definition of T and Fubini’s
theorem that

Io f(t)(Tg)(t) dt Io O(t)(Tcb)(t) dt.

Therefore, by Holder’s inequality, we have

If
where Kp is the norm of T on L. Now since every continuous compactly supported
function can be written as a above, and the set of all such functions is dense in Lp [10,
p. 68], b Lq and IIT II --< g ll ll . Again, since the set of b is dense in L it follows that
T is bounded on Lq.

If p 1 then q oo. Defining b and above and applying the same argument we
obtain that T4 L and TIloo <- KII,II, However, in this case it is no longer true that
the set of b’s is dense in L. To show that T has a bounded extension to L we proceed
as follows. Fix 0 L. For each > 0 let Or(x) O(x) if x < and 0 otherwise. Since dh is
supported by [0, oo), it is easily seen that (TO,)(x)= (TO,,)(x) for almost all x such that
x < and x < t’. Putting (TO)(x) (TOt)(x), x < t, we obtain a well defined extension of T
to L. Moreover, for each X > 1 we have

ess sup I(TO)(x)l ess sup IZOx(x)l glllOxllL KII011L,
Ox<_X-1 O<x_X

Thus, I[TO[lr. <= KI[IOIIL and T is bounded on L.
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If p o then q 1. With O and 0 as above we have

Thus, choosing a sequence gn suitably we may assume n (x) sign (TO)(x) if x < n, and
0 otherwise. Therefore,

for every n > 0,

so that

TO L and IIT& IlL’ --< KII0. ILL’.
Since the set of &’s is dense in L the boundedness of T follows.

(iii) :: (iv). Here we use the background material on H. LetM be the norm of T
on L. We show that Idl(s)l <-M on/ so that by Proposition 2 the result follows. First
we prove that Id/(fw)l =<M a.e. on (-oo, +oo). Suppose the contrary. Then there exists a
bounded set S on the imaginary axis of positive measure m, on which IdI(fw)l >M+ a
for some a > 0. Let f(]w) L2(-oo, oo) be such that I[(]w)l -> 1 on s. Let u L2(0, oo) be
such that f(]w) Re o u(t) exp (-]wt) dt (see 2.3). Apply the operator TIM to u
successively. Since TIM has norm 1, we have II(1/M")(T"u)ll=<-_llulk. By Parseval:s
theorem there is an absolute constant K such that

IM+a\
)

so []UlIL>-K/((M+a)/M) for every n->l, which is impossible. Now dt(jw)is
continuous on (-oo, +oo) except at the zeros of 1 + k,(]w), and tends to infinity as iw
tends to any of these zeros. It follows that no such zeros exist and ]d(iw)]M on
(-, +).

Next we note that for any So with Re So > 0 there exists [ H such that [(So) 1. To
see this, choose any nonzero eH2. Then for some s with Re s > Re So we have
(s)#0. Choose A such that A/(s)=l. Then [(s)=A(s+s-so) is in H and
[(So) 1. Thus, for each So in R there exists u e L(0, ) such that (So) 1. Now since T
is bounded on L2, for any u L2 and any s x +]y, x > 0 we have

Id(s)a(s)l- la(]w)l ) dw.
x +(y-w

By iteration we have

M x
x +()a"

Note that for any fi(]w) in L, any x >0 and any y by HOldr’s inquality th above
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integral is finite. For any s in R choose u as above such that t(s)= 1. Then

1 lI_ x
dw

for every n -> 1. Thus Idt(s)l <=M.
(iv) =), (i). It is well known [7] that if dh e A then T is bounded on L and L, so

that by the above fact T is bounded on all L
The reader will have observed that in Theorem 1 we implicitly assumed that

1 + kao 0 so as to have dh eA(r) for some r >0. If this is not the case, (3.1) need not
have Laplace transformable solutions for some u. Even if for all u in L the solution is in
Lp, the following theorem holds.

THEOREM 2. Letp e [1, o]. If 1 + kao O, andfor every u in L (3.1) has a solution
in L, then the map u - y is not bounded.

Proof. The relation

(s)
;(s) i;

still holds. Since 1 + kao 0 then ao 0, and so by the theorem in 2.2 there exists some
r>0 and some dm eA(r), such that dm g 8(t). Then drfi (s)(1 + k,(s))(s)= a(s).
Observe that for all p e [1, oo], q defined by p-1 + q-X 1 satisfies q e [1, oo], and for all
x > 0, Ile-Xll. (1/qx)X/L where it is understood that for q o, lim_.o (1/qx)/ 1
Ile-’llLoo. Moreover, given any x>0, by duality ((a) by [10, Thm. 6.16, p. 128] for
p e[1, oo) and (b) by [10, Thm. 6.19, p. 131] for p =oo) there exists u eL with
IlUlILO=I, such that I(x+jO)l>1/2(1/qx)x/o, x>0. Observe that for p=oo we pick
u e Coc L, (see [10, Th. 6.19, p. 131]). Since 1 + kao 0, then drfi (s)(1 + k,(s))-O as
Re s-oo. Let x be a sequence tending to oo and let e, drfi(x)(1 + k,(x,)) so that
e, -0. Choosing u, eL with Ilu,,l[ 1 such that la,(x,)l > 1/2(1/qx,)x/, and denoting
by y, the image of u, under the map (3.1), we have [(x,)l>(1/2e)(1/qx,)/. By
H61der’s inequality the assumption y eLp gives I(x)l<-(1/x)X/llylk., so that
IlY, IIL >---- 1]2e,. Since Ilullo 1 and e, 0 the result follows.

Stability. In view of Propositions 1 and 2 and Theorems 1 and 2 we say that the
system is stable if dh A. A necessary and sufficient condition for stability is that
infa [1 + kff(s)[ >0.

5. Test o[ stability. We now give a test of stability based on the values of 1 + k,(s)
on the imaginary axis. It is thus necessary to relate the values of 1 + kff,(s) in R to its
boundary values in a suitable way.

It will appear shortly that it is more convenient to map the right halfplane to the
unit disk and carry out the analysis there. First we remove the poles of 1 + k,(s) as
follows. Let Sl,’.’, Sm be the zeros of q on the imaginary axis and s,,+,..., s. the
zeros of q in R. Let

(5.1) AI(S) I-I S- 1 Si- 1

= s+l s+
and

S )m H S Si(5.2) A2(s) s + =,,+1 s + g,
sil

where m0 is the order of the pole of (s) at 1. Let G(s)= A(s)A2(s)(1 + k,(s)) and
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ai (si- 1)/(& + 1), 1 _<- _-<n. Note that each factor in A2 is a conformal map of R to D
which takes s to the origin. Moreover under the map z =(s-1)/(s+l),
(si- 1)/(si + 1), each factor in A2 is transformed to (1- ffi)/(1 -ai)" (z -ai)/(1 -iz),
while each factor in A is transformed to z ai. Let Ar(z) At((1 + z)/(1 z)), r 1, 2,
and

(5.3) f(z) l(z)2(z)(X +kg(l +z)l ZVl.
\ \ l

The reader will easily verify that f(z) is analytic on D, continuous and bounded on D,
and inf [1 + k(s)] > 0 if and only if inf& If(z)[ > O; so that the latter is a necessary and
sufficient condition for stability. Since f(z)e H(D) it has a factorization of the same
form as in 2.4, f(z) pB(z)F(z)S(z). Sincef is real on (-1, +l),p 1 or-l, and since
f may be extended continuously from D to D1 according to [9, pp. 68-69], the positive
singular measure dm (), defining S(z), has its closed support contained in the singleton
{0}; hence dm()=hS()d with h _->0 and 8() de the Dirac measure at &=0.
Hence S(z) exp (-h (1 + z)/(1 z)) with h 0 if f can be continuously extended to D,
(which is the case if 1 + k(s) is singlevalued at co). Also G(s)= Al(s)A2(s)(1 + k(s))
tends to a non-zero multiple of 1 + kao as Re s --> c, so that as z -> 1- on the real line f(z)
tends to a non-zero multiple of 1 + kao. The reader is asked to remember this when he
reads the remark following Theorem 3.

The following result is a modification of a well-known theorem in the theory of
H-spaces [9, p.62].

THEOREM 3. With the above notation the following are equivalent.
(i) infD1 If(z)] > 0.

(ii) inf0o [f(ei)[ >0 andf(z) =pF(z).

and log I’(0)1 -- log If(e)l de.(iii) infoo If(ei)[ > 0

Proof.
(i) :::), (ii). Clearly (i) implies inf0o If(e)l > 0 and B(z)= 1. Since If(e)l is boun-

ded above on Ci we have Ilog If(e)]l<=M <, for some M and all 0 # 0. Now let
0-< r < 1. Then by the definition of F in 2.4

IF(r)[_<-exp Reei6 r

exp
1 + r2 5; OS b

=exp M.

Thus, [F(r)l<-expM uniformly in (0, 1). On the other hand exp (-h(1 +r)/(1-r))
tends to zero as r tends to 1 from below unless h 0. Hence, A 0 and f(z)= pF(z).

(ii) => (i). Let M be as above. Given z re D we have

i* + z
d <log If(e*)l Re i, z =- l+r2-5;s (0-) de

so that IF(z)l _-->exp (-M) uniformly in D. Hence, If(z)l IpF(z)l- IF(z)l _-->exp (-M)>
0 for all z in D. Since by assumption we also have inf0o If(ei)l > 0 (i) follows.

(ii) ::> (iii). This follows by direct substitution.
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(iii)=>(ii). Consider f(z)/F(z). As before, IF(z)l>=exp(-M) in D, so f/F is
analytic on D. Note that f/F pBS on D, and JpBSl- 1 a.e. on C1. The hypothesis
implies that the modulus of the analytic function f/F attains its maximum at 0 which is
inside D. Hence, f/F is constant and so BS 1. From the H(D) factorization of f it
follows that f pF.

Remark. From. the proof of (i) =), (iii) above and as mentioned earlier we see that
when inf0o If(e)[>O then S(z)= 1, or equivalently h 0 if and only if f(r)-/,O as
r 1- and this is equivalent to 1 + kao O.

With mo as the order of the pole of g(s) at s 1 let

L lim (.s.- 1) ’-. s + 1
(1 + k(s)).

Then we have
TaEOREM 4. With the above notation, inf[1 + kff(s)l>0 / and only if inf {11 +

k, (jw)[" -co < w < oo} > 0 and

1 I_ log I1 + k(jt)l [si- 1
log - 1 + 2 dt- log

si +1’
where the sum is over all the poles of (s) in R different from 1.

Proof. By the observation after the definition of f(z) in (5.3) inf [1 + k(s)l > 0 if
and only if infzs ]f(z)l > 0, and the latter is equivalent to condition (iii) of Theorem 3.
We now show that these are equivalent to the conditions of our theorem. From (5.3) we
have Al(]W)(1 + k(jw)) =f(ei)(A2(jw))-, where w and 0 are related bythe bijection
e (jw 1)/ (jw + 1), -co < w < oo, 0 < 0 < 2 zr. From its definition A2 is the product of
a finite number of conformal maps of R to the unit disk, and so [A.(]w)l- 1 for all w.
Also Al(jw) is bounded on (-oo, oo), has a finite number of zeros there which are the
poles of (1 + k,(jw)) with the same multiplicities, and tends to a nonzero constant as
[w[--> oo; 1 + k,(fw) is everywhere continuous except at its poles. Hence infoo [f(ei)l >
0 implies inf {[1 + k,(fw)l"-oe < w < co} > 0. Conversely suppose that the latter holds.
Choose wo such that the zeros of Al(]W) are in (-wo, wo) and outside this interval
[Al(]W)[ > c > 0 for some c. Then with 0o the image of wo under the above bijection
inf{lf(ei)[ 0 [r 0o, r + 0o]} > 0. Since the zeros ofA l(]W) are the poles of 1 +.k,(]w)
with the same multiplicities, A l(]W)(1 + k(]w)) is continuous and by assumption has
no zeros in [-wo, wo]; so it is bounded away from zero there. Thus, inf {[f(ei)]’O
[Tr 0o, r + 0o]} > 0. In short inf {ll + k,(]w)l"-oe < w < oe} > 0 is equivalent to
infoeo If(e)l > 0. Now with L defined as above, it follows immediately that log If(0)[-
log [L[ is the sum in the above formula. Let us consider _log I]’(e)l de. From
(5.1)-(5.3) we have log[f(z)l=loglgl(Z)l+logl,’2(z)l+logll +k,((l+z)/(1-z))l.
Each factor in All(Z) is of the form z-a for some a with 1, Since log Iz- a[ is
harmonic in D, it follows from the mean value property of harmonic functions [10, p.
230] that

_
log [e -a[ de 0, while each factor in 2(z) is a conformal map of D to

(ejitself and so [A(e;)] 1. Thus, the contribution of log [AI )1 and of log [A(e)[ is
nil. Now the change of variable ei6 (ft / 1)/(ft- 1) changes integration with respect to
&b from -r to zr, to integration with respect to (2dt)/(1 + ) from -oo to oo, so that the
integral in the above formula is in fact equal to

1
log [f(eie")[ d.
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Remark. Theorem 4 gives a test of stability for systems defined by (3.1). This test is
based on the amplitude of 1 + kp,(fw) and the exact position of the poles of if(s) in R. In
contrast, the stability results of Callier and Desoer, [3, Thm. 2] and [4], are based on the
argument of 1 + k,(fw) and the number ot the poles ot ,(s) in R (except when (s) has
poles on the imaginary axis, so that their positions are required to define the argument
of 1 + kff,(fw) by the convention in [3]). In view of the relationship between the real and
imaginary parts of meromorphic functions it is not surprising that different tests of
stability involving the amplitude and the argument of 1 + k,(w) exist side by side.
However, it has to be pointed out that a test, such as our Theorem 4, which is based on
the exact position of the poles of (s), is insensitive to errors in the location of these
poles, while a test based on the number of poles does not require a knowledge of the
position of these poles. Hence, in practice the stability result of [4] is much more robust
than ours.

6. Maximal intervals of stability. The above test and that of [4] depend on the
specific value of the feedback gain k. It would indeed be troublesome if a separate test
had to be carried out for each value of k. Fortunately there is a simple way to get round
this difficulty. Here, we are guided by the way that any test would be applied. First the
graph F of (/’w), -o< w < o, is drawn and k is chosen so that the point -Ilk is a
positive distance away from F. In general the shape of F could be very complicated. In
practice the segments of the real line which contain candidates for -1/k will be easily
observed and will be disjoint intervals. It is reasonable to expect that if any one such
interval is considered then the outcome of the test would be the same for all points of
this interval,c.f, the classical Nyquist diagram.

More precisely, let To be the intersection of the closure of {g(fw)" -< w <}
and the real line. To contains the set of real values that (/’w) takes, and due to the
presence of almost periodic elements in it may contain other points as well. Let
T To U {0}. Then T is a closed subset of the real line; its complement, being an open
set, is a disjoint union of a countable number of open intervals 1, p. 46], none of which
contains the point zero. A necessary condition for the gain k to give stability is that
-1/k is in one of these intervals. Naturally, this is not, in general, sufficient. We have

TIZO,EM 5. Let L (11, 12) be an arbitrary interval in the complement of T. Then
either inf I1 + k(s)l > 0 forevery k such that -1/k eL, or inf I1 + k(s)[ 0 for every
k such that 1 /k L.

The theorem shows that either all the gains k such that -1/k L give rise to
closed-loop stability, or else none of them does. In the proof of Theorem 5 we need the
following simple lemma whose proof is included for the sake of completeness.

LEMMA 1. For k 0 let d(k) infn 11 + kg(s)l; then d(k) is continuous for k O.
Proof. Let ko # 0 be given. Choose 8 > 0 such that 0 [ko- 8, ko + 8] =/. Let

m min {Ikl" k s I} andM max {Ik[" k s I}. Let So be any point of/ which is not a pole
of (s). Then I1 + k(so)[-<_ 1 + Ml,(So)[, whenever k L Also ll + k(s)l >= [kl I’(s)l- 1.
Choose an open set O containing the poles of if(s) in R, such that ml(s)l-1 >
1 / Ml(so)l whenever s/ f30. It follows that I1 + kg(s)l > 1 + Ml(so)l whenever
ksI and slf30 so that for kI we have d(k)=inf{[l+k,(s)[" s\O}. Now,
I (s)l is bounded on/\O by, say, N. For e > 0 arbitrary choose A > 0 such that A < 8
and AN < e/2. Choose r R\O such that l1 + koff(r)[ < d(ko) + e/2. For lk ko[ < x, we
have k sI and Hence, d(k)<
d(ko)+e. In exactly the same way we have d(ko)<d(k)+e, and so [d(k)-d(ko)[<e
whenever [k- k0[ < h. So d(k) is continuous.
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Proof of Theorem 5. It suffices to show that if -1/koeL is such that inf l1 +
ko(S)[ > 0, then for any other k such that -1/k eL we have inft I1 + k(s)l>0. Let
M(z) (1 + ko((1 + z)/(1-z)))-1. Then M(z) is a bounded analytic function on D,
and so by 2.4 for every r, 0 =< r < 1 and every 0, -zr =< 0 =< zr.

1 I 1-rM(r e’)
1 + r2- 2r cos ( O)

Thus,

IM(r e;O)l <- ess sup IM(e)l,
4,[-r,

Hence, from the definition of M(z) we have,

[l+koff(s)[->_ inf

M(e) de.

O_r< !, 0 e [-Tr, zr].

+ koP, (jw)[ > o.

Now the function d(k) infs ]1 + k(s)l is continuous on (-oo, 0) U (0, +oo) and is
strictly positive at ko. Therefore, there exists kl > ko such that (-1/kl, -1/ko) c L and
inf ]1 + kg(s)l > 0. Repeat the argument with ko replaced by kl to obtain a sequence
kn> kn-1 such that (-1/k,,-1/ko)L and inf I1 +k,g(s)l>0 for each n >0. We
prove that kn may be chosen so that -1/k, tends to ll. The argument shows that we
need only consider the case ll >-oo. Suppose the contrary. Thus, if K is the supremum
of the k,’s that can be obtained by the above procedure then -1/K > 11. Note that K is
finite and K 0. The above argument shows that for any k, ko < k <K we have
inf I1 / kg(s)[ _>-inf-o<w<oo l1 / k,(]w)l. Since K 0 bythe continuity of d(k) we have
inf-o<w<oo 11 + k,(iw)l 0 so that -1/K e T, which is contrary to -1/K eL. A similar
argument applies to 12, and the result follows.

7. A reduction theorem. So far we have considered systems of the form (3.1). It is
not obvious that our results apply to systems whose transfer functions contain such
terms as the ratio of the Laplace transform of an element of A and a polynomial in s.
Such terms occur frequently, e.g. in differential models of the form (t)=
ax(t) + bu(t) + cu(t- 1). Let us take a very simple example. Let ,(s) e-S/(s 1). Then
,(s)=(e-S-e-)/(s-1)+e-1/(s-1). Note that (e-S-e-)/(s-1) is the Laplace
transform of the function which is zero everywhere except on [0, 1] and is defined by
f(t) -e t-I on [0, 1]. So f e L and g is of the form (3.1). What in effect we have done is
to subtract the principal part of the Laurent expansion of (s) from (s) and prove that
what is left is the Lapace transform of an L function. Precisely the same idea works for
more complicated forms of (s), but the proof depends on Paley-Wiener theorem on
H functions (see 2.3). Thus, consider a transfer function of the form g(s)/q(s) where
(s) is the Laplace transform of any bounded measure dm on [0, ) and q is a
polynomial in s. Noting that if Re a <0 then ,(s)/(s-a) is the Laplace transform
dm e e L, we may assume that all the zeros of q are in/.

THEOREM 6. Let dm be a bounded measure on [0, ) and q(s) I-[i (s si) r’ be a
polynomial in s with zeros si in . Let r maxlr {ri}, and suppose that tidlml(t) <=
M < for O < < r + .Then

drh (s) [(s) + P(S)
q(s)

where feLl(0, oo) and p(s) is a polynomial in s with O<=degp(s)<degq(s). If in
addition dm is real and q(s) is real on the line, then f is real and p(s) is real on the line.
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Proof. By expansion into partial fractions we can write drh(s)/q(s) as a linear
combination of terms of the form dfi(s)/(s -si) n, for some n -<r. So for the first part.of
the proof it suffices to show that each such term can be written as in the statement of the
theorem. Let h (s) drfi (s). For each k, 0 -<_ k -<_ n + 1, the hypothesis on dm implies that
the Laplace transform (d/ds)kh(s) of the bounded measure (--1)ktkdm(t) is bounded
and continuous on R. Now let

k=o-.(s-si)’s h(si).

Then 0<-degp<degq and h(s)/q(s)=(h(s)-p(s))/q(s)+p(s)/q(s). We show that
the analytic function l(s)=(h(s)-p(s))/q(s) is the Laplace transform of some f
tl(0, oo). This is done as follows. We first show that l(s)H2 so that by 2.3 it is the
Laplace transform of some f L2(0, oe). We then show that l’(s) Ha, so that l’(s) is the
Laplace transform of some fx L2(0, oe). But then f(t)= -tf(t), and thus (1 + t)f(t)
L2(0, ). Therefore, by H61der’s inequality,/ LI(0, ) for

I/(t)l dt<= d (l+t)2lf(t) d

To see that l(s) H2 let Q be a square centered at si whose sides have unit length.
Let Q Q fq R. For each x > 0, let Ix(x) Q 71 {x +]y" -c < y < c}, and I2(x)
{x +]y" -az < y < az}\Ix (x). Then

I_ ,l(x +,y)12 dy=,uf ,l(x +fy), dy+
z=f ,l(x +fy),Z dy,

l(X) (X)

Note that for any x > O,

sup II(x +]y)lsu
d

h(s) NM<m,
I(x) R

so that the first integral is bounded byM2 uniformly in x. In the second integral we note
that the distance between x +]y and s is at least 1/2. Moreover,

Is
Thus,

II2 I dy 42(n_k)_--< 2 y2n_k)
<_--

(x) IS Si 1/2

and i,.x)II(x +/’y)lz dy is uniformly bounded in x.
So l(s) H2. The proof that l’(s) H is similar. We have

{(h’(s) p’(s))(s si) (h (s) p(s))n }
l’(s) (s_s).+

=lx(s)+12(s),

where

l(s)

1 (s)}
(S Si)n+l
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and

h’(s)-p’(s)-(n -1)---- ss h(s)
l(s)

(s -s)"

Now the previous argument applies word for word to each of lx(s) and lz(s), so that
l’(s) Hz. Finally, the last assertion of the theorem is easily verified by examining the
above proof.

Remarks. (i) As the reader will have noticed, the only use made of the hypothesis
about dm is to obtain existence and boundedness of (d/ds)kdrfi(s), 1 =< k -< r + 1 in/. As
far as the validity of the theorem is concerned, the assumption on dm can be replaced by
this requirement; e.g., when dm is compactly supported, in particular, when it is a finite
sum of impulses so that drfi(s)=Yi=x aie -st’ for some integer n and real numbers
a l, ",an, tl,’’’,tn.

(ii) The above theorem was discovered in ignorance of the work of Callier along the
same lines [2, Lemma 1 ]. A slightly more general form of Callier’s result is given in [5,
Thm. 2.2] where it is shown that if dm has no nonatomic singular part and the zeros of
q(s) are all in the open right halfplane, then drh(s)/q(s) may be written as in our
Theorem 6. Here there is no other requirement such as our o t dlm[(t) <, unless q
has zeros on the imaginary axis, in which case such requirements will become necessary.
In fact with trivial modifications the proof given in [2], [5] works even when dm has
nonzero nonatomic singular parts. On the other hand, our proof holds in a much more
general setting. Indeed in place of drh(s)/q(s) one may consider transfer functions of
the form

bo(s)s" + b(s)s"- +. + b.(s)
h(s) s" + dx(s)s "-x +" + d,,(s)

where 0 =< n < m, and each b and d is analytic and together with its derivative is
bounded in some open set S containing R. For under these assumptions the denomina-
tor of h(s), being analytic and of order of Isl for Isl large and s in $, has at most a finite
number of zeros in $. Thus, h(s) has a finite number of poles in S, and with trivial
modifications the proof of Theorem 6 applies to h (s). It should be noted that this proof
requires splitting off the principal part of the Laurent expansion of h (s) at its poles in R
for this to be possible h (s) must be meromorphic in an open set containing/. Thus, in
general, boundedness of bi and d and their derivatives on R is not sufficient for this
splitting off procedure to work. In this connection see the remarks following [5, Thm.
2.2].

A01endix. Recall that in (3.1) the system’s transfer function was of the form
x(s) + p(s)/q(s), with gx A. It may be of interest to know whether gx may be taken to
be any bounded measure on [0, oo). The difficulty here is that if gx has a nonatomic
singular part then the inversion theorem in 2.2 will no longer hold, and so the proof of
Proposition 1 breaks down. In the case of LZ-stability this difficulty can be overcome as
follows. First observe that y satisfies (3.1) if and only if

(8(t) + kg) y g u,

so for the uniqueness of the solution it is necessary and sufficient that (6(t) + kg) y 0
has no nontrivial solution in y. Note that by convolving this equation with a suitable
function in Lx(O, oo), we may replace 6(t)+kg by an L function; for if (s)=
p(s)/q(s)+ l(S) and q has poles sx,’’’, s. in the closed right halfplane then ]-I1 (s-
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Si)/(s+l)n+l is the Laplace transform of some fL and h=f,gL. Now by
Titchmarsh’s convolution theorem [11] it follows that the only locally integrable y for
which h y 0 is 0, and uniqueness follows. For existence and L2-boundedness we
consider under what conditions the map given by )(s) (s)(s)/(1 + k(s)) is bounded
on La. First if the map is bounded then a word for word repetition of the implication
(iii) => (iv) of Theorem 1 gives the existence of a bound M>0 such that [(s)/(l+
k(s))[ <M for Re s _-> 0. Hence

1 k,(s) < 1 +
+ +

and so inf 11 + k(s)[ > 0. Conversely ifN inf {[1 + k(s)[" s /}> 0 then from (s)
k-a(s){1-1/(1 +kff(s))}, we have so that II ll , =<
Ikl-(1 + N)IlulIH. Therefore, by 2.3, is the Laplace transform of a function y e L2

with support in (0, o) such that Ilylk_-< Ikl-(1 / N)Ilu Ik=. Hence the map u e La y e L2

is well defined and bounded.
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SEMIMARTINGALE MODELS OF STOCHASTIC OPTIMAL CONTROL,
WITH APPLICATIONS TO DOUBLE MARTINGALES*

REN15. BOELf AND MICHAEL KOHLMANN*

Abstract. The paper gives a fairly general approach to the stochastic optimal control problem, using some
recent results on semimartingales. After a short review on these results, an abstract model of stochastic
optimal control is described, where the influence of the control is modeled by exponentials of martingales.
This model gives a synthesis of the martingale approaches of Davis and Varaiya on the one hand, and Striebel
on the other hand. Necessary and sufficient conditions for optimality from these papers are adapted to the
abstract model. Topological existence results, which apply to the complete observation case as well as to the
partial observation case, are described when the likelihood ratios describing the dynamics of the system are
subsets respectively of an L2- and an Ll-space.

These abstract results are specialized to the problem where the martingales are represented as stochastic
integrals. The results can then be written in a more explicit form; in particular it is possible to formulate the
optimality conditions as a maximum principle.

All these results are then applied to the double martingale control problem. Combining results of Elliott
and Jacod and M6min, a representation property for double martingales is given. Some L2 and L1 existence
results are derived from the abstract existence theorems, and a maximum principle for the partially
observable martingale control problem is given.

1. introduction. This paper gives a fairly general approach to the stochastic
optimal control problem, using recent results on semimartingales, especially on their
exponentials and transformations. We attempt to illustrate where, in the development
both of existence results and optimality criteria, the different sets of usual assumptions
and specializations become necessary. Therefore, we proceed from the most generil
situation we could deal with to the more specialized examples and their more easily
applicable theorems.

After reviewing, in 2, the pertinent results of abstract martingale theory, we
describe in 3 an abstract model, which is then interpreted as a stochastic optimal
control problem. The influence of the control is modeled by exponentials of martin-
gales, while the cost is described by an integrable semimartingale. This gives a synthesis
of the martingale approaches of Davis and Varaiya [6] on the one hand, and Striebel
[25] on the other hand. In 3.3 known necessary and sufficient conditions for optimality
are adapted to our model. In 3.2 we give some abstract existence results for the case
where the likelihood ratios, describing the dynamics, are subsets of an L2- or of an
L-space. These existence results are applicable even in the partial observation case.

In 4 we investigate the simplification obtained by assuming that the control
martingales are represented as stochastic integrals over a fixed family of basic (locally
square integrable) martingales. The results can then be given in a more explicit form.
More easily verified, topological, conditions on the class of integrands describing the
admissible control martingales, guarantee existence of an optimal control. Also, for the
complete information case, in 4.3 we derive an optimality criterion in the form of a
maximum principle.
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All these results are applied to the double martingale control problem, in 5.
Double martingales are sums of integrals over Brownian motion and a compensated
jump process. Combining results of Elliott [13] and Jacod and M6min [17], a represen-
tation property for double martingales is proved in 2. This is combined with the results
of 4 to obtain some Lg. and L1 existence theorems, and a maximum principle for the
partially observable control problem. In [27] we treat this same problem, which was also
recently studied by Gertner and Rapaport [14] who used martingales in a slightly
different way. For a more traditional control engineering discussion of systems with
both Wiener noise and jump process noise, and for applications, see Sworder [23].

Summarizing the role played by martingales in the present approach to stochastic
control, the following main properties can be distinguished:

(a) The "preservation of mean" property of martingales simplifies the statement
of the principle of optimality.

(b) The integral representation property of martingales allows identification of the
value function with a stochastic integral (and interpretation of the integrand as a dual
variable).

(c) The semimartingale decomposition allows representation of the state vector
and the cost.

(d) The explicit form of the martingale exponential allows us to use the Girsanov
theorem in describing models. Notice that (a) and (b) deal with the abstract model,
while (c) and (d) only serve for the interpretation of the abstract model in a particular
application.

2. Mathematical preliminary: review of martingale theory. Some recent results on
martingale theory, useful for our abstract model, will be reviewed. For all details the
reader is referred to Meyer [21] and Jacod and Yor [16]. The results on double
martingales at the end of this section are new and will be proved.

We start with a probability space (f, , ), and an increasing family of o,-algebras
(3,)tto.l, \/tto,13 t . The family (t) always satisfies the usual conditions of
completeness and right continuity, and 0 contains all null sets in . All stochastic
processes (xt) are assumed 9t-adapted, i.e., xt is t-measurable. A stochastic process is
called predictable, if it is measurable, as a mapping on (f/ R/, r(R) 9t), with respect to
the r-algebra generated by all adapted processes which are left-continuous on (0, 1].

The family of all uniformly integrable (rt, )-martingales, mt, with mo=0, is
denoted by (or (,) if necessary to avoid ambiguities). Similarly J//2:--{mt E
Em suptto,1] Em2 < oo} is the family of squar integrable martingales. The class

of local martingales, M(o, is defined by

(m,ltT,,, T, an -stopping time, T,’I w.p.1,

The family of all adapted processes at with integrable variation and a0 integrable, is
denoted by M. 12oc and Mtoc are defined in the same way as A/oc. The class 5p of
"special semimartingales" (further on called semimartingales for brevity) contains all
processes xt of the form

xt mt + a, mt Eo, at Mlo, at predictable.

This decomposition is then automatically unique. In particular, if mto, then
2

mt ap is a submartingale; its increasing predictable part is denoted by (m), (i.e.,
9. -(m)t doc), and is called the predictable variation of the local martingale mr.mt
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When mt, nt J[/[loc, the product mt nt is not automatically a special semimartin-
gale; if it is---e.g., if one is locally bounded or if both are in Moc--its predictable part
(m, n)t is defined by the property mtnt-(m,n)toc. It is called the predictable
covariation.

Every local martingale mt can be uniquely decomposed into a continuous and a
purely discontinuous part; the latter will also be referred to as the compensated jump
part of mr"

d
mt= mt +mr.

Since m o, the adapted covariation

[m, n], (m c, nC), + ., Am, An, e 21o

exists for all local martingales.
This fact allows us to define stochastic integrals for the class LB of locally bounded

lntegrands, where
LB:={htlh, is t-predictable and there exists a sequence of t-stopping times T,,

T,’I with probability 1, Ih,/xT.I <- g,}. Then if mt dL, h, LB, there exists a unique
local martingale h m such that for all n

[l, hi, (h [m, n])t o h, d[m, n].

Since /t(to) coincides with h,(to)dm,(to) for all to such that the Stieltjes integral is
defined (i.e., either ht(to) or mr(to) of integrable variation), we write,

(h m)t

If mt is the Brownian motion process wt, the above defined stochastic integral is
indistinguishable from the Ito integral. If mt is the compensated jump martingale,

mt= It_T-- atAT
where at is increasing, then

t/T

(h m)t hr" Itr- J0
We shall very often use the Ito-Meyer differentiation rule: Let xt mt + at ,ctt), f a
twice continuously differentiable function; then,

iof(x,)= f(xo)+ Io f’(x,_) d(m, + a,)+1/2 f"(x) d(mC),

+ E [f(x,)-f(x,_)-f’(x,_) Ax,] 6fp.
O<=s<t

A first example of its use is the proof by simple arithmetic that the stochastic
differential equation, for xt

It 1 + J0 Is- dx

has as its (unique) solution (lo 1),

e(x)t =/t =exp (xt-1/2(x)t) H (l+Ax,) e-.
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If xt e M and bounded, then e(x), ,////1. For a positive local martingale x, vgloc, we
have e(x)t .loc, and e(x), is also a positive supermartingale if moreover 1 + Axs =0.

Whenever we use the notation e(n), in this paper, we assume that e(n),>-O and
Ee (n)x 1 (equivalently e (n), is uniformly integrable). For local martingales n, used in
e (n), we also assume that for xt tloc (x, will become a standard notation for the state
process in our model in 3), the predictable covariation (x, n), (with respect to t and
) exists. These assumptions allow us to apply Girsanov’s theorem (as generalized by
van Schuppen and Wong [24]): For x, and n, as above, define the new probability
measure ,, on (ft, ) by d./d e(n)l. Then the (a )-local martingale xt is
transformed into an ( .)-semimartingale such that

x,-<x,
Note that Yoeurp [26] has shown that any -semimartingale x, is also a ,-semimartin-
gale if and only if (x, n), exists (with respect to ).

Now let (Z, ’) be a measurable space. Define on (f, , t, ) the random measure
q(A, s, to):Z x R/ x ft--> R/, with the following properties:

(i) q(A, t) oc(t, ) for each A .
(ii) (q(A,.), q(A,. )) is a random measure on (Z, ), also denoted by (q)(A, t).
(iii) (q(A,.), q(B,. )), 0 for A, B , A fl B , [0, 1]. Define

Ll(q) Ll((q))" { h(z, t)lh is r,-predictable [23, [17],

Lo(q), L(q) and Lc(q) are defined in an obvious way (which coincides with the
definition in [17]). We shall say that (ll, o, , ) has the (martingale) representation
property with respect to the random measure q(A, t) il for all n e 1o(, ), n a local
martingale, there exists a predictable process h Lo(q) such that

nt h(z, s)q(dz, ds).

Existence of the stochastic integral is part of this assumption.
Examples.
(1) Let Z ={1,..., n} and (n(i), n(]))s 8qs, nt(i) continuous, then the above

property describes the well known result of Kunita and Watanabe on the representation
of Wiener martingales.

(2) Let (Z, Lr) be a Blackwell space, x, a fundamental jump process in the sense of
[2], [7], with

q(A, s) p(A, s)-:(A, s), A Z,

where p(A, s) is the semimartingale associated with (x,), i.e.,

p(A, t)= Z i{,x,-}It,A}.
st

Then the above property describes the result on the representation of fundamental
jump processes with

L,oc(q) Loc(p)=
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Remark. We shall need later on that, assuming E(Z, 1)< oo, then for m 1
there exists h Ll(q) such that

mt :> mt h(z, s)q(dz, ds).

The proof of Elliott for the single jump case [1 1] can be adapted.
(3) As a third example of the representation property we now discuss double

martingales. This is done in more detail since all results of the paper are applied to this
case. Suppose (f, , ) is the product space obtained by joining a Wiener space
(cg[0, 1], 74/’, 1) and a space of jump processes ([0, 1], , 2) (where [0, 1] contains
all sample paths which are constant except for a finite number of jumps)"

’ x 9,"- g[O, 1Ix [0, 1].

This means that 7,V, (R), is generated by a Brownian motion w,(o’) and an inde-
pendent jump process zt(o") with (, 9)-L6vy system (n(A, t), A(t)). Let p(A, t)
be the counting measure associated with z,/(A, t) its predictable projection, and

2q(A, t) p(A, t)-/(A, t) the basic martingales, A . Then for (o’, o") e Lo(W)
and 4,(z, s)(o’, o") Lo(q), the following stochastic integral is well defined:

x, dw + (z, s)q(dz, ds) e

(by the definition of L(q) above, and /,(z, s) are t-predictable). Note that the first
integral is continuous and a.s. of unbounded variation, while the second is purely
discontinuous (i.e., a compensated sum of jumps).

The translation theorem allows us to construct other probability measures on the
above defined space, such that the Brownian motion and the jump part are no longer
independent. Let b e L2o(W), q, e Loc(q); then the exponential of

m,=mo+I0 4sdws + Iz q,(z, s)q(dz, ds)

can explicitly be written as

E(FF/)I =exp [I0 4sdws-1/2 Io cb2 ds- fz Io q,(z, s)n(dz, s)A(ds)

I-I [1 + q,(Zs, s)itzs_z.} ].
s.l

Since we assume that Ee(m) 1 (and since (m, w)t, (m, q( A,. ), exist), we can define
the new probability space (12, :T, :Tt, ,,) by d,,/d e(m). Then w,- ib ds is a
,,-Brownian motion, now dependent on the jump process zt(o), which has the
(5t, ,,)-L6vy system:

(Ia (1 + q*(z, t))n(dz, t),A(t)).
For the space (12, , ) where the Brownian motion and the jump process are

independent, Elliott [13] has shown that any local martingale is a stochastic integral
over w, and q(A, t). This shows the existence of integrands which are integrable and

As in [4], and unlike [2], we do not insist on n(Z, t)= 1. This is for notational convenience only.
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measurable in the following restricted sense,

b,(w’, w") e Loc(12’, w)

if(z, t, ca’, ca") Loc(f", q)

for each fixed o",

for each fixed ’.

However, Davis [29] has shown b Loc(O) and q Lloc(q) when the jump process is a
Poisson process. Recently, J. Jacod and M. Yor proved the following result" For any
KtJ/lz(t,rt(R)Zt, ), K0=0, there exist unique, (Wt(R)Zt)-predictable processes $
Lo(W) and $ Lo(q), such that

Kt= fo $dw + Iz $(z, s)q(dz, ds).

Proof. (published with the permission of J. Jacod and M. Yor): It suffices to prove
the assertion for the dense subset of z consisting of Kt E(u. v[7/t/’t (R) Y{t) where
u and v are bounded, respectively /g’oo, and Z measurable random variables..
Define ut to be the right continuous version of

E(ult/’t) E(u[l/’t @t)
and similarly vt of

Then from Ito’s formula,

K=uovo+Io vs_’dus+Io us_dvs+[U,V]

UoVo+ I0 vs-Us dws+ Io Iz us-Vs(z)q(dz, ds),

where Us and Vs exist and satisfy the required measurability and integrability condi-
2tions by the -representation theorems for Wiener martingales and jump process

martingales. Then

chs Vs- Us and O(z, s)= us-" Vs(z),

satisfy the required conditions.
Since for any mt oc, there exists a strongly reducing sequence of 7,Vt(R)t

stopping times Tn (see [21]) the above result can be applied to mt/r,,.
Theorem 8.3 of Jacod and M6min [17] shows that the representation property is

preserved if is replaced by o(<<). Hence we make the following very weak
assumption:

(Ao) For a given probability space (fl, , t, o) on which are defined a Brownian
motion wt and a jump process zt, there exists a probability measure , such that o<<
and such that (, , ) is isomorphic to the product probability space defined
above, where (the images of) wt and zt are -independent.

THEOREM 2.1. Under assumption Ao, for every mt a/Joc (t, o) there exist unique
predictable processes

4, e Lo,(w)
and

OeLoc(qo),
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such that

f i ioJo dw + (z, s)qo(dz, ds).mt

Under the same assumption Ao, consider any

nt no + h dw + k(z, s)qo(dz, ds),

2 L(h Lion(W), k lo(q)) such that d,/d e(n) is well defined. Then

w(t) w,- 0 h, dso(),

q (A,t)=p(A,t)- (l+k(z,s))o(dz, ds)eo(),

and w is a -Brownian motion. One easily verifies that the translated martingale (for
m as in Theorem 2.1)

m-(m, n}= dw+ (z, s)q(dz, ds)

has the same integrands
the probability measure

Remark. If @[0, 1] contains sample paths with accumulation points (as in Elliott
[11]), the above results can only be stated for locally bounded.

3. Abstract model of stochastic optimal control.
3.1 The model. In a remarkable 1971 paper 1], Bene reformulated a problem of

dynamic control with Wiener noise, into an optimization problem in Wiener space using
the Girsanov transformation [15]. Thus he bypassed the problem of existence of
solutions to a stochastic differential equation. Since then this approach has been used
both to prove existence of optimal controls (Beneg [ 1], Duncan and Varaiya [10] with
Wiener noise, Kohlmann [18] with jump process disturbances), and for deriving
optimality conditions (Davis and Varaiya [6], Elliott [12] for Wiener noise, Boel and
Varaiya [4], Davis and Elliott [8] and Kohlmann 18] with jump process disturbances).
These successes suggest the use of this method for the abstract model below, which
synthesizes methods and results of Striebel [25] and Boel and Varaiya [4].

To define our abstract model we assume as given the basic probability space
(f, , ) and an increasing family of sub-tr-algebras satisfying the usual
conditions. The control decisions are expressed as follows. We are given a set (
lo(, )) of control martingales n, and a set of U-valued, d-adapted decision
rules u (i.e., q/c {u(to): [0, 1 x i2- U, ut(to) is dt-adapted}). With each choice u 0//
there corresponds an n such that (consistency condition):

(i) us(o)= ts(ca), s<=t :ff ns(o) ns(9), s<=t;
(o’) (,o")- (o").(ii) u(o’)=us(o"), O<=tl<=S<=t2<=l n’(o’)-n,1 n

In agreement with the assumptions in 2 about exponential formulas, the set ff of
control martingales is further restricted such that for all n

(i) Ee (n)l 1 (or equivalently e (n),
(ii) e(n),->0;
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and we assume that the mapping from 07/ to is onto. The family of all admissible
likelihood ratios is denoted (ar):={e(n)l[nC}cLl(, , ). Hence dn/d
e(n)l defines, for each n W, a probability measure ,. We will also use the notation
u ,"; for any u , En(Eu) will denote ,(u)-expectation.

To complete the description of the abstract model, we assume given a family of
real-valued, integrable, (, ,)-semimartingales,

Y’;=m, +a

where mt
y’" A/loc (.t, ,). The purpose of the control problem is to find a u* (or

n* W) such that

is minimized, i,e.,

j(u) -E,(Y’")=E(Y’ e(nu)l),

J* a=-J(u*) a--E(Y"l* e(n*)l) inf J(u).

We now interpret this model as a stochastic optimal control problem. Suppose given
on (f, , t, ) a real valued (o%, )-semimartingale x, called the state process,

Xt XO+ mt + at,

such that:
11. (x, n)t (the (5t, )-predictable covariation) exists for all n W, [0, 1].
Then the state process x, is also an (t, ,)-semimartingale

x, Xo + (mt-(x, n )t) + (a, + (x, n)t);

i.e., the predictable bounded variation part is changed. This is completely analogous to
what happens to a controlled diffusion equation.

x xo + dw + (s, x, u) ds,

where the predictable bounded variation part is changed by

’l(s, x, u) ds.

Taking

n, /(s, x,, u,) clw,,

would transcribe the controlling diffusion problem into the form of our abstract model.
Note that here as in most applications there is a stochastic process wt(to), a fixed

function of to, underlying the control martingales n’(to) and the state x’(to). The
dynamics of the problem are expressed by the change of probability measure on (l-l, ).
Note also that if the "state of the world", modeled by xt, is vector valued, the above
assumptions and equations are to be considered for each component. Notice also that
the semimartingale representation results of 3 are only applied to the cost, which we
assume real valued.

The increasing r-algebras :t describe the information available for the control
decisions. The lar.ger q3t, the more information available for influencing nt. The special
case :t , complete information about the past state of the system, will lead to
considerable simplifications.



SEMIMARTINGALE MODELS OF STOCHASTIC OPTIMAL CONTROL 519

Remarks,
(i) The assumption that u,(to) is cg,-adapted does not imply that n ’ is t-adapted,

as the above example of a diffusion control problem illustrates.
(ii) (t, ) and (cgt, ) are assumed to satisfy the usual assumptions of complete-

ness and right continuity. However there is no guarantee that all n-null sets will be in
:Tt or t. Thus we will have to be careful with statements such as "a.s. 9n", or when using
theorems involving the choice of appropriate versions. For a detailed study o this
difficulty see [5].

To complete the interpretation of the abstract model as a control problem, it is
necessary to make the following assumption (similar to I1):

I2. (Y", n)t (the (t, n).predictable covariation) exists for all n W, t[0, 1].
Often the cost in an optimal control problem is of the form

J(u) E,,. Jo c"(t, xt) dt,

cU( ," )" [0, 1]X Rn--> R+, jointly measurable. Choosing Y c(s, xs) ds clearly
defines an (a n)-semimartingale, and

J(u)=EnY

completes the description of an abstract control problem. For problems with a terminal
cost J E,(Y1) we obtain a well defined abstract problem by taking as cost Y’

It is often useful to have Yt independent of n. This can be achieved by proceeding as
in Bene [1], extending the probability space by adjoining to it a Brownian motion

o(tot), independent of xt under . The new probability measure ,, (on the extended
space (, )) is chosen such that w has ,,-drift c (t, xt), i.e.,

g(n)l
d

=exp c"(t, xt) dw 1/2[c"(t, x,)]2 d e(n)l

(Here , E refer to the extended space; for details see [1]). Then

J(n) , Io c"(t, xt) dt Iw g:(n)l ,,w,

and choosing Y’ w again defines the abstract model. Instead of extending f by
adjoining a Wiener process, one could also have added a counting process (pt) with rate
c"(t, xt) under ,,, and identify Y’ Pt (see [18]).

To simplify the statement of theorems later on, we formulate some frequently used
assumptions.

N1. (Closure under concatenation for cgt). Let n 1, n z jr. Then for all A e t the
process n, defined by

t,
2ns n,Ia + nslAc, s > t,

is an element of
C1. E, Y’I < for all n A;, and ,t (daY.n)>=_,t fs ds with/’, a deterministic,

integrable function (0 _-< ft dt < ).
(tO) rt2 (to) toeA, O<h<s<=t2<l,C2. (causality of cost)" For any A e ct, if n ....
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for some n 1, n 2
E d, then

Y,’ y,,’)IA Y,"} y,",)1A.
C3. For all n E W: Y’ Y.

Nl and C2 will be used to define a value function, as a first step in the dynamic
programming approach; C1 is necessary to define conditional expectations of the cost.
Finally C3 insures that the cost J(n) is a linear functional of e(n), which will be used for
existence results.

3.2 Abstract existence theorem. In this section we give two abstract existence
results, the first under the assumption that () c L2(fL , ), the second for
L,(fl, , ).

THEOREM 3.2.1. Forthe abstractmodel of 3.1, assume C3 holds, let[Y1[ <-K, and
let @(W) be weakly closed, L2(, ;, ). Then there exists an optimal control, i.e. there is
an n* Wsuch thatJ(n*)<-J(n) [or all n W.

Proof. Since Y1 is bounded, J(n)= E(Y1 e(n)l) is a continuous linear functional
on @(W). As a weakly closed subset of the weakly compact unit ball in L2, (dV’) is
weakly compact in L. A continuous linear functional attains its minimum over a weakly
compact set.

The proof of the L existence result is a bit more laborious. A subset
L(f, , ) is called strongly uniformly integrable if (cf. [20, II-T 22]):

sup {E(Idl)l d }< oo, for some y > 1.

We will repeatedly require the following assumption, (X, ItlYxI>N}).
E1 For some 3’ > 1 (depending on the context) let q be such that 1/3’ + 1/q- 1,

then assume

E([ Viiq" I[IY,l>N) ---0.

THEOREM 3.2.2. Let @(W) be strongly uniformly integrable and weakly closed (in
L1), and assume E1 to be fulfilled; then there exists an optimal control.

Proof. @(W) is bounded and weakly closed in Ll(f, , ), hence weakly sequen-
tially compact. There exists a minimizing sequence (n) such that e(n) converges
weakly to an element e(n) @(df). In the inequality

IE( YIXNF-, (n)l)l Ei/q (XNI Y,Iq)E’/( (n)

the second factor is uniformly bounded, and the first goes to zero when N goes to
infinity, by Ei. Now we choose N so large that for given e > 0,

IE( Y,Xlve(n),)[ < e/3

for all e(n)l E (dV’). Then the weak Ll-Convergence of e(ni) allows us to choose io so
that for _-> io the following equality holds,

[E( Y1 1 XN)(e (n)1 E (rti)1))l < e/3

This finally implies that

[J(li)-J(l)[ < E, i> io.

Since e was arbitrary, n n* is an optimal control martingale.
Remark. The above theorems hold for partial as well as complete information.

This is related to the fact that we have made strong assumptions involving only the
random variable Y and the topological properties of the set
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3.3 Optimality conditions. Consider the abstract problem of 3.1 and assume C1
and C2 (integrability and causality of the cost) are also satisfied. Using

E,(YT I%) E,<YTI%)+E,(Y
y, y,=E,(Y, Ic,)+E,(al -a,

> E.(YTI%)- J, f, ds,

the value function U(n) can be defined by,

U,(n’)aE.(grl%)+.-ess infE(Y-

Here n denotes (n, s t) and

To avoid trivialities, we assume that for each n E and each E [0, 1] there exists at
east one a .., suc tnatZ f-1, is inteae. Ten E.l,(tl< an
Ut(n t)- ds or all t. Note that by C2, Ut(n t) only depends on the control used up
to time t. Indeed for any A E E n,t,

f I. e(), d (A),

and hence E,(Z[%)=Ea(Z[%) for any t-measurable random variable Z. Since
Y’ Y, when h A;,,t, we can also interpret Ut(n t) as

Ut(n ’)= ,, -ess inf Ea(Y[t),

the smallest achievable total cost at time t. The minimal future expected cost will be
denoted,

Wt(nt) n ess inf (Y

It is now trivial to adapt the proof of Theorem 1 of Striebel [23] to our model.
THEOREM 3.3.1. For the abstract model aoume C1 and C2 and assume there

exists for each n Yan integrable, fgt-adapted process tQ,(nt), 6ounded below by - fs ds,
such that

(i) V fV,,,t" -ft(] t)
(ii) En(Ul(nl))= E,,(Y[31),
(iii) Ut(n’) is a (, qt)-submartingale.

Further assume there exists /f such that
(iv) Ot(t t) is a martingale.

Then necessarily

,(i’) U,(ri’)

and is an optimal control law with minimal cost

E,(Y1) Uo.
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Moreover for all n f

0,(n’) <_- U,(n’).

In order to improve this result, and obtain a necessary and sufficient condition for
optimality, one has to assume the e-lattice property [25]:

2Let n 1, n2c, n] =ns, s<t;= then there exists an nc such that

r/2rs rs S "<=t,

J(n)<=J(n)+e, i= 1,2.

Intuitively this guarantees not only optimal control, but an optimal continuation of
any control law (cf. [22]). It turns out that assumption N1, of closure under concatena-
tion, guarantees this, independently of the cost structure.

LEMMA 3.3.2. Assuming N1, C1, C2, then the abstract control problem has the
e-lattice property for all e >-_ O.

Proof. Let

A {E,,,(Y’’ IJ,)<-_E,,2(Y’;
Then A e %, and

2
=tl =r S <ris =t,

n s > and to A,
2n, s > and to A,

defines ri V, and

t (t)l 8(nl)lIA + .(n2)lIA.
Then

E(Y) E[IAe(ni)l Y’’ ]+ E[Iace(n)
<--E(e(n’)lYi’), i=1,2.

Remark. Davis and Varaiya [6, Lemma 3.1] have shown that the property holds
for any number of continuations of the control law, if e > 0 is taken, i.e., there is n
such that

E..(Y],) <- U,(n’)+ e.

Striebel [25] has shown that under the e-lattice property, the value function U,(n t)
is a (n, )-submartingale, which immediately leads to the same necessary and
sufficient optimality condition as in [6], [4].

THEOREM 3.3.3. For the above abstract model of 3.1, assume N1, C1, C2. Then
Ut(n t) is a (, t) integrable submartingale, such that Ul(n) E,,(Y) J(n). It is a
(uni[ormly integrable) martingale if and only if n is an optimal law.

This is equivalent to the principle of optimality: For all n ,/V" and for all pairs of
t-stopping times 0 =< Zl =< z2 =< 1,

W(n)<E(a Y" Y"-a,

with end condition

WI(n)= E(Y’IJ1),
and equality if and only if n is optimal.
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The above theorems are simplified in an obvious way in the complete information
case, (gt o%t. The minimal future cost is then independent of the past control law- If

2ns ns, s => t, then by C2,

and by definition

Hence

n2YI’- Y" YI- Y,

e(n )t e(n 2)t

and by taking the essential infimum,

w,((n )’)= W,((n)’).
However,

Ut(n t) Y’ + W,

still depends on the control law n up to time t, through the past cost Y’ (except when C3
is satisfied). When Ut(n’) (or W(n’)) is known to have a right continuous version, the
Doob-Meyer decomposition theorem could be applied to obtain a result as in 4.2 of
[4]. Since this is much more easily stated with the additional martingale representation
assumption, we will postpone it until 4.3 and 5.3.

4. Control martingales represented as stochastic integrals.
4.1. The representation property model. We now consider a special case of the

abstract model. We assume that (f, , a ) has the martingale representation
property defined in 2, i.e., we are given a random measure q(A, t)21oc(;t, ), with
(q)(A, t) a random measure as explained in 2, such that any (a )-martingale is a
stochastic integral over q(A, t). The set of control martingales can hence be described
by

:={tk(Z, t, ut) Loc(q) lz l ck(z, s, u)q(dz, ds) n4" ./, l+An-_>0}.
We assume from now on that ut is t-predictable (t-predictable is actually sufficient),
and that b(z, t, u) is continuous in u for fixed z, t, to insure t-predictability of b. We
denote ():=(aY’). All other assumptions of the abstract model of 3.1 remain
unchanged.

4.2. Existence results. For the model of 4.1, we prove the existence results
corresponding to Theorems 3.2.1 and 3.2.2. We first consider the casec Lo(q). By a
sequence of lemmas as in [1 8] it can be seen that the following holds:

LEMMA 4.2.1. For the model of 4.1, let be closed and convex in L2(q) and
assume (q>(z, t) <= t), tx a deterministic, increasingfunction of time, andfinally assume
full information t t. Then @(dO) is closed and convex in L2(II, , ).

Now @() is a weakly closed subset o L2(f, , ), so that Theorem 3.2.1 can be
applied.

THEOREM 4.2.2. Under the assumptions ofLemma 4.2.1, suppose C3 is satisfied
and YaI is bounded. Then there exists an optimal control.
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It would have been possible to give an L existence result analogous to that in 18,
T 2.2.3] by imposing some general and hence very restrictive assumptions on , so that
@((P) becomes strongly uniformly integrable. Here we want to assume a special
representation property for (f, , t, ) yielding results that are more interesting and
can be applied more directly to the double martingale control problem.

We assume that the continuous part of each (t, )-local martingale has the
i.erepresentation property with respect to a finite family of Gaussian processes yt,

m bi(s) dye, $, Loc(Y’),
i=1

where the y are continuous, and

(Yi, YY)t 8ij Jo Bi(S) ds, 1 < i, j < k,

for some deterministic function fli(t) O.
The discontinuous part is assumed to be of the form

m (z, s)r(dz, ds),

with r(A, t) purely discontinuous. Summarizing:

m e ?oc( ) m, 6i(s) ay + 6(z, s)r(az,
i=l

k

i=1

t, 1,..., k; r(A, t)) can be interpreted as a random measure q(A, t) replacing Z
by {1, 2,. , k}U Z. Under the above assumptions, for a control martingale n,, e(n)
decomposes multiplicatively

e(n)l e(n)e(na) e(6, ) e()

H e(6i)" e()l.
i=1

In order to apply Theorem 3.2.2 we need strong uniform integrability of ()"

sup E[e(,..., 6). e(6)?],<,
for some T > 1. By H61der’s inequality it suffices to prove that there exist Tx > 1 and T
sufficiently large, such that,

supE(E(I,’’’,k)I)E(E()e)<;

or such that
(i) sup,.E[e(x, , )]< for some a > 1,
(ii) sup6 E[e(ff)]< for sufficiently large a.

LMa 4.2.3. (i) is satisfied under theollowing assumptions"
A 1. For all e: Ii(t)l K(1 +[E y(1)l) for some finite K
AC2. oBi(t)B, i= 1,..., k, i.e., B’(t) bounded.
Proof. Step 1. We now prove that (ACl) and (A2) imply

E(e(hbi, i= 1,. , k)l)= 1, for all A _-> 1.
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The development of e(Ati, i= 1,..., k)l into its Hermite polynomials [21, IV-40]
assures that e(A4i, 1,..., k)l=i=o A PI, where the Hermite polynomials are
defined recurrently by:

P 1,
k f01P 1= (s)dy,

P= 6,(s) dy 62(s),,ds
i=1 i=1

i=1 i=1

Jo p,-a, aP.
Let Cs(t) be a convex cone in s:

c(t):= (0 <

C() c.
It easily follows, from the recurrence formula for Hermite polynomials and from
Meyers [21, IV-50] results on multiple integrals, that

f= (ul... (u y, .
i=1 (t)

We find the following chain of inequalities

N i(u)’’’ i(u)dy dy
i=1 (t)

(u)... (u) du.., du (byA2)
i=l (t)

+ sup
te[O, 1]

2] y (by [9, T-VII-3-4]).
j=l i=1

This is finite since the yi are Gaussian. Now [21, IV-48.3] can be applied since the
assumptions of [21, IV-45] are fulfilled by AC2. Hence

E Ici(Ul &i(u) dyi...dy=0 oreachN.
i=1

By Fatou’s Lemma e(Ai, 1,. k)t is a supermartingale with expectation between
0 and 1. Fubini’s Theorem finally yields

E[e(A&i, i= 1,..., k)]= 1, A 1.

The above result can also be derived from [15, Lemma 7] by slightly generalizing
the methods in [1, Lemma 0].

Step 2. Under the assumptions ACl and A2, there is an > 1 such that

E[e(&i, i= 1,..., k)]<
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uniformly in b . To show this, consider the e(a4i, 1,. ., k)l d-local martin-
gale,

Since

x,= yi ids"t--O
i=1

2 dsy, =<21x,I=/2
i=1 i=1

-<2[x,[z+2a I, ds,
i=1

applying A2 yields

<2 sup Ix, =+2kg= 1+ rl dsup Yt fft i=tel0, 1] i= te[o, ]

Now the Gronwall inequality implies

sup y" <(2 sup Ix, +2kKa e
t[0,1] i=l t[0,1]

and we can write the following chain of inequalities:

E(e(,’", t))<E(e(ai,i== 1, ,k).exp
a -a- ***iaid,

2 i=1

_E(e(ai, 1,. ., k). exp
a 2- a ()2 d

i=1

2

NE[e(a"i=l "’"k’l’expa -a i’"2 Ck 1+ sup [2 Yl2 d

2

_h(a)E[e(a,, l k).exp (k K a z--a" e2kr
t[0,1]

As h(a) is bounded for a near 1, and xt is a Gaussian process under e(arki,
1, , k)l d, the expectation is bounded uniformly in 4 e for some > 1.
LEMMA 4.2.4. Condition (ii), i.e., sup,.E[e(0)]<oo for some , is satisfied

under the assumption

is an exponentially uniformly integrable subset; i.e.,

supElexpCIzlo (z, s)q(dz, ds) <.
Proof. Since A zJo b(z, s)q(dz, ds) [-1, oo] by our general assumption, we have

( i io0 <= (1 + A 4(z, s)q(dz, ds) exp -tA 49(z, s)q(dz, ds) <- 1,
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(remembering that (1 + x)e-" -< 1 for x =>- 1). Then we obtain the following chain of
inequalities:

I-I (1 + A (z, s)q(dz, ds
o---tl

uniformly in by Ad.
Combining these results we have
LEMMA 4.2.5. Under ACl, AC2 and Ad, @() is strongly uniformly integrable.
We can now apply Theorem 3.2.2.
THEOREM 4.2.6. Let fulfill the assumptions ACl, A2 and A, let the costcriterion

satisfy El, and let @() be weakly closed in L1. Then there exists an optimal control, * e.
Remarks.
(i) A sufficient condition for A has been given in a more easily verifiable form

[18]. The form of Aa was chosen here because it expresses the essential difficulty that
would have been removed by a different assumption.

(ii) As we do not assume any convexity on the set of controls, Theorems 3.2.1,
3.2.2 and 4.2.6 also apply to the partial observation case.

4.3. Optimality conditions: The maximum principle. To illustrate the use of the
martingale representation property we will here derive a maximum principle for the
model of 4.1, similar to the result of Elliott [12]. We will do this only under the
following strong assumptions"

(i) There exists an optimal control n* (i.e., an optimal b* ).
(ii) All probability measures are equivalent: , (Ee(b)l=l and

E(1/e(ck)) 1, in particular e(b)l>0 a.s. and.).
(iii) The cost semimartingale Yt is independent of the control used (C3).
(iv) Complete information (3t ).

The most important condition is (ii), which guarantees that Lo(q) is independent of the
probability measures 6 (Tn’ 16 a.s. => Tn’ 1 a.s.). This condition (as well as (iii) and
(iv)) can be considerably relaxed for double martingales, making use of specific
properties of jump processes and Wiener processes. For the model of 4.1, with the
above assumptions (i) to (iv), we have for the value function, U- Uo Y + W- Uo

l(’t *) where

d*
e(n*)l e(b*)l.

d

Hence there exists a predictable process g* Llo(q) such that

U, J* + Iz lo g*(z, s)(q(dz, ds)- 4, *(z, s)(q)(dz, ds)).
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Now

E [g*(z, s)[(q)(dz, ds) < oo a.s.

(by definition of the random measure and At2), which implies [26, Thin. 1.13] that

(Iz fo’g*(z, s)q(dz, ds), q(A, )),,
exists for all . By [26, Prop. 2.2.],

3zJo

The Doob-Meyer decomposition of the 6-submartingale U, can be written
explicitly as:

U, 1" + g*(z, s)(q(dz, ds)-ok(z, s)(q)(dz, ds))

+ g*(z, s)(cb(z, s)- *(z, s))(q)(dz, ds).

The second integral is the unique predictable increasing process associated to Ut. It is
zero if and only if Ut is a martingale, i.e., if and only if is optimal. The following
theorem is now obvious"

THEOREM 4.3.1. Consider the stochastic control model of 4.1 (i.e. the abstract
model of 3.1 with the martingale representation property) and assume N1, C1, C2 and
assumptions (i), (ii), (iii) and (iv) of this section. Moreover let

(q)(A, t)= l,(dz, ds)Xs ds,

for an t-adapted finite measure tx (A, t) on (Z, ) and At an t-adapted, non-negative
process. Then a control is optimal if and only if it achieves at each time t, the (R)-essential infimum of the Hamiltonian

at" Iz g*(z, t)(z, t)tx(dz, t).

COROLLARY 4.3.2. Under the assumptions of Theorem 4.3.1, iffor dp, for some
e>O,

At" Iz g*(z, t)&(z, t)lz(dz, t)<-l(R)-es.s inf Atlz g*(z t)" q(z, t)lx(dz, t)+e

for almost all t, -a.s., then is e-optimal, i.e.,

J(4) < inf J(4;) + e, -a.s.
Remark. For the complete observation case, Ut has for any a right continuous

modification with left-hand limits [20, VI-T 16]. Hence the Doob-Meyer decom-
position can be applied, and we obtain (as in Davis-Varaiya, [6], Boel-Varaiya, [4]),
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that there exists

g Loc(q,

(z, s)(q(dz, ds)- ok(z, s)(q, q)(dz, ds)) +A,

where the predictable increasing process,

A= w. h-01im IO E4"(gs+h-h ds,

is 0 if and only if 4 is optimal. However only under strong additional assumptions can it
be shown that At is absolutely continuous. Moreover the dual variable in the Hamil-
tonian then depends on th.

5. The double martingale case

5.1. Control problem with double martingale noise. In this last section we consider
the abstract control model under the assumption that (, , o%t, ) is the canonical
space used in the definition of double martingales (see 2). By Theorem 2.1
(YL , t, ) has the martingale representation property with basic random measure
martingale t(A, t) (w,; q(A, t)), where wt is an Rk-valued Brownian motion, q(A, t) a
compensated jump process. Hence we can apply the results of 4, with =

k
," , a 4’}, a Lo(W ), 4’ Lo(q). The cost functional is then given by

J(ck) E(Y e(al, an) e(,)).

This model can easily be interpreted as a control problem where a complex
interconnected system is regulated for small noise influences (Brownian motion), and
also as a scheduling problem for repair and maintenance of subsystems, subject to
breakdown at random times (jump process). Such problems have been treated by
Sworder [23], and recently with martingale methods by Gertner and Rapaport [14].

.2. Existence results. Theorems 4.2.2 and 4.2.6 will now be applied to the control
model of 5.1.

THEOREM 5.2.1. For the controlproblem of 5.1, assume Yt satisfies C3 and YI is
bounded, assume complete information % assume (q)(Z, t)<-I, where/x:+ +
is an increasing deterministicfunction. Let be closed and convex in L2(w) L2(q). Theft
@(d) is closed and convex in L,(f, , ) and there exists an optimal control.

THEOREM 5.2.2. For the control model of 5.1, assume ACl, At2, Ad and E1

satisfied and let @(dp) be weakly closed in Li(f, , 5). Then there exists an optimal
control.

The following corollaries give examples of applications of Theorem 5.2.2.
COROLLARY 5.2.3. ([1]). Let Yt Wo(t), a one-dimensional Brownian motion.

Then Y1 Wo(1) satisfies A2 and E1. Further assume dO to satisfy A2 and A and let
@() be weakly closed. Then there exists an optimal control d*b for the problem of
5.1.

COROLLARY 5.2.4. ([18]). Let Yt pr(A, t) be the counting process corresponding
to afundamentalumpprocess with values in R, let d satisfy ACl and Ad, assume E1 and
let () be weakly closed. Then there exists an optimal control.

We combine the two preceding corollaries by assuming

Yt w0(t) + pr(A, t).
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References 1 ], [18] show how this is the transformed cost for some general form of cost
functional J(cb) E( c’; at)+E(z c7 dt).

COgOLLAg 5.2.5. Let dp fulfill ACl, Ad, and let pr (A, 1) satisfy E 1. Then there
exists an optimal control.

5.3. The partial observation maximtm principle. We consider the model of 5.1
with assumptions N1, C1, C2, and assume that an optimal control (a*, b*) exists
(e.g., let the assumptions of Theorem 5.2.1 or 5.2.2 be satisfied). In fact any set of
assumptions guaranteeing existence of a* such that En.(Y*, It) + Ut(n*) is a (cat, *)-
martingale is sufficient, but we have not been able to find verifiable conditions for this.
Finally we assume that all likelihood ratios e(n)t e(b)t are -locally bounded
martingales, i.e., there exists a sequence of t-stopping times Tn (independent of b)
such that _-<g and T’I-a.s. This will be satisfied if ff [-1, M,]on [0, T,]
and A(t) is continuous (i.e., all jumps are totally inaccessible).

From Theorem 3.3.3 we then have that

Ut(n’) E(Y7 I,) + ,,-ess inf Ea(Y Y cat)
ll Nn,

is a (t, ,)-submartingale for all n, and for the optimal control n* (i.e., (a*, ,*)) we
have

where

U,(n *’) e a(,, ..),
"* Icat) E.,( Y’/* +Ut(n*t)=E,,.(Y

lt E.,( Y’;* Y’*
Following Elliott [12] it is easy to verify,

E,.(Y7 + 17’tl t) E,.( Y7 Y’* cat) + E,.(Y’* + lf’tl dt)
<-_ E,.( Y’; Y’* fgt) + E,.( Y’/* + E, Yt+ Y’; +

Intuitively this corresponds to using a non-optimal control n between and t + h. This
proves

THEOREM 5.3.1. For the model of 5.1, under the additional assumptions of the
beginning ofthis section, ifn * AZ is optimal then E,.( Y’/* + ff’l f) e 1(c, ,.). For all
n dV, n* being an optimal control,

E,,.(Y’ + ff’tlt)<--_E,,.(E,,(yt"+h + vvt+h]t)lct).

Since Y’*+ l/’tel(:Tt, .,) we have the representation theorem, that, after
stopping at T,, there exist uniquely defined (up to -equivalence) processes

g*eLl(w), h*eLl(q),
such that

* fo
tAT

YtAT. + tATn J* + g(dw- ds)

+ h*(z, s)(p(dz, ds)- (1 + *(z, s))n(dz, s)A(ds)).
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Note that because of the boundedness of e(n)t and lie(n), on [0, T,], *g I[o.T. LI(w)
and h*Ito.T.3Ll(q) for all .. Since T.’I for all ., the following results hold for

[0, 1). (The point 1 is not very interesting for control purposes anyway.)
Suppose now we can write the cost Y’ in the following integral form;

’ Io n ctw 4,’; as)

+ Iz k(n)[p(dz, ds)-(1 + ")n(dz, s)A(ds)]

+ Io c(s, ns) ds,

where k L(w), k, L(q) (in particular, -predictable), exist by the double
martingale representation theorem, but the dierentiability of A(t) and a are new
assumptions. Then we can write

+ ’ J* + o g (dw ) ds

+ Iz lo h*(z, s)(p(dz, ds)-(l + *)n(dz, s)hsds)

+ Io k (n)(dws : ds)- k’ (n*)(dws ds)

0+ k(n)(p(dz, ds)-(l+)n(dz, s)1ds)

-z (n*)(p(dz, ds)-(l+*)n(dz, s),ds)

+ o (c(s, ns-C(S, n s.

By the integrability assumptions gs, g*, kl L(w) for , (up to Tn first, and let The’l)
and similarly h, h*, k 2 Ll(q) for ,’, then stochastic integrals over (dw- qb ds) and
(p(dz, ds)- (1 + d/")n(dz, s)As ds) are n-local martingales. Then by Lemma 5.2.1,

with equality holding if and only if n is optimal. Then the following theorem is obvious.
THEOREM 5.3.2. Under all the assumptions made earlier in 5.3 with n* f an

optimal control there exist dual variables

g*6La(w), h*L’(q),
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such that for all n A; the Hamiltonian is positive:

E..[(gt*-k(n*t))(’-*t)+c(t, n,)-c(t, n’t)

-A, Iz (k(z’ t, n*)-h*(z, t))(O(z, t)- /*(z, t))n(dz, t)l%] o,

for almost all t. For any other optimal control n the minimum (zero) is achieved.
Remarks.
(i) Recently Elliott [28] has proved the sufficient part of the above theorem (= 0

implies n optimal), for a model with Brownian motion noise. His proof apparently
carries over to the double martingale model considered here.

(ii) To compare Theorem 5.3.2 with the maximum principle in Elliott, 12, Thms.
9.3, 9.8], one should take the cost structure

Yt Yt k dws + k2(z, s)q(dz, ds)

Then the Hamiltonian takes the form

E,,.[gt* (4’- c*t )+ At Iz h*(z, t)(O" (z, t)- b*(z, t))n(dz, t)

Our result is weaker, however, since the exceptional sets, where the inequality is not
satisfied, can deperrd on because we could not prove the generalization of the
differentiability results in [12, {} 7].

5.4. Final remarks and applications. The results on double martingales in the
preceding sections suggest some game theoretical extensions. Let us once again look at
the cost criterion in the double martingale case

that was to be minimized in the control problem above. Now assume that there are two
players, P1 and P2, governing respectively the continuous and discontinuous parts of the
dynamics; i.e., with respect to the dynamics

dx, at dwt + Iz (z, t)q(dz, dt),

we have to solve the problem,

min max J(c, ).

Problems of this kind as well as applications to economics will be described in a
forthcoming paper [19].

Acknowledgment. The authors would like to thank J. Jacod and M. Yor for
permission to use their elegant proof of Theorem 2.1.
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CONTROLLABILITY PROPERTIES OF PSEUDO-PARABOLIC
BOUNDARY CONTROL PROBLEMS*

L. W. WHITEr

Abstract. We study the boundary control of a pseudo-parabolic equation and compare the results to
those of parabolic equations. We find that the pseudo-parabolic equation on a finite interval is controllable by
means of boundary controls, but on a semi-infinite interval it is not controllable. These results are a
consequence of uniqueness and support properties of solutions of the pseudo-parabolic equation.

1. Introduction and preliminaries. In this note we present controllability results for
boundary control problems governed by pseudo-parabolic equations. We show that on a
bounded domain a pseudo-parabolic equation is controllable by means of boundary
controls alone. In addition, we give an example to show that on an unbounded domain it
is not controllable by means of boundary controls. This last result varies from that
observed for parabolic problems [4]. This difference is due to the different uniqueness
properties of pseudo-parabolic and parabolic equations.

For simplicity we consider the following situation and mention generalizations at
the end of each section. We study a problem of the form

yt(x, t) Yxtx (x, t)- Yxx (x, t) 0, in (0, 1) (0, +c),

y (x, 0) 0 in (0, 1),

with boundary conditions

(3) y(0, t)= Uo(t) and y(1, t)= ul(t), in (0, +).

Equation (1) is to be satisfied for each (0, + o), and it suffices to take Uo and Ul

to be continuous functions with compact support on (0, +), i.e., Uo and u belong to
Co(0, ). We denote the dependence of y upon the controls by y(x, t; .u) where

.u =(Uo, ul). We focus our attention on the trace y(., T; .u) for some fixed finite
T, 0 < T < +c, and define the set

(4) Y(T) {y(., T; .u): .u C0(0,) C0(0, c)}.

When we say that (1)-(3) is controllable, we mean that Y(T) is a dense subspace of
Lz(0, 1), cf. [4, 6].

Equation (1) is of pseudo-parabolic type. These equations arise in areas such as
fluid flow [13], heat transfer [2], and the diffusion of radiation [7]. Roughly speaking,
pseudo-parabolic equations account for higher order correction in the model than do
parabolic equations. The study of pseudo-parabolic equations and their relation to
parabolic equations was begun in [3i, [12], [14]. We refer to [1] for an extensive
bibliography concerning equations of this type.

Control problems governed by pseudo-parabolic equations were first studied in
[15], [16]. In this work, however, attention was restricted to control distributed over the
entire space time cylinder. Boundary control for pseudo-parabolic equations is treated
here for the first time. The contribution of this study is that it establishes controllability

* Received by the editors July 10, 1979, and in revised form November 25, 1979. This research was
supported in part by National Science Foundation Grant MCS-7902037.

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069.
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properties for an important class of equations and that it compares these results to those
better known results for parabolic equations.

In 2 we prove the controllability of (1)-(3). In 3 .we give an example with
(0, +co) replacing (0, 1) and with (3) replaced by

(3)’ y(0, t)= y0(t).

In this case (1), (2), and (3)’ are shown not to be controllable.

2. The controllability result’ We prove that Y(T) is dense in L2(0, 1) where Uo and
u are allowed to vary in Co(0, ). Although this result is the same as in the parabolic
case, cf. [4], [6], it is for different reasons. The difference arises from the uniqueness and
support properties of the solutions of these equations [3], [10], and enables us in 3 to
construct an example of a pseudo-parabolic problem that is not controllable.

THEOREM 1. Problem (1)-(3) is controllable.
Proof. To show that Y(T) is dense in L2(G), we let (. be an element in L2(G) with

the property

(5) (so( ), y(., T; .u))0 0,

for all .u s Co(0, o) x Co(0, oo). We show that equation (5) implies : 0 in Lz(G), cf. [6].
To this end we introduce the following adjoint problem,

(6)

(7)

(8)

-q,(x,t)+qxtx(x,t)-qxx(x,t)=O, in(0, 1)(-oo, T],

q(x, T)= r/(x), in (0, 1),

q(0, t)= q(1, t)= 0, in (-oo, T],

where is the solution to the problem

(9)
r(x)- rxx(x) :(x), in (0, 1),

n(0)= n()=0.

Consider the integral

(10)
T

IO 0 q(x, t)[yt(x, t)- yxtx(x, t)- yxx(X, t)]dxdt O,

and integrate to obtain

(11)

[q(x, T)y.(x, T)]-[q,(x, T)y(x, T)]

+Io [q(x, r)]y(x, r) aX-lo q(x, O)[y(x, O) y,,,, (x, O)]dx

T

-I0 {[y(x, tl(q(x, tl-qt(x, tl)]-[y(x, tl(q(x, t)-qt(x, t))]} dt

T+o Io [-qt(x’ t)+qxtx(x’ t)-qxx(x’ t)]y(x’ t) dx dt=O"
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By using equations (1)-(3), (5), and (6)-(8) in equation (11), we have

-{qx(1, T)ul(T)-qx(O, T)uo(T)}
T

+ | u(t)(q(1, t)-q,(1, t)) dt
Jo

(12) T

+ o Uo(t)(qx(O, t)-qt(O, t)) dt O.

Since u0 and u are arbitrary continuous functions on [0, T], we deduce that

(13)
q,(0, t)- qxt(0, t) 0 a.e. in [0, T],

qx(O, T) O,

and

(14)
q (1, t) q,(1, t) 0 a.e. in [0, T],

q,(1, T) 0.

In fact, equality holds for all in [0, T] due to the smoothness properties of solutions of
pseudo-parabolic equations [11], [12]. Equations (13) and (14) now imply that

(15) q,(0, t) qx(1, t) 0, for all [0, T].

At this point for the parabolic case, we are done by the unique continuation
property for the solution of parabolic equations [5], [8]. In this case, however, there is
no such property [ 10]. This is due to the factthat the pseudo-parabolic equation has tWO
families of characteristic curves,, x constant and constant, and here the auxiliary
data is given along the curve x constant. Indeed, it is possible for solutions of pseudo-
parabolic equations to have support contained in x > x0, [10]. Uniqueness for our
problem, however, results from the property that the solution of a pseudo-parabolic
equation cannot have compact support in the space variable [10].

We now finish the proof, cf. [10]. For ease we change variables by setting r T-
to obtain

(6)’

(7)’

(8)’

(5)’

q,(x, r)-qx,,(x, r)-q,x(X, r)=0, in (0, 1) x[0, c);

q(x, 0)= r/(x), in (0, 1);

q(0, r)= q(1, r)= 0, in [0, c);

qx(O,r)=O, in [0, T].

Now the operator -d2/dx2 with domain H(0, 1)f’)H2(0, 1) has eigenvalues
{n2zr2}7=x with eigenfunctions {sin nrx}= 1. The solution of (6)’-(8)’ is given by

(16) q (x, z) Y qne-" sin ,rx,
n=l

where /xn n27r2/(1+ n2.rr2) and r/(x) = q, sin nrx. Furthermore, since
H(0, 1)f-)H2(0, 1), it is clear that

qx(X, z) Y’. n’a’q,, e-" cos nTrx
n=l

is in L2(0, 1) for each z [0, ) and is analytic for - -> 0 and x [0, 1]. Thus, we see that,
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in particular,

qx (0, r) nTrq e
n=l

is an analytic function of r for r _-> 0. Condition (15)’ then gives that

(17) Y nTrq, e-""" O,
n=l

in fact for all r in [0, +).
By taking the Laplace transform of (17), we have

nq,(s+g, =0,

for s > 0. Defining the function

[(z) 2 nq.(z + .)-,
n=l

we observe that [ is a meromorphic function with poles at z -g, and with the property
that f(z) 0 for z real and positive. But this implies that [(z) 0, with zero residues at
the poles. Thus, nq, 0, for n 1 so that q, 0. Accordingly, q(x, t) 0 in (0, 1) x
(-, T), and this implies that =0. Therefore, Y(T) is dense in L2(0, 1).

Remark 2. In the proof above, the condition dq/dx 0 is used only at one
boundary. Thus, if in (3) we control only one boundary, say y(0, t)= Uo(t), and fix
y(1, t)= 0, then the problem (1)-(3) remains controllable.

Remark 3. If (3) is replaced by Neumann controls

(3)" yx(0, t)= Uo(t) and yx(1, t)= u(t) in (0, +),

a similar proof establishes controllability. Obviously combinations are possible.
Remark 4. A similar proof holds with -dZ/dx2 replaced by operators of the form

-(d/dx)(m(x) d/dx) + (x), with re(x) c > 0. Generalization to higher dimensions
R ", by using generalized Fourier series, in which (0, 1) is replaced by an open bounded
domain G with a sufficiently smooth bounda and-dZ/dx is replaced by a uniformly
strongly elliptic operator is also possible.

3. An example. In this section we give an example to show that the pseudo-
parabolic equation is not controllable if the interval (0, 1) used in (1)-(3) is replaced by
the semi-infinite interval (0, +). Here the condition (3) is actually replaced by

(3)’ y(0, t)= Uo(t), and y(x, t) 0 as x ,
for each (0, +), see [9]. We again consider Y(T) in this case and seek to determine
whether it is dense in L(0, +).

Here we introduce the problem

-qt(x, t)+qx,x(x, t)-qx(x, t)=0, in (0, +o) (-o, T];

(18) q(x, T)= r/(x), in (0,+);

q(O, t)= qx(O, t)= 0, in (-o, T].

The function r/is given by

(19) r(x)= e h() e ed- e h() e
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where h is chosen to have the properties

(20)

Note that /is the solution of

h C (-eo,
h(x)-0, forx<landx>2,
2

h(x)e-X dx O.

-n=(x)+n(x)= h(x) in (-, ),

that satisfies /(x)= 0, for x-<_ 1 and x _-> 2. Furthermore, we have that ,Ix(X)= 0, for
x <-_ 1 and x >_-2. As was done previously we multiply (1) by q and integrate. Using (1),
(2), (3)’, and (18), we obtain the following equation.

0-Jo [q(x, r)-qxx(X, T)]y(x, T)dx

T

+ Jo Jo [-qt(x, t)+qtx(X, t)-qx(X, t)]y(x, t)dx dt

rn {qx(X, T)y(x, T)-q(x, T)y(x,(21) + T)

T

Jo [q,(x, t)-q(x, t)]yx(X, t) dt

,T

o

Since h and r are infinitely differentiable with compact support, the solution of the
pseudo-parabolic equation and its derivatives are rapidly decreasing functions [9]. Thus,
the limit is zero, and we have

(22) Jo h(x)y(x, T; u) dx O,

lor all u, in fact, in L(0, T). Since h is nonzero, Y(T) is not dense in L(0,
Remark 5. The motivation for the choice of h comes from the representation of

the solution of a pseudo-parabolic equation by means of an integral that involves a
Riemann function [3]. This representation implies that if support of h (x) is contained in
x > x0 then support of q(x, t) is contained in x > x0 [10]. The growth of q(x, t) comes
from the fact that if r(x) is rapidly decreasing then q is rapidly decreasing [9].
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STABILITY ANALYSIS OF CONTINUOUS-TIME ADAPTIVE CONTROL
SYSTEMS*

BO EGARDTf

Abstract. The stability properties of a fairly general continuous-time adaptive control scheme are
analyzed. Sufficient conditions for L-stability in the presence of disturbances are given. The stability results
are used to prove convergence of the process outputs in the disturbance-free case, without requiring any a
priori stability assumptions.

1. Introduction. Methods for on-line tuning of controllers when the plant is
unknown have been frequently discussed during the recent years. Model reference
adaptive systems (MRAS) for continuous-time control have focused much attention.
See, e.g., the surveys by Landau [13] and Narendra and Valavani [18]. The close
connections between this approach and the self-tuning regulator (STR) philosophy
have been demonstrated in, e.g., Ljung and Landau [15] and Egardt [5], [7].

The MRAS have been analyzed extensively from different points of view, e.g.,
convergence, stability and noise rejection properties. In particular, the stability prob-
lem has been discussed by many authors since Monopoli’s important paper appeared in
1974. See, e.g., Feuer and Morse [9], Narendra and Valavani [20], Feuer et al. 11], and
Egardt [6], [8]. Not only is the stability as such important, but a stability condition has
also been imposed in most studies of convergence. It seems that the only rigorous
convergence proofs without the stability requirement are the ones by Feuer and Morse
[9] and Morse [17], treating the disturbance-free case, and Egardt [6] on which this
paper is based.

The purpose of the present paper is to give some stability results for a class of
continuous-time adaptive schemes in the presence of disturbances. The algorithm
considered is based on the STR philosophy, i.e., a separation between identification and
control. Slightly modified versions of several MRAS can be treated as special cases of
the general scheme. See Egardt [7]. The main result (Theorem 1) states that the
closed-loop signals remain bounded under some reasonable conditions. The most
important one--boundedness of parameter estimates--can be omitted if the algorithm
is slightly modified. When no disturbances affect the plant, the stability result can be
used to prove convergence of the output error to zero. This result thus holds without a
priori requiring the closed loop to be stable.
The adaptive controller considered is based on a design scheme for known plants.

This scheme is briefly described in 2, and 3 then gives the formulation of the adaptive
controller. The stability results are presented in 4 and 5 gives some conclusions.

2. Design scheme for known plants. The adaptive scheme defined in the next
section is based on a design method for known systems. A brief description of this
method is given below. For more details, one is referred to ,str6m 1] and Egardt [5],
[7].

Problem ]’ormulation. The plant is assumed to satisfy the differential equation

boB(p) bo(p" + b,p"-1 +" + b,,)
(1) y(t)=

A(p)
u(t) ._, u(t),

p +alp +...+a
where p denotes the differential operator.

* Received by the editors May 3, 1979, and in revised form December 27, 1979.
t Department of Automatic Control, Lund Institute of Technology, Box 725, S-220 07 Lund 7, Sweden.
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Remark. It is assumed that there is no disturbance. This is a temporary assumption
which will be removed in the stability analysis.

The objective of the controller is to make the closed-loop transfer operator equal
to a reference model transfer operator, given by

lpm ...+bM u t)
Bt p u(t)

b

ffp,+_i S/" -a(2) yt (t) A(p) p" + a

Here y(t) is the desired output of the closed loop system and u(t) is the
command input. It is assumed that the polynomial A (p) is asymptotically stable. Note
that the pole excess (i.e., the difference between number of poles and number of zeros)
of the reference model is greater than or equal to the pole excess of the plant. This
assumption is made to avoid differentiators in the control law.

Design procedure. The design procedure consists of the following steps:
(i) Choose the asymptotically stable monic polynomial T(p),

T(p) p" + tip"1 +. + t,, nr n m 1.

(ii) Solve the equation

(3) T(p)A(p) A(p)R(p)+ S(p)

for the unique solutions R (p) and S(p), defined by

S(p) sop"- +. + s,-1

R (p) p"* + rap"1 +. + r,.

(iii) Use the control law

(4) boB(p)R(p)u(t)= T(p)BV(p)uV(t)-S(p)y(t).
Remark 1. Note that the B-polynomial is canceled, restricting the design method

to minimum phase systems.
Remark 2. The polynomial T(p) can be interpreted as the characteristic poly-

nomial of an observer.

3. An adaptive controller. The design procedure given in the preceding section
will serve as the starting point when defining an adaptive algorithm in this section. The
controller considered is fairly general and several proposed MRAS can be viewed as
special cases (see Egardt [7]).

First, introduce a disturbance in the problem formulation. Thus, let the plant be
governed by

(5) y(t) =boB(p) u(t) + v(t),
A(p)

where v(t) is a disturbance, which cannot be measured. The polynomials are defined as
in (1).

The following assumptions are made:
(A1) The number of poles n and zeros m are known and m n 1.
(A2) The parameter bo is nonzero and its sign is known. Without loss of generality

bo is assumed positive.
(A3) The plant is minimum phase, i.e., the zeros of the polynomial B(p) lie in the

open left half plane.
Remark. Notice that it is sufficient to know the pole excess and an upper bound on

the number of poles to write the differential equation in the form of (5) with known n
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and m. The minimum phase assumption is natural since the underlying design scheme
works or minimum phase systems only.

The desired closed-loop response is still given by (2) and the discrepancy between
true and desired response is given by

e(t)=y(t)--yM(t).
To obtain some flexibility, a filtered version of the output error e(t) will be considered.
Thus, define the filtered error

(6) er(t) =Q(p)-’’’ Q(P)
p(p) et,)=

PI(P)P2(p)

where

[y(t)- yM(t)],

O(p) p,+,-I + qlpn+n--2 +... + qn+nr--1,

PI(P) pn-m-1 + p11pn-m-2 +... +P(n-m-1),

P2(P) p,+,T +p2p,,+,T- +... + P2(,+n-),

are all asymptotically stable polynomials.
The algorithm to be considered is an implicit algorithm, Astr6m et al. [3]. This

means that the controller parameters are estimated instead of the parameters of the
model (5). It is therefore necessary to have a model of the plant, which contains the
controller parameters. Use the equations (2), (3) and (5) to write el(t) as

O [bo..lR S TBM M ] OAR
ef(t)=TAM u(t)+y(t)-p u (t) +TApv(t)

O [. u(t) u(t) y(t) TB M ](7) =TA o- +bo(BR-P)-+ S p p u (t)

OAR+"aMp V t)

Let 0 be a vector containing the unknown parameters of the polynomials BR- P2
(degree m + nT- 1) and S/bo (degree n- 1) and the constant 1/b0 as the last element.
Note that the vector 0 contains the parameters of the controller, described in 2.
Furthermore, define the vector

(8) (pT(t) [p m+nT--1 1 pn-1 1 TBM ]p-. u(t),...,-flu(t), p-y(t),...,y(t), P
uM(t)

It is then possible to rewrite the expression (7) for the filtered error el(t) as

O [, u(t) ] OAR
e(t) Oo--ff-(+ boO%(t) +fAMp v(t)

(9)
a(t)

bo--+ boOT(t)+g(t).
Here 2 denotes the signal obtained by filtering x with O/TAM.

The model (9) provides the starting point for a class of implicit adaptive
algorithms. Note that bo and 0 are essentially the parameters of the controller described
in the preceding section. Using the idea of the self tuning controllers, the intention is to
estimate the parameters bo and 0 and then to use a control law, derived from the known
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parameter case (See 2). Different choices of estimation algorithm and control law are
of course possible. It is, however, necessary to be more specific for the analysis. The
following adaptive controller, using a stochastic approximation estimation scheme, will
be considered in this paper"

(10a)

-estimation"

P1 ’e(t)
(lOb) O(t) (t) r(t---’
(10c) r(t)- + I(t)t2,

(10d) e(t) et(t)-$f(t),

(10e)

-control’

6(t) =/o(t)(t2(t) + T(t)(t)).\ P

a(t) )(lOf) (t)

Remark 1. The estimation scheme is analogous to stochastic approximation
algorithms in discrete time. The denominator r(t) can also be given by

2:(t) =-Ar(t) + Iff(t) + c, A>O,

but this generalization will not be considered here. Note that when the pole excess is
equal to one, PI(p) is a constant and (10a, f) imply that bo(t) 0. In this case it is thus not
necessary to estimate bo. It also follows from (10d, e) that e(t) ef(t).

Remark 2. The control law (10f) is not the same as the commonly used one in
MRAS, which is given by

u(t) _r(t)Pl(p)q(t).

The control laws are identical if if(t) is constant. Both should be considered as
differentiator-free approximations of the control law

a t.___) T Off t),
P

which sets the estimate of the filtered error equal to zero and contains differentiators if
P1 is not a constant. Note that the control law (10f) can be written in terms of u as

U(t) = TAMpI[\pI(p
Further comments on the choice of control law are given in Egardt [6], [8].

Remark 3. The polynomials Q and P give the flexibility to cover several earlier
proposed MRAS as special cases (see Egardt [7]). It should also be noted that the
usually required positive real condition is not imposed here. The reason is that the
filtering by the transfer function QTAt above eliminates this condition (see Egardt
[7] for details). It should, however, be noted that this filtering makes the behavior in
tracking and regulation identical. This is discussed in Landau [14].
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4. Stability analysis. Different routes can be taken when investigating stability
properties. The most straightforward one is probably to analyze local properties only.
This is done in, e.g., Feuer and Morse [10].

Global stability is much more difficult to analyze. The standard method--to find a
Lyapunov function--has been used by, e.g., Feuer and Morse [9] to design a globally
stable MRAS. The scheme is, however, complicated. Morse ,[ 17] gives a stability proof
for the deterministic case with a somewhat more involved analysis.

The separation between identification and control suggests an alternative
approach to the stability analysis. I the parameter estimates cause the closed-loop
system to be unstable, the input and output signals increase. The estimates will then
improve and a stabilizing feedback is again achieved.

There are some shortcomings of the argument given above. It takes some time for
the estimates to become good. The argument is thus not valid i the signals increase very
rapidly or if the parameter adjustment is very slow. The latter situation is avoided by
assuming that the gain in the estimation algorithm is nondecreasing, i.e., A 0. The
possibility that the signals might increase arbitrarily fast is excluded by ensuring
bounded parameter estimates. It is shown in Egardt [6], [8] that it is really necessary to
introduce this or some other, similar assumption.

With these extra assumptions, it is possible to make a rigorous proof of stability
using the ideas above. Here uniform boundedness of the closed-loop signals will be
considered. It is then natural to assume that the command signal uM and the dis-
turbance v are bounded. It is convenient to make the following definition.

Definition. The closed-loop system is said to be L-stable if uniformly bounded
command (uM) and disturbance (v) signals give uniformly bounded input (u) and
output (y) signals.

In addition to the assumptions A1-A3, introduced in 3, the following assumption
will be needed.

(A4) There exists a solution to the differential equations describing the closed
-loop system such that qS(t) is continuous.

This assumption is of a technical nature. It does not seem to be very restrictive. For
example, it can easily be shown that the closed-loop system can be written as a
differential equation,

(t) fix(t), t],

where f C if the noise v(t) is continuous. The existence and continuity of the solution
then follows from well-known theorems for ordinary differential equations and A4 is
satisfied. We will not, however, go into these details.

The proof of the main result relies on some lemmas to be stated next. In these
Lemmas, A1-A4 are assumed to be satisfied and it is also assumed that uM and v are
uniformly bounded. First, define

(11)
b’o(t) =/o(t) bo,

(t)=(t)-O.

LEMMA 1. Let b’o(t) and O(t) be defined by (11). Then the following holds for the
algorithm (10)"

d (f92o(t)+bo7.(t)(t))<_ e2(t)
(12) d-- r(t---
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Proof. The equations (10a) and (10b) can quivalently be written in terms of/o and. Then

bo(t) e(t_______) {5(t)b’o(t)o(t) + 7"(t)(t))r(t) \ P1

T(t)(t T(t)(t e(t
r(t)’

which from (9) and (10d, e) implies

d "2 e(t) (a(t) (t))+(bo(t)+ boV(t)(t))=2[o(t)kw+ v(t)ff boV(t)(t)]

r( k

=- r(t-k5(t)
The next lemma gives a useful expression for the evolution of (t).
La 2. e vector (t) satisfies the equation

(13) q3(t) F(t) + get(t)+ d/(t),

where F is a constant matrix with its eigenvalues in the left hal]plane, g is a constant
column vector, and O(t) is a uniformly bounded vector sequence.

Proof. Denote the kth element in qS(t) by k(t). Using (8), (5), and (6), we have for
0_-<k-<m +nT-- 1:

k kp p__. A
q, +.7"- (t) - a(t)

P boB
(y(t)- 5(t))

(14)
pA

-boTAtB el(t)+
p

boPS
((t) 5(t))

pkA
boTAMB el(t)+ W,+,.-k(t),

where W,+,k(t) is bounded. Analogously, for 0 _-< k _-< n- 1,

pk pkB PkM(t)q.+..-k(t)

(15)
pB
TAB el(t) + w,+,,_(t).

Now use (3) to get

p + A 1
4(t) boTAUB el(t)+ (t)= -oef(t)+ P

+,,A TAB
boTAMB

1 A(pm+"-BR)-BS
b-o el(t) + boTAMB el(t) + l (t).

ef(t)+l(t)
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Since Wl(t) is bounded, it is easy to see from (14) and (15) that the two last terms can be
written as a linear combination of qSk’S and bounded signals. It is trivial to show that
,,/nT/l (t) can also be written in this way. Finally, qS,,/n-/,/l (t) satisfies the equation

q,,,+..+.+ (t)= -qS,,,+..+.+ (t)-
(p + 1)TBM -Mu (t),P

where the last term is bounded. Summarizing, q3(t) satisfies the equation

(t) F(t) + get(t)+ /(t),

for some constant matrix F, constant vector g, and bounded vector (t). It follows from
(14) and (15) that the matrix F has the strictly stable characteristic polynomial
TAMB(p + 1). 1

The next lemma shows that Iq3 (t) cannot increase arbitrarily fast if the estimates are
assumed to be bounded.

LEMMA 3. Assume that the parameter estimates are uniformly bounded. Then there
exist constants K1 and K2 so that

(16) [(t)le,(’-s(l(s)l+Kz) Vt>__s.

Proof. Using (9), (10f), and (13), we get

[ ( PI(0) )T AR ](t) F(t)+ g bo O-ni(p) O(t) q3 +--ff-t3(t) + p(t)

=A(t)(t)+b(t),

where A(t) is bounded because (t) is bounded and b(t) is bounded because if(t) and
AR/PO(t) are. Integrating this differential equation and applying the Groenwall-
Bellman lemma gives (16). U

From Lemma 3 the following estimate of r(t) can be derived.
LEMMA 4. Assume that the parameter estimates are uniformly bounded. Then,

arbitrary T >= O,

(17) t(t) T(t)(t)+rl(t), t>--_ T,

where the vector and the scalar rl satisfy

(18) I:(t)l _-< K4 e -cT

(1) In(t)l<-Ks e’ e-"-’l(s) ds,
-T

or some c > 0 and K4, Ks independent o T.
Pro@ It is seen from (10e, f, b) that

,(t) f(t)(5(t)
Pl r(t)(t)) :/(t)(r(t) P,(0)p1 T(t)] (t)

go(t)[G(p)V(t)](t) o(t)(G(p)T(t)e(t))r(t)
(t),

where

G(p)
(P(p)-P,(O))]P

PI(P)
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is a strictly proper, asymptotically stable transfer operator and/o(t) is bounded. If the
output of the filter G(p) is expressed as a convolution integral which is split into two
parts, we thus get

f(t) T(t)(t)+(t),
where

t-T

[rl(t)l<=g3l((t)l I e-Ct-s)lff(s)l" I(s)l
ds,

,-r r(s)

The two estimates (18) and (19) will be derived separately. First use the boundedness of
the estimates and the noise to conclude from (9) and (10d, e, f) that for some K and Ko,

Hence,
I (t)l g Iq (t)l + go.

e-CT(1 + f e
-c(t-T-s)lff(s le(s)l

dsIsc(t) <g3 \ Jo
1 [(s)l(gl(s)l+

<=K3 e-cr 1 +- sup
c _<_,- , + [,(s)

<=K4 e-r

The second term is estimated using Lemma 3"

t-r r(s)

,-r + I(s) I(s)l ds

t-T

Combining Lemmas 2 and 4 now gives an expression for if(t) in terms of e(t).
LZMMA 5. Assume that the parameter estimates are uniformly bounded. en if(t)

satisfies

(20) I(t)lgke-(’-’[(s)l+(t-s) le()], Vts+ 1,

where K and T are positive constants and c is defined in Lemma 4.

Pro@ It follows directly from Lemmas 2 and 4 that

4(t) f(t)(t) + g(e(t) + n(t)) + (t),

where F(t) F + gr(t) can be made exponentially stable by choosing T appropriately.
If the transition matrix of F(t) is denoted (t, s), we have

lie(t, s)ll < K e-rv(t-s, >- s,

for some positive K and rF. There is no loss of generality in assuming rF C, with c in



Lemma 4 (take the largest). Thus, using Lemma 4, we have for t-> s + 1:

<:K(e-C(t-s)l(s)l-t- I
+ e-c(’- Ks er e e(r)l d d

--Z

e-C(t-s)le(s)l+(t-s) e-C(t-le() d
--T

where the constant K is different in the different expressions. Thus (20) follows.
Main results. Lemmas 1 and 5 are the main ingredients when proving the main

result, given by the following theorem.
Tzo 1. Consider the plant (5) control&d by the algorithm (10). Assume that

A1-A4 are satised and that the parameter estimates are uni[ormly bounded. en the
closed-loop system is L-smble.

Proofi The proof is given in the Appendix.
Theorem 1 can be specialized in different ways. One motive for the stability

investigations were the problems with MRAS. In that case noise is generally not
included in the problem formulation and Theorem 1 can be specialized to give the
solution.
Tzo 2. Consider the plant (5) with no noise, i.e., v(t)= O, controlled by the

algorithm (10). Assume that A1-A4 are satised. en the closed-loop system is
L-smble.

Proofi The boundedness of the parameter estimates follows immediately from
Lemma 1, and Theorem 1 can be applied.

Theorem 2 gives a fairly satisfactory stability result for the deterministic case. A
natural question is whether it is possible to extend the result in Theorem 2 to the case of
disturbances which are not zero. The assumption of bounded estimates in Theorem 1 is,
however, difficult to verify a priori. Two possibilities to modify the algorithm to ensure
bounded estimates are presented below.
TOM 3. Consider the plant (5) conolled by the algorithm (1O) modified in the

[ollowing way:

(21) b(t) 0} if [e(t)l <0(t)= 0

where Kv is a positive constant, satisfying

(22) sp [e(t) K.
Assume that A1-A4 are satisfied. en the closed-loop system is L-stable.

Proof. Two problems have to be considered in order to apply Theorem 1. It must be
shown that the estimates are bounded and the consequences on Theorem 1 of the
modification (21) must be examined. First, Lemma 1 gives

d -2 e2(t) 1 ( )2(23) (bo(t)+bor(t)(t))N r(t-k O(t)
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if

le(t)l >- Kv >-_ -A-(t) I.
On the other hand, it follows from (21) that

d((t) + boT(t)(t)) <- 0
dt

if le(t)l < go.
The parameter estimates are thus bounded.
For the second problem, some minor changes are needed in the proof of Theorem

1. See Egardt [6], [8] for details.
The conclusion is that Theorem 1 can be applied and the theorem is proven. [3
Remark. The modification (21) introduces a discontinuity in the differential

equations. In order to guarantee existence and continuity of the solutions, this
modification can be made smoother. This technicality will be left with these remarks.

It is true that the modification of the algorithm involves an unknown quantity,
namely the upper bound on the disturbance Ko. However, if the noise level is low, the
modification could be of practical value anyhow. Similar modifications are well-known
in discrete time adaptive control, see Egardt [6], [8].

Another possibility to obtain bounded estimates is to project them into a bounded
area. This idea is exploited in the following theorem.

THEOREM 4. Consider the plant (5) controlled by the algorithm (10), modified in the
]ollowing way:

[a(t) T(t)(t)_] e(t)r(t) r(t.)3" o(t)
/ o(t)\L-+ if (t)

/
]
> C,

(t) (t)
e(t) 3" (t)
r(t) r(t)

where 3’ is a positive constant and the constant C satisfies

/max (1, bo)I (b0o) I,C>2_’i(a, b0).
where bo and 0 are the true plantparameters. Assume that A1-A4 are satisfied. Then the
closed-loop system is L-stable.

The proof of this theorem essentially consists of a verification that Lemma 1 still
holds. The proof is found in Egardt [6], [8] and is omitted here.

Remark. The same comment on the discontinuity of the differential equations as
above can be made here.

Stability conditions are crucial in the convergence analysis of adaptive schemes. For
example, convergence of the output error in the absence of noise could not readily be
solved except for the case with pole excess equal to one or two. Compare with the
discussion in the introduction.

Theorem 2 proves the boundedness of the closed-loop signals in the disturbance-
free case. It thus follows that the output error converges to zero.

THEOREM 5. Consider the plant (5) with no noise, i.e., v(t)= O, controlled by the
algorithm (10). Assume that A1-A4 are satisfied and that the command input u1 (t) is
uniformly bounded. Then the output error converges to zero, i.e.,

y(t)- y(t) 0, t-.
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Proof. Lemma 1 gives (v(t)= O)

r(t) dt < o.

But [qS(t)[ is bounded from Theorem 2 and r(t) is therefore also bounded. Hence,

(24)

This does not, however, imply that e(t) tends to zero. A bound on the derivative of e(t)
is necessary lor e(t) to converge to zero. It follows from (9) and (10d, e, f) that

T

e(t)=-o(t) (t)
p(p)

Thus, e(t) is bounded, because the parameter estimates and I(t)l are bounded. Define

P(0)
H(p) 1-,

and differentiate the expression or e(t) to get

e(t) -[o(t)(H(p)(t))(t) + o(t)(H(p)(t))(t)
+o(t)(H(p)(t))(t) + bodr(t)(t) + bor(t)(t)]

e(t)-[(H(p)(t))(t)(H(p)(t))(t)
]] (t)+ bo(t)(H(p)(t))(t)

e(t) (t)]+bor(t)(t)+bor(t)
The parameter estimates and I(t)l are bounded. Also, e(t) is bounded as was seen
above. Furthermore, H(p) is asymptotically stable and r(t) is bounded from below by
Finally (t)l is bounded from the proof of Lemma 3. It is thus possible to conclude that
i (t) is bounded. Hence,

[e(t)] 2e(t)(t)
dt

is bounded. It then follows from (24) that

e(t)O, tm.

In the same way as in Lemma 4, we have

/(t) eo(t)(G(p)ffr(t)e(t))r(t)
(t),

where G(p) is a strictly proper, asymptotically stable transfer operator. Since [o(t)l and
[(t)l are bounded and r(t) a, t, it thus follows that

(t0, t.

is implies that

e(t)
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Hence

P(P)
y(t)-y(t) e(t)

O(p) er(t) O, o,

because Q(p) is asymptotically stable and P(p)/Q(p) is proper.
The above result proves the convergence of the output error to zero in the

disturbance-free case for a class of adaptive algorithms. Apart from the result by Feuer
and Morse [9] this seems to be the first rigorous proof of convergence without a priori
assuming closed-loop stability. A similar result has been given by Morse [17].

5. Conelusions. The paper has presented some stability theorems on a fairly
general adaptive algorithm in continuous time. It is shown in Egardt [5], [7] that slightly
modified MRAS algorithms by Monopoli [16], Narendra and Valavani [ 19], B6n6jean
[4], and Feuer and Morse [9] can be treated as special cases of the algorithm considered
here.

Theorems 2 and 5 prove the convergence of the plant output to the desired output
in the disturbance-free case. Unlike most earlier convergence studies, the result does
not require any assumption of closed-loop stability.

In the case with disturbances it has been pointed out that some additional
assumption is needed to guarantee global stability. The approach taken here is to
assume that the parameter estimates are bounded and two different means to ensure
this were considered in Theorems 3 and 4. Another possibility is to put more conditions
on the noise and/or command signal. It does not seem unreasonable that some kind of
persistently exciting condition (see, e.g.,/str6m and Bohlin [2], Kudva and Narendra
12]) might be sufficient to ensure the boundedness of the parameter estimates. This is
however still an open problem. It should finally be pointed out that the case with
decreasing gains (h -0) in the estimation algorithm has not been treated at all.

Some comments should also be made on the structure of the estimation scheme. A
model structure which is bilinear in the unknown parameters bo and 0 is used. It has
been pointed out in Egardt [6], [8] that it is not straightforward to extend the stability
results to models which are linear in the unknown parameters. This is an interesting
observation which perhaps deserves further investigation.

Finally note that the results are valid for minimum phase systems only. This is a
consequence of the choice of design method. It is naturally of interest to investigate the
properties of algorithms which are capable of controlling nonminimum phase systems.
It seems that such analysis has not been carried out so far.

Aeknowleflgments. The material presented here is part of a Ph.D. thesis, Egardt [6].
I would like to thank my adviser Professor K. J. Astr6m who proposed the problem and
provided stimulating support.

Appenflix---proot of theorem 1. A single realization will be considered throughout
the proof. The boundedness of Iq5 (t)[ will be proved by contradiction. Thus, assume that

sup I,(t)l > NM,
t_>0

for N and M arbitrarily large. This assumption will be contradicted for some N and M.
Assuming the unboundedness, tNu and t are well-defined if N > 1 and M> [q3(0)[:

t min {t[ [q5 (t)[ NM}

t=max tt<t;l(t)l=M;l(s)l<MVse max O,t--ln
C
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Here the continuity of IqS(t)l is used. The constant c is defined in Lemma 4. A typical
realization of Iq(t)l in the time interval [tM, tr4] is shown in Fig. A.1.

>cM In N

.; <cM
n----- tM INM

FIG. A.1. The behavior of Iff(t)l in the interval [tM, trM].

The contradiction will follow from thorough analysis of the algorithm in the
interval Its, tv]. An outline of the proof is as follows. In Step 1 an increasing sequence
{Iq3(ri)l}il in the interval Its, tv] is defined and a lower bound on N is given. Step 2
derives an upper bound onv ’1. This is used in Step 3 to derive an upper bound onN
which is in disagreement with the result in Step 1 and the boundedness of I,(t)l is
thereby proved. The boundedness of u(t) and y(t) is then easily concluded in the last
step of the proof.

Before proceeding to the first step of the proof, just note that the following
inequality follows from the definition of t and t and Lemma 3:

M
(A.1) min [(s)[>-K2.

tM tNM NK]/

This follows from simple calculations which are omitted here.
Step 1. Characterization of the sequence {(ri)}. The sequence {ri}l is defined

recursively from

ri+l inf {tli + n < tsM, I(t)l sup
tMst

where n is chosen to satisfy the conditions-

(A.2) (i) n max (T, 1)

(ii) Ke-".
Here T, c., and K are defined in Lemma 5.

LetM satisfy the condition M K2, with K2 as in Lemma 3. It should be noted that
N and M can be chosen arbitrarily. A number of conditions of the type above will
appear in the proof. They are however easy to fulfill by choosing N and M appro-
priately. It is, however, important that the constants appearing in the conditions do not
depend on the choice of intervals [tM, tNM], i.e., on N and M themselves. This fact will
not be commented upon in the sequel.
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If M is chosen to fulfill the condition above, Lemma 3 gives.rise to an inequality in
the following way. Separate between two cases:

(i) ri/l ri + n; then

(ii) ri+l > r + n,; the definition of {ri} then implies

]if(r,+n)l< sup Iff(s)l

and the continuity gives

](+1)1 sup l(s)l2 el(,)I.
riSi+n

The same inequality thus holds in both cases. Using this together with the fact that

INM N
which follows from the definition of {r} and the continuity, the following is obtained"

NM I(t)l 2 el()l... 2 el()
2 er"M,

which implies

(.3) N <_-
In N

In 2 + Kln"
This is the lower bound on N sought for in Step 1.

Step 2. Derivation of an upper bound on fly.- ’1. Define intervals

Ii [7"i--1, "fi+l], 2, 4,. ., 2Nt,

where the number of intervals Nx satisfies

!(N-1), N odd,
(A.4) N [(N,-2), N, even.

Consider an interval I and define the sequence {Tj}v_-’o inside the interval through

T "/’i-1,

T =min {tit >- Tj-I +liT, Iq3(t)l-->M},

where N7- satisfies

(A.6) Ti+I- nT <= Tlv <- 7"i+1.

The left inequality follows because [(’ri+l)l->M. The constant nr is defined as

2
(A.7) nT- In N.

C

Let AT be the maximal distance between any T and T+1. It follows from the definition
of tM (cf. Fig. A.1) and (A.5) that

1 (c2_ )(A.8) AT _-< nr +- In N + In N K In N,
C
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where Ka is independent of N.
Define intervals

j.ii [Z-1, Z}+l ],

where the number of intervals Nj satisfies

(Nr- 1),
(A.9) N= Nr,

j= 1, 2,’ ,2N-1,

Nr odd,

Nr even.

The behavior of the algorithm in an interval J will now be examined. Distinguish
between two cases.

The case NiT=< 2. From (A.9) it is seen that there is at least one interval J in the
interval li. Suppose that

d Ti "1(A.10) f r,,
[e(s)l ds < KMAT

This will lead to a contradiction. First note that from (A.7)

1
K e-"T KN- <-,

for large N. It is thus possible to use Lemma 5 to obtain

T++ )I N 2N +K aT [e(s)l ds
Tj T

N+K aT[ le(s)l ds <M,

where the fact that nT T (for large N) and the assumption (A.10) have been used in
the last two steps.

We have thus arrived at a contradiction and the conclusion is that

(A.11) I(s)lds>

The inequality holds for every interval . Define

(A.12) V(t) (t)+ bor(t)(t).
Lemma 1 gives, for some Ko,

Ti-I ds +- ds + ds,, r(s) , r(s)

since the disturbance is bounded, Note that, for Ti_ =s T+I,
r(s) + [e(s)l 2(NM)2,

if N and M are chosen suciently large. Now choose

(A.13) M =Np =XKt/c+2.
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It then follows from (A.1) that, for large N,

(NM )2N2(p-K1/C)1/2N4.(A,14) r(s) >-Iq3(s)l= => K/C K: __-->-

Apply these two inequalities above to obtain
T/+I1 4 ATK2

V(TLI v( =- ea(s) ds +
N4-

Now, use Schwarz’ inequality to obtain for N sufficiently large"

v(i 1 1 [[r+,, ]2 4ATK2o
Ti+l)- V( I (S)I ds /T-x 2(NM)2 (Ti+ Ti_x .ITi_

-4 aT(NM rj-
I(s)l ds + .N

(A.15)
1 4 TK

i(Kar)a
c c2 AT

where cl and c2 are independent of N.
It follows from (A.8) that for large N

AT3 <=KN.
Inserting this inequality into (A. 15) and also using (A.8) gives

C c2Ka In NV(T+ )- V(Ti_ )N-NKaN+ N4
1 l" c In N’i

CO-<- -, N sufficiently large,

where Co is a constant, independent of N.
This inequality holds for every interval J}, i.e., N times, whence

v( NTZN,) V(To <= "-Co-,

But V is positive and also from the assumptions bounded, by/v say, so that

(A. 16) N Jv N3

CO

The case N <2. The inequality (A.16) is trivially satisfied also in this case,
because N< 2 implies Nj-0.i-

The conclusion is thus that (A.16) holds in every interval Ii provided N is chosen
large enough. From (A.6) and (A.9) it follows that

TN.- =nT+AT<=’ri+ T2N (’ri+l TNr)+( Tt2N) <: 2AT,
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which together with (A.16) gives

"t’i+l "ri-1 (Ti+I T2NJ)+( To 2 AT+T2N <= 2Nj A T

<-2AT 1+’ N <--AT.
CO CO

Summing for 2, 4,. ., 2NI gives

4/o
N3(A.17) r2N-l- rl -< AT. NI,

0

which concludes Step 2 of the proof.
Step 3. Derivation of an upper bound on 1V and the contradiction. Consider an

interval Ii defined in Step 2. Suppose that

f(A.18) le(s) as<
a-ri+l--2nr 2Kn

This assumption will lead to a contradiction in much the same way as in Step 2. From
Lemma 5 we have

Ti+l

"t’i

+Kn, [e(s) ds <

where the properties (A.2i, ii) of n, and the assumption (A.18) have been used.
We have thus arrived at a contradiction and the conclusion is that

(A.19) le (s)l ds
J,,+l-2n, 2Kn,

The inequality holds for every interval I. We have, for Ti_ S Ti+I,

r(s) c + IqS(s)l2 <= 2[qS(r,+)l2,

for N sufficiently large. Applying Lemma 1 in the same way as in Step 2 now gives a
result analogous with (A.15) for large N:

2K2v (ri+l ri_)
N4

ri+ Ti--1
--’--C3 -- C4 --4
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where c3 and c4 are independent of N and (A. 19) has been used in the second last step.
Summing the inequality for 2, 3, ., 2NI gives

T2Nr+ ’/’1V(T2NI+I V(q’l) -c3NI -b c4 N4
4I?i AT. Na. NI<= c3N_ -t-
Co N4

=-Nx(c3 C4 coN ]’

where (A.17) has been used. But V is positive and bounded by/ as in Step 2, so that

4/o ATToil /’

which by (A.4) and (A.8) implies

+2_< +2_-<_ -2=+2,
C3 C3/2 C34ig2vAT

C3-- C4 coN

for N sufficiently large. This result obviously violates the inequality (A.3) obtained in
Step 1 for N large enough. The existence of the sequence {1 (ri)l} for N arbitrarily large
is thus contradicted and the boundedness of [us(t)[ is proved.

Step 4. Boundedness of u and y. It remains to conclude boundedness of u(t) and
y(t) from the boundedness of I,(t)l. From (9) and (10f) it is clear that el(t)=
(Q/P)[y(t)- yM (t)] is bounded. But yM (t) is bounded and Q and P are asymptotically
stable polynomials of the same degree, which implies that y(t) is bounded.

The boundedness of u(t) is possible to establish from (10f), which can be written

a(t) (P(O) TPc-if- -\ Pi (t))(t),
or, using the definition of P2,

(A.20)
Pm+nr PzlP

nr--lt](t) t (t)"+ + +Pz + r) ---ff-

_(PI(O) (t))(t)\ Pi
Here all terms in the first bracket are components of q3(t) and it follows that
p"/"Ta(t)/P is bounded. Differentiating (A.20) 1, 2, , n rn 1 times gives recur-

sively boundedness of pm+"T+aa(t)/P,"" ,P"+"-I(t)/P. Notice that (t)/P1 is

possible to differentiate because P1 is of degree n m 1 and also that the derivatives of
qS(t) are bounded because of earlier steps in the recursion and boundedness of y (t) and
uM(t), cf. (8). Finally, boundedness of pn+na.(t)/P, follows by an additional differen-
tiation of (A.20) but then the boundedness of O(t), which follows from (10b, c, d) is also
used. As a result, the first n + nT derivatives of gt(t)/P (O/TAMp)u(t) have shown to
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be bounded. But the pole excess of O/TAMP is exactly n + nT- and O is asymptotically
stable. Hence boundedness of u(t) follows readily. The theorem is thus proven. [q
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OPTIMAL STOCHASTIC CONTROL WITH SPECIAL
INFORMATION PATTERNS*

NORBERT CHRISTOPEITS"

Abstract. This paper treats the problem of existence of optimal controls in stochastic systems when
observations can be taken only at certain discrete times. The technique applied is based on weak convergence
of probability measures and the Girsanov measure transformation method.

1. Introduction. This paper concerns the control of a system whose dynamics are
governed by the nonlinear stochastic differential equation

(1.1) dx=g(t,x)h(t,u)dt+cr(t,x)dw, 0<=t<=l,

with initial condition

(1.2) x (0) x0.

Here w is an r-dimensional standard Brownian motion, g, h, and r are nonanticipating
matrix valued functions, and the control u is a function whose value at time depends on
specified information about the history of x (.) previous to time t. Control is to be chosen
such as to minimize the expected cost

(1.3) J(x, u)= E/J k(t, x)l(t, u)dtl+E{m(x)}.
Existence results for this type of problem greatly involve the information pattern

available to the controller. The techniques based on the Girsanov measure trans-
formation method (cf. [2], [9]) seem to work only in the case of complete informztion
about the past.

In this paper, we consider information patterns which allow observations to be
taken only at finitely many observation times, including the effect of forgetting part of
the past information as the time goes on. In the model considered in 3, the space of
observable outcomes is divided into decision regions, and control action is taken
according to which decision region is actually hit. The results obtained are then used in
4 to approximate a larger class of admissible controls.

The techniques applied involve a method used by Kushner (cf. [12]), which is based
on weak convergence of probability measures, together with the Girsanov measure
transformation method in 4. The underlying concept of solution to (1.1), (1.2) is hence
that of weak solutions (cf. [14]).

Note that the system equation (1.1) allows for drifts of the form

fl(t, x) +f(t, u) + g(t, x)lTt(t, u),

by suitable choice of g and h. The same applies to (1.3) if we allow k and to be vector
valued. Since this offers no additional difficulty, we shall confine ourselves to the case of
scalar valued functions k and I.

2. Assumptions and formulation o| the problem. The following notations and
assumptions will be used throughout.
Ck space of Rk-valued continuous functions on [0, 1] with the sup norm topology.

* Received by the editors June 18, 1979, and in revised form January 8, 1980.
5" Institut fur konometrie und Operations Research, University of Bonn, D-53 Bonn, West Germany.
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,k (t-algebra on Ck induced by the continuous functions on [0, t], 0 <_- <- 1; i.e.,
is the (t-algebra generated by all sets of the form {s: s(s) F}, where 0 <- s -< t, F is
an arbitrary Borel set in Rk and denotes the generic element of Ck.
Let ql denote the compact metric space of control points, and 3ou the Borel

(t-fields on [0, 1] and q/, respectively.
(A1) g:[0, 1] Cr-Rrs is measurable with respect to (R)]. For each [0, 1],

the function g(t,. is continuous, c-measurable and bounded on bounded
Cr-sets uniformly in t.

(A2) h [0, 1] q/- [s is measurable with respect to (R) 0u and bounded. For
each [0, 1], the function h(t, .) is continuous.

(A3) k: [0, 1] C - and [0, 1] a// are nonnegative functions satisfying:
(A1) and (A2), respectively.

(A4) For each [0, 1], the extended velocity set

T’(t) {(h(t, u), l(t, u)): u 6

is compact and convex.
(A5) o- [0, 1] x C nonsingular r x r-matrices is measurable with respect to

2 (R). For each [0, 1], (t(t, is c-measurable. Let (t satisfy the Ito
conditions
(I1) for every N > 0 there exists a constant Ks such that

I(t(t, sc) (t(t, :’)[-<_ KN[I ’ll,,

for all t6 [0, 1] and all II:l[, I1’11 N (]l" II, sup norm on [0, t]);
(12) there is a constant K such that

I(t(t, sc)l <-K(1

for all [0, 1] and all e C.
Let (t-l(t, be bounded on bounded Cr-sets uniformly in t.

If (Bt) is a standard Brownian motion defined on some probability space (f, o, P)
then (I1) and (12) imply that the stochastic differential equation

(2.1) dx, (t(t, x) dB,, x(O) Xo,

has a unique strong solution. Let us fix an initial distribution F0 admitting finite second
moments. Then the solution of (2.1) with initial value distributed according to F0
defines a unique probability measure/x on C by

(2.2) (A)=e[x A],

(cf. [19]) as well as unique finite dimensional distributions

tx,l. t,(B) P[(x,,, xtN) e B],

0<tl_-<t2_-<’" _-< tv --< l, B Borel set in N, N= l, 2,"’.
(A6) Let the finite dimensional distributions of tt be absolutely continuous with

respect to the appropriate Lebesgue measure.
(A7) m" C is continuous and nonnegative
Let us now define what we shall understand by an admissible control. Suppose that

observations can only be taken at certain times 0 < tl < < tp 1, and that at each of
these times certain functionals of the state at the present and all past observation times
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can be observed. More precisely"
(A8) Let

0j" R r R kj, ] 1, , p,

be continuous functions (with positive integers k).
Then a function u" [0, 1 x I) a//defined on some probability space (I), , P) will

be called an admissible control if there exists a process x(t), 0 N N 1, on (, , P) with
continuous trajectories and x(0) having the prescribed distribution Fo, such that the
following conditions (i)-(iii) are satisfied.

(i) For each 1 N ] N p, 1 N N k, there exists a finite partition,-- a],i,1 a],i, ,
of the real axis, 1 if, together with functions

ui;,....., L [t, t+], 1 i i for all 1, , k,

(L[t, t+]=space of integrable functions on Its, t+] with values in )
taking on values in for almost all Its, t+], such that

u(t,)=u;,.....,,(t),
for Its, t+] and

i(x(h, ), x(ti, w))e (a.i.,,, a.i.,,+], i= 1,..., k.
(ii) There exists an r-dimensional standard Brownian motion (w(t), t), 0 1,

on (, , P) such that x(t) is nonanticipating with respect to () and the Ito
equation,

(2.3) x(t) x(O) + g(s, x)h(s, u(s)) ds + (s, x) dw(s),

holds with probability one for all 0 1.
The process x(t) will be called a solution of (2.3) corresponding to the control u.

Note that no uniqueness of the solution is required.
(iii) There exists a constant K such that, uniformly in 0 + A 6 1,

(a) E o [g(s, x)lZ ds K and

t+ 2

ot

(b) EJ0 IL(s, x)l4 ds K, where L ’.

An alternative formulation of (i) providing a better link to the commonly used
classes of controls is the following. There exists a measurable function u’[0, 1] xC

with the property that for each [t, t+), ] 1,..., p-1, u(t,.) is measurable
with respect to the -field generated by the C sets

{i((h),""", (t)) (a.i.,,, a.i.,,+], i= 1,..., ki},

and

u(t, o))=u(t, x(oo)).
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Note, however, that dj may differ from control to control. Hence dj cannot be
interpreted as the or-field containing the information available at time t. Actually, in
each time interval [tj, tj+l), (x(tl),. , x(t)) can be observed. A control action consists
in dividing the range space of into a finite number of decision regions and choosing a
deterministic control function for every region. As to the case where the decision
regions are fixed in advance, note the remark at the end of 3.

Denoting by the class of admissible controls, a rigorous formulation of the
control problem is the following"

minimize J(x, u)= E{ fo k(t, x)l(t, u(t)) dt} + E{m(x)}
(P)

in the class of admissible controls u and corresponding solutions x.

Note that by virtue of (A3) and (A6) ] inf {J(x, u)" u 4, x corresponding solution} >
-. Let us assume once and for all that is finite.

3. Existence of optimal controls. For an admissible control u with corresponding
solution x define functions

(3.1)

F(t) Io g(s, x)h(s, u(s)) ds,

H(t) h(s, u(s)) ds,

and

B(t) Io tr(s, x) dw(s),

L(t) l(s, u(s)) ds,

dP(t) (x(t), F(t), B(t), H(t), L(t)).

Then is a measurable process on fl with paths in S C X CrXs X C X C X C. It
induces on the Borel g-field on S a probability measure Q by

O(A) Po(A) P[p e A].

Denote by the class of all probability measures on S generated in this way with u
ranging in M. Then it follows from (iii) and the boundedness of h and that is tight (cf.
[3], [4]), hence every sequence in 9 contains a weakly convergent subsequence.

The following considerations will show that is weakly closed.
Start with a weakly convergent sequence n= (x n, Fn, B n, Hn, Ln) defined on

probability spaces (12n, :Tn, pn), i.e.,

On _> oO,
where Qn= p. and QO is some probability measure on S. Then, by a theorem of
Skorokhod (cf. 16]), there exist measurable processes pn (x’n F ,n In O,
1,..., all defined on the same probability space (1", #,/) ([0, 1], , Lebesgue
measure) such that

(3.2) /. Qn, n 0, 1,...,

and

(3.3) n _.> 0 /5_ a.e.,

in the topology of S. Since the u are of the form described in (i) (with indices n properly
affixed), define

an(t, 03) ui,,,...,,k,(t), for e [ti, tj+l)
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and

ii(;"(tl, o3),..., ;n(ti, a3)) i.i.,,, ., ai,,,,,+,], 1,. , ki.
Then it readily follows from (3.2) by arguments used in [12] and [4] that the t ",
n 1, 2,. ., are admissible controls with corresponding solutions . In particular,

;" (t) Y" (0) +"(t) +"(t)

=2(0)+ g(s, ;")h(s, "(s)) ds + (s, ") d"(s)

holds for all with probability one, and

J(" ") J(x" u"), for all n 1, 2,.

Moreover, with probability one

(3.4)

and

(3.5)

;(t) ;(0) +/0(t) +/(t),

l(t) or(s, ;o) dff O(s),

for all with some standard Brownian motion (rb(t), -) with respect to which (t) is
nonanticipative.

Since from now on we will be working only with the tilded processes, let us omit the
0tilde in the sequel. Let tz denote the measure induced on C by x, i.e.,

g(A) P[x A].
0LEMMA 1. /x is absolutely continuous with respect to the measure

Proof. Arguing as in [12] it can be shown that there is an integrable function f(t, to)
such that

F(t) f(s, to) ds, P-a.e.,

for all t. Note that by (3.4), F(t) is measurable and (@’)- adapted. Since (w(t), -o) is a
Brownian motion, so is (w(t), ’,+ ); hence we may assume that the family (--,) is right
continuous and completed, and, by Lemma 5.2 in [14], that f(t, o) is measurable and
adapted to (t). Now let .,o denote the or- algebra generated by x(s), 0 <-- s <= t, and let
r(t, to) be a measurable version of E(f-(t, )/o}. Since (3.4) can be written

o’- Io o)(3.6) x(t) x(0)+ f(s, to) ds + or(s, x dw(s),

by Theorem 4.3 in [18] and Lemma 10.4 in [14] there exists a standard Brownian
motion w(t) with respect to which x(t) is nonanticipating such that

(3.7) x(t) x(0)+ (s, to) ds + tr(s, x) dw(s)

holds for all with probability one. Since the process It(t, to) is adapted to (o), this
means that x(t) is a process of diffusion type in the sense of [14]. Hence, according to
the multidimensional version of Theorem 7.20 in [14],/z is absolutely continuous with
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respect to the measure induced on C by the solution of

dxt tr(t, x) dw,,

x0 x(0),
which is just z.

To go on, we need a mild regularity assumption about the observation functions
(A9) q-i (A) has Lebesgue measure 0 in rj for every set A of Lebesgue measure

0,/=1,...,p.
To simplify the notation let us introduce the processes

Yi =qPi(xn(tl)," X (ti)), n =0, 1,...,

which take on values in k. Then, as an immediate consequence of (A4), (A9) and
Lemma 1, we find

ColoII.Ar. The measure induced on kJ by y is absolutely continuous with respect
to the k-dimensional Lebesgue measure.

LEMMA 2. There exists an admissible control u such that

F(t) Io g(s, x)h(s, u(s)) ds

and

IoIo k(S, x")l(s, u"(s)) ds --> k(s, x)l(s, u(s)) ds

hold ]:or all with probability one.

Proof. Denote R"(t)=(Hn(t), L"(t)), n =0, 1,. ., and r(t, u)=(h(t, u), l(t, u)).
Then, for [tj, ti/l), n 1, 2, ,

R"(t)-R"(ti) | r(s, u"(s)) ds
t

(3.8)

-E- J. r(s, ui;gl,..n .,lk.i(S)) ds XA’];gl,...,txkq,
t

where

a. 3, i=1 kit,Ai;,l.....,, {Y ii (a i,i.,,, i.,,,,/1

Xa denotes the indicator of A and the sum is over all combinations (,.. ,) with
1 N N ei. Note that (by passing to a further subsequence) we may assume that the i
and hence the number of terms under the sum are the same for all n and, moreover, that

0a j,i, a j,i,o

for all]= 1, ,p; 1,. , k, 1, , q. Let us show that

(3.9) XAT;g,...,. XA;I,...,ki, P-a.e.

To this end, forget the indices for a moment and write

A" ={y" (a", b"]},

with a" a, b" b. Since y" yO for all (remove the exceptional set),

(3.10) lim sup A" c {yO [a o, bO]}.
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On the other hand,

b0{ Y
o [a o + e, e ]} lim inf A

for all e > 0, hence

(3.11) LA {y 6 [a + e, b o o
e ]} { y e (a b o)} c lim inf A

e>0 n-,oo

By the corollary to Lemma 1, {yO [a o, bO]} and {yO (a o, bO)} differ only by a
P-nullset from {yo (a, bO]}; hence, from (3.10), (3.11) and

k

XA "’"’tkj

(3.9) follows. From this and (3.8) it follows that for [tj, tj+l),

R(t) R(ti) lim JR" (t) R" (ti)]
(3.12)

(s)) ds,lim r(s, u;,. ,%

P-a.e. on A;,,....,,k. Using standard methods from optimal control theory (cf. [13],
Chapter 4) it can be teduced from (3.12) and (A4) that there exist measurable functions
0u;,,...,j(. defined on [t., t/] taking a.e. values in such that

R(t) R(t) , r(s, o (s)) ds,U ;,. .,tt,

o Define the control u" [0, T] x C - byP-a.e. on ej;,...,,.
0u(t, to) ui;,l,...,% (t), for e [ti, ti+l) and to e Ai;,,...,%.

Then

(3.13) R(t) r(s, u(s)) ds lim r(s, u"(s)) ds,

for all with probability one. The second equality implies that for a.e. o,

r( , u"( , to))--> r( , u( , to)),

weakly in L110, 1 ]. From this

F"(t)- g(s, x h(s, u (s)) ds <= g(s, x)[h(s, u (s))-h(s, u(s))] ds

+ Io [h(s, u"(s))llg(s,x")-g(s,x)l ds

0, a.e. for all

since for a fixed w the g(t, x’(o)) are uniformly bounded by virtue of (A1). Hence

(3.14) F(t) g(s, x)h(s, u(s)) ds,
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for all t with probability one, proving that u is an admissible control with correspond-
ing solution x. The relation

Io’ o)I"(t) := k(s, x )l(s, u (s)) ds k(s, x l(s, u(s)) ds =: I(t)

is proved in the same way.
Suppose now that the sequence (u ", x ") is minimizing, i.e.,

U )"

Since the I"(t) are nonnegative and m(x") m(x) a.e.,

E{i(1) + m (x)} <_- lim inf E{I" (1) + m (x ")}

by Fatou’s lemma, thus showing that

r(x, u) .
Hence we have proved

THEOgZM 1. Underassumptions (A1)-(A8) problem (P) has an optimal solution.
If h(t, u) and l(t, u) are continuous in both variables assumption (A4) can be

relaxed to
(A4’) For every [0, 1], the set

?/’+(t) {z7 (z, zr+l): z h(t, u), zr+ >- l(t, u), u e all}

is compact and convex.
The proof of Theorem 1 can then be carried out in basically the same way as above.

instead of using the standard methods from deterministic control theory in [13, 4], we
0proceed as in [11, chapter III.5 (especially Lemmas 5.4 to 5.6)] to obtain a control u

such that

(3.16)

and

(3.17)

H(t) h(s, u(s)) ds lim h(s, u"(s)) ds,

L(t) Io It(s, u(s))+v(s)] ds ,-.lim l(t, u "(s)) ds,

for all a.e, with some nonnegative function v. These two relations replace (3.13). As
above, it follows from the weak convergence of the integrands in (3.16) and the
boundedness of the g(t, x") that (3.14) holds. With I"(t), n =0, 1,..., defined as
above,

I"(t)-Z(t) o l(s, u"(s))[k(s, x")-k(s, x)] ds

+ k(s,x)[l(s, u"(s))-l(s, u(s))-v(s)]ds

o)+ k(s, x v(s) ds.
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The first two integrals tend to 0, hence

I(t) <- lim I (t),

and, by Fatou’s lemma, (3.15) results.
So far we have excluded x(0) from our observations. This is no loss if the initial

distribution F0 is a point mass in Nr. If only some components of x(0)--say the first
k--are degenerate while the other r-k have a distribution which is absolutely continu-
ous with respect to (r-k) dimensional Lebesgue measure, then we may allow the qj to
depend also on these nondegenerate components.

Remark 1. Suppose that the decision regions are fixed in advance, i.e., the numbers
a.,i,,, in (i) are the same for all admissible controls. This may be interpreted by saying that
not the actual value of the yji can be observed, but only which decision region is hit. Let
M{a.,,,,,/" 1,. , p, 1,. , k,/x 1,. , vi} denote the corresponding class of
admissible controls. Then it is easy to see that the proof of Theorem 1 remains valid if M
is replaced by M{. }.

4. A different class of controls. In this section we shall consider the same system
(1.1)-(1.3) but with a different class of admissible controls. A measurable function
u:[0, 1] f a// defined on some probability space (II, , P) will now be called an
admissible control if there exists a measurable process x(t) on (12, o, p) such that the
following conditions (i)-(iii) are satisfied.

(i) For every Its., t./l), ] 1, , p 1, u(t, is measurable with respect to the
completed or- algebra

where yi i(x(t),. ., x(ti)) as above.
(ii) and (iii): same as in 2.
(i) is equivalent to saying that for [ti, ti+t), u has the form

u(t, a) u.(t, o.(X(tl, o),’’", x(t, o))), a.e.,

for some function u." [0, 1] x Nk
Putting it in still another way which will turn out useful, let 3 denote the r- algebra

on C generated by the function :- 0(:(tl), , :(ti)). Then (i) is equivalent to

(i’) There is a function u:[0,1]xC-*q/ such that for each ] ultj,tj+lc is
measurable with respect to tj,t+,, (R) j and for each [0, 1 ],

u(t, w) u(t, x(o))), a.e.

Controls of this form have been considered in [10], where the functions uj are assumed
to be Lipschitz in all variables. Note that the r-algebras need not be an increasing
family, thus reflecting the fact that past observations may get lost.

Let M denote the class of admissible controls and let (p0) denote the problem
posed at the end of 2 with M replaced by M. We shall use the results obtained in 3 to
approximate controls in M by controls with a finite number of decision regions. For
simplicity, let us confine the following discussions to the case kj 1, for all ] 1, , p,
the general case following the same line of argument.

Choose a sequence of partitions,

-o0=a<
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of the real axis such that {a ,..., a}{an+ ., a+ }, and the (increasing) fields
generated bythe sets (ai, ai+i], 1, , n 1, generate the Borel r-field on the line,
i.e.,

V

Let (pn) denote the problem posed in 2 with fixed decision regions given by the
same partition {an1, ’", ann}, for all/’, i.e., in the notation of Remark 1 the class of
admissible controls is sn M{a 7,. , an}.

CRemark 2. Let r/j --> R denote the mapping

r/i(:) qi(:(tx), , :(ti)),

and define fields
-1

/" 1,..., p. Then, for u sin, property (i) in 2 is equivalent to saying that there
exists a function u"’[0, 1Ix cr-* 0// such that Unlu,.t,+x)xCr is measurable with respect
to rtj.t+,)(R) qd’ and

un(t, o)= u"(t, x(o)),

for all (t, o). Moreover, it is easily verified that

n=l

In the following, let us assume the validity of all the assumptions (A1)-(A9). Then,
according to Remark 1, each problem (pn), n 1, 2, , possesses an optimal solution
(t2n, 2 n) defined on some probability space (f/n,-n, pn). Define processes
(2n, Fn, B ., Hn, Ln) as in 2 and observe that the family (@n) is tight (meaning that the
family of probability measures p,n induced on the sample space S is tight). Hence, by
Skorokhod’s theorem, we may assume (after passing to a subsequence, which will be
denoted by the same index n) that the @n are all defined on the same probability space
(f, , P) ([0, 1 ], , Lebesgue measure) and that

@,, ._.> @o, a.e.,

in $ for some measurable process @o= (2o, Fo, Bo, Ho, LO). _As in 3, it can be shown
that the representation (3.6) is valid, and hence x is a process of diffusion type and
Corollary 1 applies. Again, denote

R (t) (n (t), L (t)), AT(t) R (t)-R (ti), y’ rti(g (.)), n 0, 1, .
The basic result is"

LEMMA 3. For [tj, ti+l), A(t) is measurable with respect to the completed or-algebra
generated by y.

Proof. It suffices to show the assertion for the components of A(t); hence, let us
suppose that A(t) is scalar valued. Denote

0-d/ (y)-l(n)= (2n)-1(c]), n 1, 2, ,
and let denote the completion with respect to P of

(y)-’() (.f)-’(d).
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Then A" (t) is ’-measurable and, since A(t) limn-.oo A (t) (remove the nullset of no,

convergence), for every A c R,

{A(t)<A} U U N An(t)<X
k=l N=I n=N

This implies that A(t) is measurable with respect to the o.-algebra 5e generated by the
sets

with/x ranging in R. But

hence,

U N {A"(t)<tz},
N=I n=N

{An(t)</x}={y’cAn}, forsomeA"cn;

/P(4.1) 5"=o" N {Y7 can}, A"c
=1 n=N

Now, for every n, A is a finite union of disjoint intervals of the form (a, b] with
endpoints in {a,..., a}. Let

A U (a ’], I,c{1,2,... n}2,
(/,r)I.

be the (unique) representation with the smallest possible number of intervals. It is easily
checked that for a fixed sequence (A

aU {y eA"}= U U {yTe( .,a.]}.(4.2) u= ,=u (,r..r,... z u= =u

For a fixed sequence ’, r,...)i Ii denote

a a n(4.3) S= U
N=I n=N

Then, by the same sort of argument used in the proof of Lemma 2,

(4.4) S {y e (e, a]}, P-a.e.,

awhere lim sup ,, lim inf, at,. Hence

for every sequence o" c F[s=l/s. But

U

is obtained from by a Suslin operation (cf. [15], [17]). To see this, let and *
denote the respective sets of infinite and finite sequences of positive integers (with
generic elements o" and o"*). Observe that each sequence o" (], rl, ]2, r2, ") e=uniquely determines numbers

a lim sup a,, lim inf al

such that (4.4) holds, thus determining a mapping " . by

t(,r) (_a, a, _a, a,...).
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Define a mapping M" ?/’* by putting

if or* (cry*) (one element sequence);

M(r*) S if r* =/()[n for n 2 and some i= .;
elsewhere.

Here, for g *, gin (gl,’",g,) . Then

U S= U N (ln).

Since is complete, it is a Suslin family (cf. [15]), hence

Then it lollows rom (4.1)-(4.4) that

thus proving the assertion.
Let r(t, u) be defined as in 3. Then from

R"(t) Jo f(s, a"(s)) ds R(t), a.e.,

it follows that there is an integrable function ?(t, o) with (t, w)6 7/’(t)= r(t, ll) for
almost all (t, w) such that

R(t) Jo (s, ) ds,

for all with probability one (cf. [12]). Since R(t)-R(ti) is measurable with respect to
for [tj, tj/a), ?(t, w) can be chosen in such a way that (t, is -measurable for

[ti, ti+l) (cf. [14, Lemma 5.2]). It may then be assumed that ?[[t;,tj+l)n is measurable
with respect to ttj,t+l) (R). Modify ? on a nullset such that (t, w) 7/’(t) holds for all
(t, w). Then, by Lemma 5 in [2], there exists a function tT" Its., ti+a) x f- //which is
measurable with respect to [t,t+,) (R) such that

?(t, w)= r(t, a (t, )),

for almost all (t, w) [tj,
Define fi" [0, 1 x f -, a//by

Then

-0 -0
U }[ti, tj+x),O Ui.

R(t) Ior(S, a(s))ds limn_,oo Io r(s, an(s))ds,

for all with probability one.
In the same way as in 3 it can now be shown that (3.14) and (3.15) hold. Hence 50

is an admissible control for (pO) with corresponding solution o, and

j(ffo, 50) <- liminf Y(Y", 5").
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Let us now introduce the following
HYPOTHESIS. For every u s with corresponding solution x there exists a sequence

ofcontrols u with corresponding solutions x such that

J(x", u")-->J(x, u).

THEOREM 2. Assume (A1)-(A9) and suppose that the hypothesis is valid. Then
problem (pO) possesses an optimal solution.

Proof. Construct (o, rio) as above. Let u be any control in o with corresponding
solution x, and let (x", u ") be the sequence from the hypothesis. Recall that the (", t7 ")
were optimal for (P"). Hence

j(0, 2o)_< lim inf j(,, t7)=< lim J(x", u")=J(x, u).

Of course, Theorem 2 is useful only if reasonable sufficient conditions for the hypothesis
to hold can be given. We shall show that for a wide class of problems the hypothesis is
actually satisfied. These problems are essentially those where the Girsanov measure
transformation method for defining solutions of (1.1) works.

To see this, we introduce the following assumption:
(A10) r- is bounded, and there is a constant K such that for all C and all

t[O, 1],

Ik(t, )1 / Ig(t, ’)l =<K(1
Let u (t, x) be an admissible control in s4 with corresponding solution x (according

to (i’) we shall work with the control functions defined on [0, 1] x C from now on). It
will turn out convenient to introduce the notations

fT(x) g(t, x)h(t, u(t, x)), cT(x) k(t, x)l(t, u(t, x))

and

trt(x) o-(t, x), o’-[ (x) o’-(t, x).

Then (1.1) takes the form

(4.5) dx =/’(x)dt +tr,(x) dw.

LEMMA 4. Let u be an admissible control with corresponding solution x. Then, under
assumptions (A1)-(A2), (A5) and (A10), ]’or every positive integer m,

Ellxll,_-< fro(1 +

for all [0, 1], with the same constant C, ]or all admissible controls.
Proof. Define

1, if Ilxll, =<g,
xN(t)

0, if Ilxll, >N,

Then, since xN(t) x(t)xr(r), for r --<_ t,

x(s)xc(t) x(r)f"r (X) dr + xN(r)o’(X) dw(r),

for all s _-< t. Hence
2m

Ix(s)12"xu(t)<=const’[IoXU(r)(l+llxll2’)dr+lloXU(r)crr(x)dw(r) ],
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where the constant is independent of the particular control chosen (it may depend on
m). It follows that

2m

[’X’}tmXN(t)const" [Io xN(r)(1 +llxll2 ") dr+ OS<Usp<__t II0 XN(r)O’r(X)dw(r) ],
and

[Io’ Io r]EIIxlIt"xN(t) <-- const (1 / EIIxll’x(r)) dr + (1 / EIIxll’x(r)) d

The last inequality follows from the estimate

10 12, (2m)2mE]for ]2m 0E sup (r) dw(r) < (r) dw(r) =const. EZ’(r) dr,
Os=t 2m 1

which holds for every nonanticipating bounded functional . By the Gronwall-Bellman
inequality,

][xl]mXN(t) C(1 + e%’),
and Fatou’s lemma (for N m) accomplishes the proof.

Note that by virtue of Lemma 4, for every admissible control u with corresponding
solution x the tightness conditions (iii) in 2 are automatically satisfied.

PROPOSITION 1. Under assumptions (A 1)-(A 10) the hypothesis holds, hence
problem (pO) has an optimal solution.

Pro@ Let u [0, 1 x C be an admissible control with corresponding solution
(cf. (i’)). Let x be the unique solution of (2.1), defined on some probability space

(, , P) carrying a Brownian motion (B). Then x is a solution of (4.5) for the
probability measure

where

dP (f’) dP,

[I
0

--1 u), I0 1 ul2t]((fU)=exp (trt ft dBt-1/2 [cr ft d

and the Brownian motion in (4.5) is given by

dwt dB-tr-[ (x)f(x) dt
-1

o’t (x)[dxt-f(x) dt].

For details cf. [6], [8]. Hence x is a solution corresponding to u. Let E denote
expectation with respect to/x, the measure induced on C by x under P, and define
controls u by

u"(t)=E{u(t)/q’/}, for t[tj, t]+l),

(take a measurable version). Then x is a solution of (4.5) with u replaced by u" with
respect to the probability measure

dp (/u.) dP,

and the Brownian motion

-1dw tr (x)[dx-f (x) dr].
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Hence u Mn with corresponding solution x. Now, for fixed [t., ti+l) (U (t), qg) is a
bounded martingale, and

u (t)--> E{ u(t)/nX q7} E{u(t)/gi}

u(t), tz-a.e.,

(cf. [7], VII, Thm 4.3). It follows that for all

and

c" (x -> c (x ), P-a.e.,

f(x)->f(x), P-a.e.

By (A1), (A2), (A10) and Lemma 4, the lo--1 u"12ft are uniformly integrable with
respect to dt x dP and P-a.e., bounded uniformly in n and t; hence, the last relation
implies

E f Io-71 (f’" -f’)l2 dt -+ 0

and

f, dt r- dt, P- a.e.,

from which it follows that for a subsequence (n’)

-(f""’) r(f"), P-a.e.

Using Lemma 1 in [2] (or rather the extension to the case r /, as it is used in [5]
and [6]), (A10), Lemma 4 and a H61der estimate, it can be shown that the functions
c "’ff(f"’) are uniformly integrable with respect to dt x dP; consequently,

E{m (x)()}+E{ o1 c(u) dr}

E, E and E denoting integration with respect to P, P and P, respectively. The
assertion then follows from Lemma 5 below.

LMMa 5. Under the assumptions o Proposition 1 the solution o (1.1), (1.2) is
unique in law.

Pro@ The proof can be copied almost literally from the proof of Theorem 10.3,
chapter V, in 11], noting that the Girsanov formula is valid under our assumptions and
using an approximating sequence of step functions instead of the Riemann-Stieltjes
sums. Moreover, for the special case I (identity matrix), the result can be found in
Theorem 4.12 in [14].
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$. Concluding remarks. So far we have assumed that the times at which obser-
vations can be taken are fixed in advance. A natural question to ask is" What will happen
if not only the net of decision (or rather observation) regions but also the net of
observation times is getting finer and finer? Certainly the class of controls that can be
approximated in this way will contain the class a. The question is what this wider class
looks like and whether it contains an optimal solution.

What one would like is to admit as controls all measurable functions u’[0, 1] x
C 07/which are adapted to (t), where t is the or-field on C generated bythe past of
the observable component r/of (r, r/) (: the generic element of C), i.e., if is the
dimension of r/,

(t O’{[,: ’l’ (S) t A], a Borel set in Rl, 0 __--< S =< t}.

Denote this class of admissible controls by sO* and the corresponding control
problem by (P*). Then, under the assumptions of Proposition 1, every control in
determines a unique (in law) solution of (1.1), (1.2) such that the tightness conditions
(iii) in 2 hold. Taking sequences n {t,. , t,} and sn {a,. .., a,} of refining
partitions of [0, 1] and the real axis, respectively, we get a sequence of problems (.P) of
the type discussed in 2 and 3, with observation times ", observation functions

(’) (n(t),’’’, n(t)), ] 1,’’’, n, : (, ),

and decision regions given bys for all components of o’ and all/" 1, , n. As in 4,
let denote the algebra generated bys on the real axis and (), its/i-fold product,
and let d’, e [t, t+), be defined by

nl.i("- q9 )-1((i ).

If the " and sn are chosen such that U" and Ua" are dense in [0, 1] and R,
respectively,

,= V 7,
n=l

and the proof of Proposition 1 can be copied to show that the hypotheses remains valid
for controls in s*.

Next, under the assumptions of Proposition 1, every problem (P") possesses an
optimal solution (aT",ti") and, by tightness, we arrive at processes
($", F", B", H", L"), n 0, 1, , such that" 0 a.e. and $0 is a process of diffusion
type, (3.6) holds and Corollary 1 applies. With R(t) defined as in 4, the crucial point is
to show that the assertion of Lemma 4 holds, i.e., that R(t) is measurable with respect
to ($0)-1(cg,). Here it turns out that the mechanism of {} 4 does not continue to work,
basically because now an infinite number of observation times has to be considered and
no infinite dimensional counterpart of the left-hand inclusion in (3.9) seems to be
available.
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ON CHARACTERIZING OPTIMAL POLICIES IN INFINITE-HORIZON
STOCHASTIC CONTROL*

D. P. KENNEDY"

Abstract. An infinite-horizon sequential-decision model in discrete time is studied. Throughout, the
minimal conditional expected loss at time n is defined as the essential infimum of the conditional expected
losses at n associated with those policies that may be used after n. Necessary and sufficient conditions for
conserving policies to be optimal are developed. An outline of how the model extends to continuous time is
given, and the corresponding characterization of optimal conserving policies in continuous time is presented.

1. Introduction. We will consider an infinite-horizon sequential-decision model in
discrete time which generalizes to continuous time quite naturally. The model is based
on those presented in Striebel [5] and Kreps [2], and considers an arbitrary loss
function.

Let (, o) be a measurable space and let II be a nonempty set. For each zr H,
assume there is,

(i) a probability measure, P, on .
(ii) an extended-real-valued random variable, L, defined on (fZ, r), which is

quasi-P-integrable,
(iii) a filtration, {, n >_- 0}; that is, a nondecreasing sequence of sub o--fields of o

with o denoting the smallest r-field containing each , n _-> 0.
Here, II is to be interpreted as the set of available policies, each policy r

determining a probability distribution over the underlying sample space and a loss L.
The r-field represents the information available to the controller if policy 7r has
been used until time n this formulation enables the model to cover the usual case when
randomized policies are permitted.

Furthermore, assume that there is a nested sequence of equivalence relations, {-,
n -> 0}, on H; that is, for u, ,r H, u- 7r implies that u-z r for 0 _-< k _-< n. If policy 7r is
used up to time n, then the equivalence class containing 7r under is to be interpreted
as the set of those policies which may be used after time n. We say that policy u is
compatible with ,r up to time n if u 7 r, and we will require that if u- 7r then

(i) , ., and
(ii) Pn Pn, where P denotes the restriction of P to .
We now define the minimal conditional expected loss given that 7r has been used up

to time n, by

(1.1) V ess inf Ev[Lvl,], P, a.s.

Here and in the following, unless there is some indication to the contrary, it may be
assumed that an essential infimum is taken with respect to the probability measure that
qualifies almost surely the statement in which it appears; typically this will be the
generic probability measure P. Also, E, denotes expectation with respect to P.

For v H, a policy zr is said to be optimal for v at n if zr- v and

(1.2) V. E[L17], P= a.s., for all m _-> n.

Generally, we will say that 7r is optimal at n if (1.2) holds. So if ,r is optimal at n then it is

* Received by the editors August 9, 1979, and in final form January 30, 1980.

" Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge,
CB2 1SB, England.
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optimal for all u at n such that u zr. If each V, m => n, is quasi-P% integrable, zr is said
to be conserving at n if {V, 3,, m > n} is a P%martingale. Throughout, we will not
require martingales (or submartingales) to be integrable, but only that they be quasi-
integrable and satisfy the usual martingale equality (or submartingale inequality).

Notice that if 7r is optimal at n then it is conserving at n the converse is not true in
general. Kreps [2] has investigated conditions which are sufficient to ensure that a
conserving policy is optimal for a slightly more specialized model. In 3, under certain
conditions, we give necessary and sufficient conditions for a conserving policy to be
optimal, and we show that a uniform integrability condition related to one given by
Kreps is necessary as well as sufficient for optimality. We also develop some properties
of the model along the lines of Striebel ([5, Ch. 4]), which are useful in considering a
continuous-time version of the model. This version is presented in 4 where it is seen
that the necessary and sufficient conditions for conserving policies to be optimal carry
across directly from discrete time. We begin in 2 by listing some easily established or
known results which will be required subsequently.

2. Preliminaries. Consider a family of extended-real-valued random variables
{X a A} defined on a probability space (l, , P). We will say that this family has the
(downwards) countable lattice property if for any e > 0 and countable subset B

__
A there

exists fl A with

(2.1) X <= inf X, + e, a.s.

The family has the (downwards) finite lattice property if (2.1) holds for any finite subset
B, while it is directed downwards if for any finite subset B

_
A there exists/3 A with

Xa =< minBX, a.s. Trivially, if the family is directed downwards it has the (down-
wards) finite lattice property. The (upwards) countable and finite lattice properties are
defined in the obvious manner by reversing the sign of e and the inequality in (2.1) and
replacing the infimum by supremum.

If each X is quasi-integrable and ess infAX is quasi-integrable, then for any
sub tr-field

_
it is immediate that

(2.2) E[ess infX I.] <-- ess inf E[X Ig] a.s.
aA aA

On the left-hand side the essential infimum is that taken with respect to P, and on the
right-hand side it is with respect to the restriction of P to cg. Conditions sufficient to
ensure that ess infA X, is quasi-integrable are that either

(2 3) EX/ <, for someaA,

or

(2.4) X -> Y, a.s. for each c, with EY-< c.

Recall that (Neveu [4, p. 121]) there always exists a countable subset B
_
A such that

inf X ess inf X, a.s.
aeB aA

Using this fact, it is straightforward to establish the following (cf. Striebel [5, p. 198]).
PROPOSITION 2.5. If either (i) (2.3) holds and the family {X; c cA} has the

(downwards) finite lattice property or (ii), the family {X; ce A} has the (downwards)
countable lattice property, then equality holds in (2.2).
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Returning to the sequential-decision system introduced in the previous section,
following Striebel [5], we will say that the system has the finite (or countable) lattice
property if for each rr II and n => 0 the family {E[LI7,]; vw rr} has the (downwards)
finite (or countable) lattice property with respect to P.

The archetypal situation where the system has either the finite or countable lattice
property is obtained as follows. Let (C, cg) be a measurable space, usually referred to as
the control space, and suppose that each rr II is of the form rr {rrn}n=o, where rrn is a
C-valued random variable on (fl, ). Typically, either rr, is +l-measurable, or

n for all rr and rrn is ,-measurable (the two eventualities corresponding to
randomized and non-randomized policies respectively). Then we will let vw rr if
Vk ------ rrk, 0 <-- k _-< n 1 for n -> 1, with v rr for all , rr H. If, for each n ->_ 0, rr II, for
all choices of pw rr, ] 1 k, and if for each partition fl. ,/" 1, , k of f,
defining

k

(2.6) Vr Y, I(f’), r -> 0,
j=l

gives {ur}o II, then we will say that the set of policies H is stable (cf. Hinderer 1] and
Streibel [5]); here I(f.) denotes the indicator of the event f.. Say that the system is
stable if II is stable and if

k

(2.7) L,
i=l

when v {v}=o is defined by (2.6).
If (2.6) and (2.7) hold for countably many policies v 1, /,,2, and countable partitions of
f, then we say that II is countably stable and the system is countably stable. A standard
argument (Striebel [5, p. 87]) shows that if the system is stable (or countably stable) then
it has the finite (or countable) lattice property. Notice that the model of Kreps [2] is
countably stable.

Finally, we will require the next simple result on uniform integrability. Here
{Xs (a, fl) A} denotes a family of extended-real-valued random variables defined on
the underlying probability space; for each a, As {/3: (a,/3) A} represents the section
of A at a, while B {a: (a,/) A for some fl}.

LEMMA 2.8. If for each a the family {Xs; fl As} has the (downwards) finite
lattice property then the random variables [ess infoAXso]-, a B, are uniformly
integrable if and only if the random variables Xo, (a,/3) A, are uniformly integrable.

Proof. The sufficiency is immediate (and does not require the lattice property). For
the necessity, for each a, there exist fix, f12,""" As with

inf Xs, ess inf Xs a.s.

For each e > O, by the finite lattice property there exist "}/i As with

So ]’or a > O,

x, <-_ A x, + e.
i=1

Xsa dP <-_ [
A x,,i JXsoj + e dP,

+e<-a}
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letting - and e 0 gives by monotone convergence that

X,a dP _-< [ ess inf X, dP.
ess infaA, Xo,ta <-a} [3Aa

Taking the infimum over a and letting a c gives the result.

3. The discrete-time model. Throughout this section, for the model of 1, we will
assume that at least one of the following hold; either

(3.1) EL+ <, for each zr H,

or

(3.2) sup EL <, and for each zr II

and n => 0 the family {E[L[]; v7 zr} has the (upwards) finite lattice property with
respect to P.

It is then immediate that V is quasi-P%integrable with either of these assump-
tions since (3.1) implies that E=(V)+ < c, while Proposition 2.5 gives E=(V)-< c
when (3.2) holds. If the system is stable in the sense of the previous section the second
part of (3.2) holds, In the following all the results established under the assumption (3.2)
may be seen to hold when the random variables L= are uniformly bounded below, i.e.,
when there exists a real M, with L= -> M, P= a.s., for all zr II.

Before discussing optimal policies we develop several elementary properties of the
model following Striebel [5]; we omit those arguments which are standard or which are
readily reconstructed.

Now, for each zr II, N -> 0 and 0 -< n < N, define

(3.3) FN,N VN, Fn,N ess inf E[F+I,NIS*n], Pn a.s.

By backwards induction on n N, N 1, , it is easily established that each F,N
is quasi-P%integrable, and thus Fn.N is well-defined by (3.3); in addition it follows that
for 0<-n <N,

(3.4) F.v, =<ess inf E[VV+ln I] <= V, P a.s.
VWTi"

Again, by induction on N-n we may see that for 0 <= n -<_ N,

(3.5) Fn,s >--Fn,N+I, Pn a.s.,

whence F" lim_ Fn,s, exists, P a.s.; with the assumptions above each F is
quasi-P-integrable and F" Fn, P a.s. if u 7 zr.

As in Striebel ([5, Ch. 4]), it is immediate from the definition (3.3) that for each
N>0 and zr, {Fn,N, , 0<=n =<N}, is a P-submartingale; furthermore it is the
maximal submartingale with FV,N dominated by Vv, in the following sense. Say that a
family of random variables {G; n >-0, 7rl-I} is compatible if G =Gn, P a.s.
whenever ,- zr. Then, if a compatible family is such that for each zr, {G, ’, 0 -< n -<

N} is a P-submartingale, by backwards induction on n, G < Vv, PN a.s for each zr,
implies that G <=Fn,N, P a.s., for each zr and n 0, 1,..., N. This result may be
extended to F when (3.1) holds by the next result.
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PROPOSITION 3.6.
(a) For all m >- n >- 0 and 7r H,

ess inf E,[Fn+I ]’.] <__--F
(3.7) v

=< ess inf Ev[ V, I] =< V’,
vW’rr

(b) If (3.1) holds, for m >-n + 1, we have

(3.8) F =ess inf E[F/ l]<=ess inf E[Fl],
vTr W’n"

a.s.,

and thus {F, ,, n >0} is a P’-submartingale.
Proof. The relations (3.7) follow immediately from the above remarks; while if

(3.1) holds, since for N => n, when u7 zr,

V <= F.,N <= E,,[F+I,NIn],n P a.s.,

using monotone convergence as N --> c, we have (since E(F/I,N)+ < ),

F _<-E[F,+I ]], P a.s.;

the left-hand side of (3.8) follows from (3.7), showing the submartingale property.
Finally the right-hand side of (3.8) follows directly from the submartingale property.

The next result follows immediately.
COROLLARY 3.9. The following statements are equivalent.

(i) For each zr H and n >- O, V, F, P a.s.
(ii) For each 7r H and n >=0, V =ess inf,, E,[V+I 1], P a.s.
(iii) For each 7r II and m >- n >- 0, V ess inf,, Ev[ V, I,], P a.s.
(iv) For each zr H, {V, ’, n _-> 0} is a P’-submartingale.
Conditions which are sufficient to ensure that (i)-(iv) hold follow from the remarks

in 2 (cf. Striebel [5, p. 68]).
COROLLARY 3.10. If either (a) (3.1) holds and the system has the finite lattice

property, or (b) the system has the countable lattice property, then (i)-(iv) of Corollary 3.9
hold.

Recall that a submartingale {Xn, n, n >_-0} with sup, EX+ <c is regular if
E[Xoo[, ]->_ Xn, a.s., for each n, where Xo lim,_X, a.s.

COROLLARY 3.11. When (3.1) holds, {F’ n >- 0, zr H} is the maximal compatible
family such that for each 7r, {F, , n >-_ 0} is a regular P-submartingale satisfying

(3.12) F <- E=[L=I ], P= a.s.

Proof. Since F, < E=[L=[;, ], with E,L+ < o, {F,, ,, n >0} is a regular P’-
submartingale satisfying (3.12). This follows from [4, Lemma IV-2-4], and [6, Theorem
2(ii), p. 234]. If {G; n =>0, zrH} is a compatible family such that for each zr,
{G, , n _-> 0} is a regular P’-submartingale satisfying

G <= E=[L=[ ], P= a.s.,

then

O. =O.=<E[GI]<E.[LI.],= P a.s.,

for all u such that v zr. Hence G -< V’ and by the remarks preceding Proposition
3.6, G <-F,v,P a.s., for all N>-n; letting Nc gives G <-_F,P a.s.
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We now consider the characterization of optimal policies. Notice that if rr is
optimal at n then E,L= inf=EL; the converse is not true in general, though we do
have the following.

PROPOSITION 3.13. IfE=IL=I < and the system has the finite lattice property then
the following are equivalent.

(i) rr is optimal at n.

(ii) V" E=[L=I], P a.s.
(iii) EL, infa_, EL.
Proof. It is immediate that (i) implies (ii) and (iii), and that (ii) implies (iii). If (iii)

holds, for m >-n

EL, inf EL <= inf EvL <= E,L

thus there is equality, so by Proposition 2.5,

EV E [ess inf E,[L,I]]

inf EL EL.

But

V,, <-_ E[L,I], P, a.s.;

hence there is equality, P a.s., giving (i) and (ii).
Turning to conserving policies we observe that if 7r is conserving then V

lim n-, V" exists P’ a.s.; this follows because a martingale is both a submartingale and
a supermartingale, while supn E(V)/ <= EL+ <, if (3.1) holds and supn E(V)- <

if (3.2) holds. We may now determine when conserving policies are optimal.
THEOREM 3.14. If (3.2) holds, then if 7r is conserving at n it is optimal at n if and

only if
(i) V >= E,[LI], P a.s., and

(ii) (V,)-, m >-n ,are uniformly P=-integrable.
Proof. If 7r is conserving and (ii) holds, then {V,, =,,, m > n} is a regular

supermartingale (Neveu, [4, p. 92]) so for m _-> n, by (i),

V, >-_ E[VI >- E,[L,I], P a.s.,

showing that 7r is optimal.
Conversely, if 7r is optimal at n, V, E[LI-,], P a.s. for all m _->n. But

EL < c since (3.2) holds, and so (V)-, m _-> n, are uniformly P’-integrable and by
Neveu [4, p. 31],

V lim E[L,I >-E[LI], P a.s.

We can investigate the condition (ii) of Theorem 3.14 a little further.
PROPOSITION 3.15. For fixed r II and n >-_ O, if the system has the finite lattice

property then the following are equivalent.
(i) (V,)-, m >= n are uniformly P-integrable.
(ii) lim,_. inf,,>_, inf= EL,I(E[LI]< -a)= O.
Proof. By Lemma 2.8, (i) is equivalent to E[LI]-, u’m r, m _>-n, being uni-

formly P=-integrable, which is equivalent to (ii).
Kreps has shown that under a uniform integrability condition ([2, (1)]), which for his

model implies (3.2), that (i) of Theorem 3.14 is sufficient for a conserving policy to be
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optimal. Together Theorem 3.14 and Proposition 3.15 show that a similar uniform
integrability condition on the losses is also necessary. A simpler sufficient condition is
given by (3.17).

LZMMA 3.16. If
(3.17) lim inf ELI(L <-a) 0,

then Proposition 3.15 (ii) holds.
Proof. Suppose that u-m rr, m >_-n, a > 0, b > 0; then

Eu[L, Igr;,]< L,,<-b,E LI]<-a Lv->-b,Ev[Lvlg t]<

>-_ f Ldn-bn{Ev[L[T]< -a}
L<-b}

>-_ f L dP bEL-/a.
L,,<-b}

Taking the infimum over v and m >-n, and letting a o c, b o c in such a way that
b/a - O, gives the result since (3.17) implies that sup=EL- < o.

Finally, when only (3.1) holds one can be less explicit.
PROPOSITION 3.18. If (3.1) holds it is sufficient for rc to be optimal at n that
(i) { V,, ,,, n < m < o} is a P-martingale, and

(ii) Vo >-E[LI P a.s.

If in addition, sup, E[LI,]> -,P a.s., then (i) and (ii) are also necessary ]:or
7r to be optimal at n.

Proof. If (i) and (ii) hold, then for m >-n,

V E[Vo I]_->EELI7], P a.s.,

showing that rr is optimal at n. Conversely, if sup,E[LI > -o, p a.s., and 7r is
optimal at n, then V, E[LI], m >= n,

V lira E[LI’] E[LI], n a.s.,

by Neveu ([4, p. 31]), and (i), (ii) hold.
Notice that when (3.1) holds, since V, <=E[LI], P a.s., we have V -<_

E[L[] and so (ii) of Proposition 3.18 is equivalent to V E,[L,I;], P a.s.

4. The continuous-time model. One of the virtues of the model presented in the
previous sections is that a continuous-time version may be given and analogous results
established with essentially no extra work. We will simply just point out where the
appropriate changes must be made. As before, we have an underlying measurable space
(f, -), and a nonempty set II. For each rr II assume that there is (i) a probability
measure, P, on so that (f, if, P) is a complete probability space, (ii) an extended-
real-valued random variable, L, defined on (f, @), and (iii) a left-continuous filtration
{fir, 0 <= =< T}, with@ containing all the P-null sets of . Here, we may have T c.

Throughout this section we will assume that

(4.1) EL+ < oo, for all r II.

Again we assume that there is a nested family of equivalence relations "c, -> 0 on H, so
that v--r zr implies that v - rr, for 0 -< s -< t. As in discrete time we will require that if v--r 7r
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then t 7 and Pt P, where P7 is the restriction of P= to ,.e Define the minimal
conditional expected loss by

(4.2) V7 ess inf E[L,[3o, ], P7 a.s.,

The next result, as well as being of some interest in its own right, demonstrates how
the development of 3 may be extended to continuous time and how the continuous-
time model (over a finite or infinite horizon) may be approximated by the discrete-time
model in natural fashion. Define a compatible family of random variables in the obvious
way.

THEOREM 4.3. There exists a maximal compatible family {F_ 0 <- < T, rc II}
such thatlor each 7r, {F,_, ’, 0 <- < T} is a left-continuous P=-submartingale domina-
ted by V’, 0 <- < T.

Proof. Consider the dyadic rationals k/2n, k >=0, n >-0. For each r II and
N _>- 0, define

Fv/2",/2" (n

and

F/z.,u/z.(n)=ess inf E[F+a>/2.,u/z.(n)l/2.], P,/2- a.s.
k/2

for 0 <_-k < N. By the previous section Fa (n)= limN, F.,N/. (n) exists, P a.s.,
for each k/2; if q is any dyadic rational, then F (n) is nonincreasing in n, P a.s., by
(3.8) (since (4.1) holds), so thatF limF(n) exists, P a.s. It is immediate from
(3.7) that Fq

Furthermore, if q N qa are dyadic rationals and n is large enough so that q p/2,
q r/2 for some p, r 0, by the submartingale property of F (n) we have

E=[Fq (n)lq Fq, (n), P= a.s.,

and monotone convergence gives (using (4.1) again) that as n

1]>F, a.s.E[Fq P

Since E(F)+ EL< for each q, using the submartingale convergence theorem,
we may define for each real t, 0 < < T,

F_ lim F, P" a.s.,
qt

where qt denotes qt through dyadic rationals q with q < t; set F0 Fg. It may be
checked immediately that {F,L, , 0 N < T} is a left-continuous P=-submartingale
(cf. Meyer [3, p. 95]). To see that it is dominated by V, suppose that
for all q < t. Then

F V E[LI], P= a.s.

Letting qt, using Neveu ([4, p. 31]) and the left continuity of the filtration we have

FT_ E[LI7_

E[tlt ], n a.s.,

which implies that FT_ VT, P= a.s. For the maximality assume that {Gt ;0 <
T, 6 H} is compatible, with {GT, fiT, 0 < T} a left-continuous P=-submartingale



584 D.P. KENNEDY

with G7 <-VT, P’ a.s., for each zr. By Corollary 3.11, for each dyadic rational q,
,<F,p, p,Gq a.s., letting qt gives G7 <-Ft-, a.s. by the left-continuity of

thus completing the proof.
As in discrete time define a policy zr to be optimal at if

V E[L,I-], P a.s.,

for each s, t<=s < T. The analogue of Proposition 3.13 then carries over to the
continuous-time case immediately. Let us now assume that the system has the finite
lattice property. Exactly as in Corollary 3.10 it follows from (4.1) that for each
r, {V,, 3,, 0 < < T} is a P -submartlngale. If we also assume the corresponding
statement to (B.2) got by replacing n by t, we have that for each t, V7 is P-integrable.
Using the finite lattice property we have that EV7 inf,EL. By standard results
(Meyer [3, p. 95]), { v7,7, 0_-< < T} has a left-continuous (P) modification if and
only if the map

(4.4) t-> inf EL is left-continuous in 0 < < T2

By Corollary B.9 this left-continuous modification, VT-, coincides with FT- defined in
Theorem 4.3.

Then, assuming (4.4) holds, (4.1) ensures that sup, E(VT)+ <-EL+ < oo, and so
(Meyer, [3, p. 96]) for T _< oo

T lim V,_, exists, P a.s.
t-> T

Again, if we define r to be conserving at if { V, 3*s, < s < T} is a P-martingale,
we may conclude that if r is conserving at t, it is optimal at if and only if

(4.5) Vr >- E[L]-], P a.s.,

and

(4.6) (Vs)-, t=< s < T,

are uniformly P=-integrable.
Then by virtue of the finite lattice property (4.6) is equivalent to condition (ii) of

Proposition 3.15 with m, n replaced by s, respectively. Exactly as before a sufficient
condition for (4.6) is that

lim inf E,L,I(L,, < a) O.
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ON EXISTENCE OF PERIODIC MOTIONS IN
NONLINEAR CONTROL SYSTEMS WITH PERIODIC INPUTS*

R. K. MILLER’ AND A. N. MICHELt

Abstract. The existence of periodic solutions of nonlinear control systems subjected to sinusoidal forcing
functions, using the describing function method, is studied. The setting is general enough to allow systems
with delays, systems with discontinuous nonlinearities, systems with hysteresis nonlinearities, and so forth.
The present results state that if the linearized describing function problem can be solved and if certain bounds
(which depend on the exact form of the solution of the describing function problem) can be satisfied, then
there is a periodic solution of the exact problem. Furthermore, the present results provide relative error
bounds between the response of the exact problem and the associated linearized describing function problem.
To demonstrate the applicability of the method advanced, a specific example is considered.

1. Introduction. We study the existence of periodic solutions of nonlinear systems
subjected to sinusoidal forcing functions using describing function techniques. We
establish specific computable conditions which guarantee that when the usual describ-
ing function method predicts a periodic response, then the nonlinear system has a
periodic response which is nearly equal to the predicted one. Our conditions are quite
natural in the sense that they involve precise statements of the usual criteria, i.e., the
linear part of the system must constitute a good low pass filter and the describing
function should provide a good approximation to the response of the nonlinear element
for nearly sinusoidal inputs.

In our results, we allow discontinuous nonlinearities. For this reason, it is necessary
to work in the space of continuous functions (rather than in an La-space), it is necessary
to use a generalized notion of solution (in the sense of Filippov [4], [9], 10], 16]), and
uniqueness of the predicted periodic solution cannot be assured.

Many previous results address various aspects of the theoretical justification of
describing functions. Specifically, the results of Bass [1], Bergen and Franks [2], and
Williamson [17] are concerned with the prediction of sustained oscillations under zero
forcing functions. This is a different problem from the one considered in this paper. On
the other hand, the interesting work of Sandberg [15] (see also Mees and Bergen [11])
involves systems with Lipschitz continuous nonlinearities. Under their hypotheses, one
can show that the basic system under consideration and also the corresponding
describing function approximate system have unique solutions, which are locally L2,
and furthermore, the L2-norm of the difference between these solutions is estimated.
Furthermore, Holtzman [7] treats a problem similar to the one considered in [15], using
a very different analysis. His results are local, replacing global Lipschitz conditions by
local differentiability, and he obtains error estimates in the uniform norm over continu-
ous periodic functions. Our results differ from those in [7] and [15] since we allow
discontinuous nonlinear elements such as relays with or without dead zones and/or
hysteresis. Moreover, we emphasize that our results differ in kind since they state that if
the linearized describing function problem can be solved and if certain bounds (which
depend on the exact form of the solution of the describing function problem) can be
satisfied, then there is a periodic solution of the exact problem.

* Received by the editors June 27, 1979, and in revised form November 29, 1979. This research was
supported by the National Science Foundation under grant ENG 77-28446.

" Department of Mathematics, Iowa State University, Ames, Iowa 50011.
t Department of Electrical Engineering and Engineering Research Institute, Iowa State University,

Ames, Iowa 50011.

585



586 R.K. MILLER AND A. N. MICHEL

Other somewhat related work is contained in the absolute stability results of Popov
[14]. A good discussion of describing function methods and theory (up to 1968) can be
found in the book by Gelb and Vander Velde [5]. Background material on the theory of
oscillations can be found, e,g., in Hale [18].

The remainderof this paper consists of four parts. In 2, we establish our results
for very general systems in an abstract setting while in 3 we consider systems which can
appropriately be described by integrodifferential equations. To demonstrate the appli-
cability of these results, we consider a specific example in 4. In 5, we discuss the
physical implications of the principal hypotheses used in our results.

2. General systems. Let X { :R R11 is continuous, T-periodic, (t + 7r)
-b (t)} with norm defined by I1 11- sup {[(t)l: 0 <- =< T}. It is routine to check that X is
a Banach space. Moreover, with w 2r/T, we have

where

N

b=l.i.m. h,e i"’t,
Noo =-N

n odd

at, n odd,

are the Fourier coefficients of b, and Parseval’s identity is

odd

We define a projection P on X by

(P)(t) cble i,ot + oh-1 e -i’,

and we define B(ff, e) {b x’ll 11 }.
We shall study periodic solutions of a nonlinear system of the form.

(E) x h + GF(x)

by analyzing the associated approximate system

(L3) h + GPF().

We shall require the following assumptions for (E) and (/)"
(A1) h(t)=a sin (wt+b) for some real constants a and b;
(A2) System (/) has a solution PX where PX {" c Pd, ch X};
(A3) F"X X is a continuous map;
(A4) G"X X is a linear map defined by

(Gch)(t) E G,ch, e ’"’’,
odd

where G-n t,, and sup {InG, [’n odd} y < o.
Before we can remove the continuity condition (A3) and before we can prove the

main result of this section (Theorem 1) we need to establish two preliminary results
(Lemmas 1 and 2).
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LEMMA 1. The map G defined by (A4) is a completely continuous linear map on X
and satisfies PG GP.

Proof. Since []ab[[-Y’.nodd IGnrn[<=x/[Gnl2x/Y’.ln[2 for any & X, then Gb eX.
An elementary argument involving Fourier coefficients will show that G is a closed
linear map. Thus G is continuous.

Given a bounded set S c B (0, M) for some M, then for b S,

Xlor- = dt 2 I .1=-<-Mz,
odd

Thus IIG II-<_,/EIG i’M, i.e., G$ is a uniformly bounded set, If b $, then G4 has
Lz- derivative

N

(Gb)’ 1.i.m. E G,qb, (ino)) e "0",
N-o n=-N

odd

and

Thus, for any t, r [0, T], < r, we have

[G4)(,)-a4(t)l <- I(a)’(u)l

Thus the set GS is equicontinuous. Hence GS has compact closure.
The assertion that PG GP on X is trivial.
LEMMA 2. If (A1)-(A4) are true and if there are constants e, M> 0 such thatfor all

x B(, e) it is true that I[F(x)II<=M, and if
(1) [GP(F(x)-F())+(I-P)GF(x)] eB(O, e),

then system (E) has a solution x B(, e ).
Proof. Define y x- and subtract (’) from (E) to see that

(2) y GP(F( + y)-F())+(I-P)GF( + y).
The hypotheses imply that the right-hand side of (2) defines a continuous map ofB(0, e)
int6 itself. By Lemma 1, the right-hand side of (2) is also completely continuous. Thus,
the Schauder fixed point theorem (see, e.g., [3, p. 456, Theorem 5]) can be applied to
obtain a solution of (2) with y B(0, e).

Next, we consider the case where F is not necessarily continuous. We will
approximate F by a sequence of nonlinear operators F. which are assumed to satisfy
the following conditions:

(AS) F. :X -*X with F, continuous;
(A6) For any point x PX and any sequence {x.} in PX, if x.

PF(x).
We now consider the approximating equations

(E) x h + GF(x),

and

() h + GPFm(m).

We say that system (E) has a weak solution x if there exist a sequence of equations (E)
such that (AS)-(A6) are true, solutionsx and a function w L2(0, T) such thatF(x)
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tends weakly in L2(0, T) to w(F, (Xn) w), x, x in X, and

x=h+Gw.

We now state and prove the main result of this section.
THEOREM 1. Suppose that (Era) and (J,) satisfy conditions (A1)-(A4) for each

m >= 1 and that F, satisfies conditions (A5)-(A6). Suppose there exist positive constants
M, M1, e, and el such that 0<el <e, IIPF()II<M for all m >= 1. Then (;) has a
solution . Iffor all m >- 1 and for all x B (, e) we have IIF, (x)ll <=M and

(3) [GP(F(x)-F.,())+(I-P)GF.,(x)]eB(O, e),

then (E) has a weak solution x with [Ix- [1 < e.

Proof. Since the sequence {PF,(2,)} is bounded, then by possibly taking a
subsequence we can assume that PF,(n) tends weakly in L2(0, T) to some function z.
The proof of Lemma 1 is easily extended to see that G is a completely continuous linear
map from L2(0, T) into X. Thus GPF,(2,) Gz in X and , h +Gz. By (A6) it
follows that PF,(,)- PF(h + Gz). Thus h + Gz solves ().

Next, by (A6), PF,(2) PF(x) and so it follows from (3) that

(1’) [GP(F,(x)-F(,))+(I-P)GF,(x)]sB(,, e3),

for x B m e3(.. e3) and large. Here e(e, e) Indeed let k =(e-e)/3, e;=el+k,
e3 e. + k and pick mo so large that for m => m0 we have I1. 211 < k, and

[GP(F,,,(x)-F.,(,.))+(I-P)GF.,(x)]eB(, e2)c B(..,, e3),

when x e B(., e3)cB(, e). Also IIF;.(x)II<-M on B(.,, ). By Lemma 2 it follows
that (E.) has a solution x.B(m, e3). Also [[x.-.,ll=<e3, x,.eB(,e) and

IIF M for all m large.
Since F,. (x.) is bounded by M, it is weakly compact in L=(0, T). Thus by possibly

taking a subsequence we can assume that F.(x.) w for some w e L2(0, T). Since G
is completely continuous on L2(0, T) to X, then GF,.(x.) Gw in X. Thus x.
h + GF,,,(x,,,)- h + Gw. Define x h + Gw. Then x is the weak solution of (E) in
B(2, e).

The next result is a direct consequence of Theorem 1.
COOLLArY 1. Suppose equations (E,) and (.,) satisfy conditions (A1)-(A4) for

each m >- 1 and that assumptions (A5)-(A6) are true. Suppose there are constraints M,
M, s, and s such that 0 < e < s, IIPF, (,)11 <M for all m >- 1. Then equation (.) has
a solution . Iffurther IIF, (x)ll <-M and

(4) IIGP(F,(x)-F,(2))II+M( aa [G"I) <-el,

for all x e B (2, s) and all m >-_ 1, then equation (E) has a solution x e B (2,.e). [3

3. Systems described by integroditlerential equations. We now consider systems
described by integrodifferential equations. Let L be the linear integrodifferential
operator defined by

(Ly)(t)= y()(t)+ biky(i)(t--t)+ C(t--s)y(i)(s) ds
j=O k=l

where J _-> 1 and {1.} is an increasing sequence with tl ->_0 and t oo. Let o 2-/T as
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above and define

H(s) s J + s bjke -,tkk21= -’t- C (S)

In the following, we will require the following assumptions"
(AT) For some integer M >_-0 we have

k=l

(A8) In the half-plane Re s-_>0 the characteristic equation H(s)-0 has only
finitely many roots {sj 1 _-< ] _-< K1}. The first K0 roots are assumed to be pure
imaginary, s i’ for 1 _<-/" <- Ko, while Re s > 0 for K0 + 1 _-< ] -< K1. The
multiplicity of any purely imaginary root is assumed to be at most M, where
M is defined in (A7).

Let a(t) be that function of bounded variation with continuous part cj(t), jump of
height bjk at t and no singular part. Thus we can write

(Ly)(t) y(J(t) + da (s)y(i(t-s).
1=0

Clearly L has transfer function H(s) given by

J-1

H(s) s + Y’. sia (s).
1=0

As usual, we can write L[y] f as an equivalent system of first order in matrix-
vector form

(5) x(t) Io dB(s)x(t- s) + F(t),

where the components of the vector F are (0,..., 0, f)r and the components of
the vector x(t) are Xl(t) y(t), x2(t) y’(t), , x(t) y(l-1)(t). We also consider the
associated matrix integrodifferential equation

(6) R’(t) dB(s)R(t-s), R(0) =L

Its solution is called the resolvent matrix R(t). (See, e.g., [12] for a discussion of the
resolvent.) According to Theorem 2.2 in Jordan and Wheeler [8], the resolvent can be
written in the form

(7) R (t) S(t) + N(t) + U(t),

where S LI(0, c) and there exist polynomials &(t) with matrix coefficients such that

Ko K1
N(t) pi(t) e i’rit, S(t)= Y. pj(t) e sit.

j=0 j=Ko+l

Before we state and prove the main results of this section (Theorems 2 and 3) we
require the following preliminary result.
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LEMMA 3. If assumptions (A7) and (A8) are true with Ko 0 (so that N(t)=-0 in
(7)), then for any T-periodic continuous function F, (5) has the unique T-periodic solution

(9) x(t) I_ $(t-s)F(s) ds- U(t-s)F(s) ds.

Proof. It is clear from (8) and from the fact that R e LI(0, o) that (9) defines a
T-periodic, differentiable function. It remains to be shown that x(t) defined in this
manner solves (5). Let us define

V(t)= l S(t)U if t>=0,
(t) if t<0.

Then (9) can be written as

x(t) I_ V(t-s)F(s) ds.

By (9) we have

x’(t)=S(O)F(t)+ U(O)F(t)+I_ S’(t-s)F(s) ds- ft U’(t-r)F(r) dz.

Using the facts that $(0)+ U(0) R (0) I is the identity matrix, that R solves (6) and
(by a slight extension of Lemma 2 in Miller [13]) that U solves (5) with F =-0, we obtain

t--s 0

x’(t) F(t)+ I-oo [Io dB(t-s -u)S(u)- I-o dB(t-s -u)U(u)]F(s) ds

-I,
t--s

:F(t)+I_ (I_ dB(t-s-u)V(u))F(s)ds

I?=F(t)+ dB(t-s-u)V(u) F(s) ds

F(t) +

_
dB(u)V(t-s-u) F(s) ds

F(t) + Io dB(u)(i
F(t) + o dB(u)x(t- u).

Thus x(t) solves (9).
TOM 2. Assume that condigons (AT) and (A8) are true and that the

nonresonance condition,
(Ag) ir in or all pure imaginary roots s ir, 1 N ] N Ko, and or all odd

integers n,
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is satisfied. Then ]:or any Tperiodic, continuous function F with Fourier series

F(t) E Fne i"’’,
odd

there is a unique T-periodic solution

(10) y(t)= E FnHn ei’’’’’,
odd

where

f8*(inw) + N*(inw) Jo U(- t) e i"’’ dt 0

S* is the Laplace transform of S(t) and N*(ino) is the analytic continuation of the
Laplace transform of N(t).

Proof. For e > 0 and small consider the system

x’(t, e)= J0 dB(s) e-Sx(t-s, e)-ex(t, e)+F(t).

The corresponding resolvent is

R (t) e -t (S(t) + N(t)) e-t + e-’U(t).
The unique T-periodic solution is

x(t, e)= S(t-s) e (s) ds- U(t s) e-"-S)F(s) ds

+| N(t- s) e-(’-S)F(s) ds.
J_

The last term can be written in terms of its Fourier series

N*(e + inw)Fn e in,or.
odd

Since N*(e+inw)=O(1/n) as nc uniformly in e6(0, 1], since SLI(O,c) and
U

_
LI(- c, 0), then we can let e - 0 to see that y(t, e) tends uniformly on [0, T] to the

function

(11) y(t) S(t-s)F(s) ds- U(t-s)F(s) ds + E N*(inw)Fn e in’t.
odd

By continuity with respect to parameters (see, e.g., Miller [12, Chapter 2]) it follows that
y(t) is a T-periodic solution of (5). By the nonresonance assumption and linearity, it is
the unique T-periodic solution. The formula (10) as well as the estimate Hn O(1/n)
follows from (11) by elementary considerations. [

We remark that when F has a full Fourier series instead of an odd series of terms,
Theorem 2 remains true under appropriate modification of the nonresonance condition
(A9). Furthermore, we note that under the hypotheses of Theorem 2, if F(t)=
(0, 0," O, f)T and if f X, then L[ y] f has a unique T-periodic solution y Gf
with

(12) y(t)- E fnGn e inwt,
odd
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and Gn O(1/n). Indeed (12) is simply the first component of the vector equation (11).
Consider-next the equation

(13) Ly +f( y + a sin (tot + b)) 0,

where a and b are real constants and a 0. We will find the following convention
useful.

DEFINITION. A map f: R R is said to belong to class if
(i)
(ii)

(iii)

(iv)
(v)

it is an odd ]:unction or an odd relation;
if it is a function, it is required to be piecewise C with discontinuities atpoints

if it is a relation, jump discontinuities at points {xj} as well as hysteresis
discontinuities at ordered pairs {(x :, x//)} are allowed (see, e.g., Fig. 1);
the set of points of discontinuity have no finite limit points; and
there exist constants fo, fl >=0 such that If(Y)[-<-:o +/IIY[ for all y R 1.

f(x)

’[’
x1 x

//

--X2 X2 Xl X

FIG. 1. Typical member of class

In the subsequent results we will require the following assumption:
(A10) leac

Next, we define h(t) a sin (tot + b), F(b) -f(b) and x y + h so that (13)
assumes the form

(13’) L[x -h]=F(x).
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Clearly (13’) has a T-periodic solution if and only if

(14) x=G(Lh)+GF(x)=h+GF(x)

has a T-periodic solution. Here G is the map determined by (12). Periodic solutions of
the last equation can be obtained by using the theory in the previous section. Now we
make the following additional assumption:

(All) Let N(A) be the describing function for the nonlinear term F(x) and let
H(s) be as defined above. Assume there is a point A Ao> 0 at which the
graphs o

A
y and y [H(ito)l [H(iw)-N(A)1-1

a

cross. (This is the usual describing function method for predicting the
existence of forced periodic solutions. See [5, Chapter 3].)

Assumption (All) ensures that the approximate system (/) corresponding to system
(14) has a solution of the form

: Ao sin (ot + B0),

for some real constant Bo.
Next, we define a sequence f,, (x) as follows. For the case where f(x) is a function

with discontinuities {xj}, we can assume that xj < xi+l for all j. For rn => 1 and all ] we
define

6i., min { (Xi+l xi) (Xj Xj-1) }
Also, we define f,, (x) by

if
(xj-1 + xi) <_ x < xi-2

f’(x) lf(x) if (x +8) < x <
(X+ +

2

1. linear if

For the case when is a relation (with hysteresis) we modify the preceding definitions in
the obvious way.

We now state and prove our last result.
THEOREM 3. If assumptions (A7)-(All) are true, if we define M(e)=

fo+fl(e +Ao) and if there exist e and e >0 such that for all x B(, e) we have
1/2

(15) [IGP(F(x)-F())[[+( Y [G,I) m(e)<-el <e,
odd

Inl_->3

then (13’) has a solution x in the sense of Filippov such that xX and such that

Proof. The describing function of fm has the form

2i Io iN., (A) - f., (A sin t) e- dt.

Thus N,,(A) N(A) as rn -a3 uniformly for A on compact subsets of (0, c). Thus
satisfies condition (A11) with the point Ao replaced by a nearby point A,, (i.e., A,, A0
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as m --> oo). Thus, system (E,.) has a solution

.m(t) -t [e i(’t+") e-i(’t+")],

and ., --> as m --> c.
Next, since the ., are bounded, then {PF., (.,)} is a bounded sequence. Moreover,

if x s B(, e) we have

IIFm ()11 <-fo /fl(e / 11211) -<fo /f(e / Ao) M(e).

Thus, all hypotheses of Corollary 1 are satisfied and it follows that there is a
subsequence {x,,} of solutions of the approximate equations (E,) which tend in X to a
weak solution x of (E). The nature of the approximations F,, and known results for
integral equations (see Filippov [4] for general background and Maeda 10] or Kiffe [9]
for integral equation results) can be used to see that the weak solution is also a solution
in the Filippov sense.

We remark that (13) can be generalized to Ly+[o da(s)f(y(t-s)+
a sin (w(t s) + b)) 0 where a satisfies (A7) withM 0. If (14) and (15) are modified
to include the presence of the terms a(inw), then Theorem 3 remains true. This
extension will be needed in IV below.

4. An Example. To demonstrate the applicability of the present results to specific cases,
we consider a typical system such as the one depicted in Fig. 2 where f is a relay with
deadzone as shown in Fig. 3.

a sin tot

s(s + 1)

FIG. 2. Block diagram of the example.

The describing function for f is

N(A)=

This can be found in any standard table (see, e.g., the appendix in [5]). We have

Ly y"’+ 2y"+ y’,

so that

H(s)=s(s+l).
Since c 0, b 0 for k > 1 and tl 0, assumption (A7) is satisfied. Also, assumption
(A8) is satisfied with K Ko 1. The single root is ir 0 and assumption (Ag) is also
satisfied.

The relay depicted in Fig. 3 is clearly in the class . It has only two discontinuities
(at the points r +) and it has no hysteresis. Moreover, fo D and ’ 0 so that
M(e) D will work.

We assume that e and A can be chosen so that 0 < e < < + e < A. When fixing e
and A Ao in our subsequent discussion, we will have to chek that this assumption is
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-8

D

indeed satisfied. Let

A sin wt,

With T 2zr/w we can write

where

and

FIG. 3. Relay with deadzone.

x=+y, and [y(t)l <= e on [O, T].

T

P[F(x)-F()](t) T-1 Io [F(x)-F(Y)] e ion(t--’r) dr

T

+ T-I Io [F(x)-F(2)] e

a cos tot +/3 sin wt,

--ito(t--’r) dr

a - IF(x)-F()] cos tot dr =--r [F(x)-F()] cos s ds,

fl IF(x)-F()] sin s ds.

By the change of variables used above, it is clear that without loss of generality, for
the purpose of estimating the sizes of a and/3, we can assume that to 1. Let tx, t2 and t3
be defined by the relations

Now

A sin tx 8 e, A sin t2 6, A sin t3 6 + e.

F()(t) =0 on 0< < tz,

D on t2 < <,
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and x + y, Ily . Thus, on 0 < < rr/2, F(x) F() can differ from zero only in the
following fashion"

(a) [F(x)-F()](t)=D>O for some or for all on (ta, t2), and/or
(b) IF(x)-F()](t) -D < 0 for such that t2 < < t3

(given the relative sizes of e, 8, and A). Since the errors in (a) and (b) have opposite
signs, they tend to cancel each other. Hence, in the worst case, only one of these errors
occurs. A similar analysis applies to the intervals ]r/2 < < ( + 1)r/2 for/" 1, 2, 3. In
the worst case, the errors on each of these intervals will be of the same sign so that no
cancellations can occur. Thus, the worst case analysis shows that the magnitude [/3[ is the
maximum of the two numbers

(16)

and

(17) --4 D sin dt 4D 2e8 + e

7r 7rA/A2 62+x/A2 (8+e

Simple monotonicity arguments involving a second derivative show that the number
determined by equation (17) is larger than that determined by equation (16).

In each of the four intervals fr/2 < < ( + 1)r/2, for 0-<-<3, the error term
contributing to a is either

D It t2 De
cos dt

7r 7rA’
or

-D tt -De
cos dt

’ 2 zrA

Hence, the maximum possible error for ]a[ is (4De)/(rA). Thus, if ; A sin tot and
x -; + y, Ilyll <_- , then Ile(F(x)-F(;))ll is at most (a 2 +/32)a/2 _a__ E(D, 8, e, A). By the
computation above, we see that

E(D’8’e’A)=4D([zrAx/Ax/28e+e2 ]2 2)1/2_--2 82 + _A2 (8 + e
2

+ e

Condition (15) assumes the form

(18) )1/2[GalE(D, 8, e, A)+D E Io.I=
odd

Here G,, e"’/[ito(ito + 1)2] so that we can compute.lG[ 0.5 and (Y.. odd Io.1 )1/2 
0.048605. 1"1-3

As a specific case, letD a to 1 and let 8 r 0.1. Then (13) assumes the form

y’" + 2y" + y’ +f(y (t- 0.1) + sin (t- 0.1)) 0.
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Condition (A10) will be true if Ao is a solution of the equation

(A)---(A 2cs0"1/1-0"012 4( 0.01
r A2] +- 1- A2jsin20.1-1=0.

This equation is easily solved numerically and yields for & a unique positive root at
A0 1.62904. For these values of the parameters we check (18) numerically. Relation
(16) was solved numerically by replacing < by =, finding the root g > 0 and then
reducing g slightly to find an e which satisfies the inequality. (This can be accomplished
by finding the root by the bisection method.) This procedure yields a nearly optimal
value of e > 0. For example, with the present values of the parameters, e 0.07992 will
work. The relative error in the predicted amplitude of the periodic solution is at most

E
=4.88%.
Ao

To indicate some trends, we tabulate in the following some additional cases"

D 1 a =0.5 Ao= 1.334 =7.01%
Ao

D 1 a 1.0 Ao= 1.629 =4.88%
Ao

D 1 a 2.0 Ao 2.045 3.46%
Ao

D=I a=3.0 Ao 2.632 2.82%. [3
Ao

5. Concluding remarks. At this point, some comments concerning the significance
of some of the hypotheses are in order.

We first note that hypothesis (A10) could be generalized to include relations which
do not satisfy the bound However, a very large class of useful
nonlinear elements which arise in applications may be represented by models which
satisfy this inequality, frequently with fl 0. We further note that hypotheses (A7) and
(A8) are mild technical assumptions which are also easily satisfied in most applications.

Hypothesis (A9) constitutes the usual requirement of the describing function
method that the linear part of system (13) does not admit as a solution any sub-
harmonics. Hypothesis (Ai 1) ensures that the approximate system (/) has a solution .
The remaining hypothesis (15) can be viewed as consisting of two parts. Specifically, the
first term in (15) is small when the describing function approximation is accurate for
nearly sinusoidal inputs while the second term in (15) is small when the linear part of
(13) determines a good low-pass filter.

All of the above hypotheses are normal, natural and expected in typical appli-
cations.
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A CHARACTERIZATION OF THE REACHABLE SET FOR
NONLINEAR CONTROL SYSTEMS*

RICHARD VINTER"

Abstract. The question of whether a set is reachable by a nonlinear control system is answered in terms of
the properties of a convex optimization problem. The set is reachable or not according to whether the value of
the optimization problem is zero or infinity. Our findings strengthen earlier sufficient conditions for a point
not to be reachable, given in terms of Lyapunov-like functions, in that we assure that the functions exist. Our
approach is to embed admissible trajectories in a space of measures, and to apply recently obtained results on
the properties of measures arising in this way.

1. Introduction. In this paper we provide a characterization of the set of points
reachable from a point (x0, to) along solutions of the differential equation with control

(1.1) Yc(t) f(x(t), t, u(t)).

Our main result is that, under very mild conditions, if no point in a closed set F is
reachable from (x0, to), then there exists a continuously differentiable function b (.,.)
which satisfies the partial differential inequality

t(x, t)+&x(x, t)f(x, t, u)<-O,

(c, 04/Ot etc.), and which takes positive values on F and nonpositive values on points
which are reachable from (x0, to). A function with these properties may always be
obtained from a maximizing sequence for a convex optimization problem.

Our methods are grounded in an idea originally due to L. C. Young, that
"trajectories" can be embedded in a space of linear functionals [17]. We introduce a
notion of "weak" reachability which turns out to be equivalent to reachability as
conventionally defined; weak reachability concerns existence of a linear functional
satisfying a certain "convex" constraint. We can exploit this convexity, and obtain
reachability criteria using the methods of convex analysis.

Our characterization is somewhat in the spirit of a theorem of Carath6odory [3]" a
Pfaffian is integrable at a point if every neighborhood of the point contains an
inaccessible point, The inequality (1.2) replaces the Pfaffian identified with the system
of partial differential equations expressing the dynamical constraint (1.1) on the
trajectories, and our function b(., .) replaces the "complete integral" (which is
nonzero on locally inaccessible points and zero on locally accessible ones). Of course,
our results hold under much milder conditions than would be needed to make this
parallel precise [7].

There are points of contact also with the Control Theory literature. Concerning
nonlinear systems, sufficient conditions for either reachability or nonreachability are
known, which involve functions similar to our b(., .) function (see for example [6],
[14]). But we show that such b(., )’s always exist, an apparently new result. It is well
known that, for some linear systems, a necessary and sufficient condition that a convex
set in the output space be reachable at some fixed time can be given in terms of the value

* Received by the editors June 15, 1979, and in final revised form March 17, 1980.

" Imperial College of Science and Technology, London SW7, England. (This research was carried out in
part while the author was visiting the Laboratory of Information and Decision Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 02139.)

am indebted to R. W. Brockett for this observation.
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of a convex optimization problem (over normals to hyperplanes in the output space)
([2], [4], [5], [12]). We too relate reachability to properties of a convex optimization
problem, but do so in a much more general context and use very different methods from
those in the standard linear theory.

Optimality conditions for nonlinear optimal control problems of a similar flavor to
our reachability conditions, in that they involve (.,.)’s which satisfy a partial
differential inequality, are given in [8], [10], [16].

2. Preliminaries. Let D be a compact subset of Rk. We denote by C(D) the usual
linear space of continuous real-valued functions on D, equipped with the supremum
norm.

The topological dual of C(D) is written C*(D). The dual space assumes the dual
norm.

All norms are written ]]. II; sometimes for clarity the norm in question is identified
by a subscript, e.g. I1’ ]Ictus.

The subset P(D) of C*(D) comprises bounded linear functionals which take
nonnegative values on the subset

P(D) {g C(D): g(d) >=0 for all d D,

that is, the usual "closed positive cone" in C(D).
We remark that for elements u P(12), the dual norm of/x is given by

Here "1" denotes the function on D which takes value 1 everywhere.
When D is a (closed) cube in R, we define C(D)(C(D)) to be the usual linear

space of continuously differentiable (infinitely differentiable) functions on, restricted
to D.

The support of an element g e C(D), supp {g}, is the closure of the subset of D on
which g takes nonzero values. We shall use also the notion of the support, supp* {}, of
an element/z in C*(D). The set supp* {/z} is the complement in D of the union of all
relatively open sets t? of D such that supp {g} 6 implies z(g)= 0. This definition of
supp* {} is easily shown to accord with the usual definition of the "support" of the
signed Radon measure which represents/z.

3. The reachable set. Let A +1, 12 ’ be compact sets. The set S is a cube in
+1 such that A = interior {S}. We consider the differential equation with control

(3.1) (t) f(x(t), t, u(t)).

The R"-valued function f(x, t, u) is continuous in its argument (x, t, u) e " " and
satisfies

(3.2) {f(x, t, u): u e l)} is convex for each (x, t) e A.

An absolutely continuous "-valued function {x(t): to_-< <_-t} is a trajectory when
its graph lies in A and when, for almost every e[to, ta], it satisfies (3.1) in which
{u(t): to<_-t <_-tl} is some measurable function which takes values almost everywhere in
l). We say the trajectory emanates from (X(to), to). The function {u(t)" to<=t<=ta} is
called a control associated with the trajectory. We call (X(tl), t) the endpoint of the
trajectory.

Given (Xo, to) e A, we define the reachable set emanating from (Xo, to), Yxo.,o, to be
the subset of A:

Yxo.o {(x(tl), tl): x(t), to <- <- t is a trajectory which emanates from (Xo, to)}.
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Points in Ytxo,to are said to be reachable from (Xo, to). If a set F c A contains a reachable
point, then we say that F is reachable from (Xo, to).

We shall be concerned with characterizing points lying in Ytxo,to, in a manner which
does not involve examining solutions of the differential equation (3.1) for every choice
of control.

The convexity assumption (3.2) has been introduced to simplify the presentation;
all the results to follow apply when the convexity assumption is dropped, provided the
definition of "trajectory" is modified to permit the associated controls to be "relaxed"
controls 11 ].

4. A necessary condition for reachability. The starting point for our charac-
terization is the following simple observation. Suppose that (xa, tl) is reachable from
(x0, to). This means that there exists a trajectory {x(t): to -< -< ta} which emanates from
(x0, to) and has endpoint (x a, ta). Let u(.) be an associated control. Then for any
function c[Ca(S), the function t-c(x(t),t) is Lipschitz continuous and can be
expressed as the "integral of its derivative,"

tl d
,(Xl, tl)-6(xo, to)= -6(x(t), t) at

(4 + rb)(x(t), t, u(t)) dr.

(Here, and subsequently, we use (b+4xf)(x, t, u) as a shorthand for dt(x, t)+
(x, t)(x, t, u)). If b satisfies

(4.1) (b, + 4,fl(x, t, u -< 0
for all (x, t, u)e A x f, then the integrand is nonpositive. It follows that b (x a, tl)-
b(Xo, to)-<_ 0. We have proved the following proposition.

PROPOSITION 4.1. If (xa, ta) is reachable from (Xo, to), then for all c Ca(S)
satisfying the inequality (4.1), we must have c (x a, tl) (Xo, to) -< 0.

In this paper we shall be principally concerned with proving a converse of this
proposition:

If (xa, ta) is not reachable from (Xo, to) then there exists 4 Ca(S) satisfying
inequality (4.1) such that b (x 1, tl) 4 (Xo, to) > 0. Equivalently, in contrapositive form,
if for all b Ca(S) satisfying inequality (4.1) we have cb(xa, h)-4)(Xo, to)-<O, then
(x a, tl) is reachable from (x0, to).

Actually, we shall prove something rather stronger than this in two respects. In the
first place, we shall provide an analogous characterization of closed sets (and not merely
points) which are not reachable from a point (Xo, to). In the second, we shall show that
the characterization may be achieved through C(S) functions rather than CI(s)
functions.

5. A characterization of the reachable set. Let F be a closed subset of A, and let
(Xo, to) be a point in A. Our results are conveniently stated in terms of the properties of
the optimization problem, Pr.(xo,to"

Maximize r/(b) over b C(S) which satisf)

(5.1) (49t + cf)(x, t, u) <= 0 for all (x, t, u) A x f.

Here, the function r/(. is taken to be

(5.2) min b(X1, tx)- b(Xo, to) q C(S).
(x,t)F
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Any b C(S) which satisfies (5.1) will be called feasible. We write sup (Pr,(xo.to)) for
the supremum of values assumed by r/(.) on feasible b’s. When the supremum is
achieved, sup (Pr,(xo,to)) is written max (Pr,(xo,to)).

Our main result is the following.
THEOREM 5.1. The closed subset F c A is reachable from (Xo, to) if and only if

max (Pr.(xo.to)) 0.

It is now a simple matter to show
COROLLARY 5.1. The closed subset F A is not reachablefrom (Xo, to) ifand only if

sup (Pr,(xo.,o)) +c.

Proof. We write P for Pr,(xo,to). If sup (P) +c, then no point in F is reachable from
(Xo, to), by Theorem 5.1. On the other hand, suppose that sup (P)< +c. By positive
homogeneity of the objective function rt(" and of the constraint (5.1) in problem (P),
we have that sup (P) 0. But then max (P) 0, since rt (’) achieves the value zero on the
feasible function (., which is identically zero. It follows now from Theorem 5.1 that
F is reachable from (x0, to).

The substance of this corollary is that, if the closed subset F = A is disjoint from the
reachable set, Yto,to, then an infinitely differentiable O(.,.), satisfying (5.1), may be
chosen so that the values of & (x, t)- &(Xo, to) are bounded below by some arbitrarily
large number, as (x, t) ranges over F. (This is the converse to Proposition (4.1), with
refinements, alluded to in 4). Is a strengthening of our result possible, in which a single
& serves to characterize all points which are not reachable, rather than merely any
closed subset of such points? The answer to this question is not known, but we are able
to characterize all points which are not reachable through a sequence of &’s.

COROLLARY 5.2. There exists a sequence {&/(.,. )} offeasible elements such that

(5.3) lim )i (x, t) ( (xo, to) +,

]’or each (x, t) Yto,to, and

(5.4) lim .sup (x, t) (Xo, to) <- O,

]:or all (x, t) o.to.
Proof. We write for xo,to. Consider the family of neighborhoods i of in A:

{x: IIx -x ll < -x, xl 6 } 71 A, i=1,2,....

(The norm here is the Euclidean norm.) The set Yti is relatively open, whence Yt c, the
complement of Yti in A, is closed. Clearly and c are disjoint for each i. By Corollary
5.1, then, we can choose some feasible b C(S) such that

i(x, t)-i(xo, to)>i for all (x, t)e /c, 1, 2....

The sequence of sets {Yt/c} is monotone; it follows that (x, t) (Xo, to) , as - c,
for any (x, t)e i /c. But the set Yt is closed (see, e.g., [1 1]), whence U /c c,
where Yt c is the complement of in A. We have shown that the sequence {i(., .)}
satisfies (5.3) on the complement of Yr. The sequence satisfies (5.4) on Yt, by Theorem
5.1, since each C is feasible.

6. Weak reachability. In the proof of Theorem 5.1, to follow in 7, "weak
reachability" will have a crucial role. In this section we introduce this concept and relate
it to reachability.
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Suppose that the closed subset F c A is reachable from (x0, to). Then there exists a
trajectory {x(t)" to<=t<=tl} emanating from (x0, to) and with endpoint (Xl, tl) in F. Let
{u(t): to_-< -< tl} be an associated control.

The pair of functions {x(t),u(t): to<-t<-tl} defines a linear functional ix on
C(S x 9.):

ix(g) g(x(t), t, u(t)) dt, g C(S x f).
o

Notice that ixP($xI’), since ix(g) is bounded by (tl-to).llgllc(. for ge
C($ x ), and since ix (g) is nonpositive valued for g P($ x fD.

We also have that

(6.1) ix (t -[- Cxf) (X 1, tl) & (Xo, to),

for all & C(S). This is true since

ix(t -- Cxf) (t + f)(x(t), t, u(t)) dt

d- [0(x(t), t)] dt (x1, tl)- &(x0, to).

Equation (6.1) may be written

(6.2) ix (, + eft) =/3() (Xo, to),

for all & e C(S). In (6.2),/3 is the evaluation map at the point (x, t); that is,/3 is
defined by

/3 (b) q (x 1, tl), b e C(S).

It is clear that/3 is an element in the subset P* (S). We note also that

(6.3) I1 11 1,

and

(6.4) supp* {/3} c F,

(the support of/3, supp* {/3}, is defined in 2).
Now consider the function dA(x, t, u) on A x 12,

min [[(x, t) (y, s )[[.d(x, t, u)
(,

The function dA is continuous, and so may be viewed as an element in C(A fD. We
observe that

(6.5) ix(da) 0.

This is true, since (x(t),t)eA, to<=t<-tl, from which it follows that ix(da)
tt dA(X(t), t, u(t) dt O.

The properties (6.2)-(6.5) prompt the following definition: The closed subset
F c A is weakly reachable from (Xo, to) if there exist ix e Pe (S 12) and e Pe ($) such
that (6.2)-(6.5) are satisfied.

What do the linear functionals ix which "reach" F (that is, ix’s which satisfy
(6.2)-(6.5) for some) look like? We have already exhibited one. But such examples do
not exhaust the possibilities. To illustrate this we consider ix =Yi=l ceiix, a convex
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combination of z’s arising from trajectories xi(" emanating from (x0, to), with asso-
ciated controls ui(. and having endpoints (x, t) in F:

t. (g)= i g(xi(t), t, ui(t) dr.
i=1

The functional x lies in P($ x ) and satisfies (6.2)-(6.5) when/3 is taken as

[ --E Ol.i (Xi, ti),

in which 8(x, ti) means the evaluation map at the point (x, ti). However z does not
correspond to any single trajectory (unless all the/xi’s with nonzero weights, a, are the
same). Thus/z’s which satisfy (6.2)-(6.5), for some/3, can be rather complicated. The
following result is therefore somewhat unexpected"

LZMMA. The closed subset F c A is weakly reachable from (Xo, to) ifand only if F is
reachable from (Xo, to).

Proof. We have already shown that, if the set F is reachable from (Xo, to), then F is
weakly reachable from (Xo, to).

Now let F be weakly reachable from (Xo, to). Then there exist z P(S fl) and
P(S) which satisfy (6.2)-(6.5). Suppose that (6.2) holds for all CI(S) (not

merely Coo(S)). With this assumption, the reachability of F follows as a byproduct of the
proof of [15, Theorem 5.1]. Indeed/z is feasible for the "weak" problem introduced in
[15]. As such, tz defines a feasible element t2 for the "parametric" problem of 15]. We
may associate with fi an "admissible" trajectory {x(t)" to<-t<=tl} corresponding to
some "relaxed" control. But we have assumed convexity of the velocity set
{f(x, t, u)" u f} for each (x, t) A; x(. is therefore also associated with an "ordinary"
control, and defines a trajectory (in the sense understood here) emanating from (x0, to)
and having endpoint in F (see [15, p. 511]).

We remark that here A is permitted to be a general compact subset of
whereas in [15] it was taken as a cylinder set. However all the results and proofs in [15]
carry over to admit our greater generality with only trivial modifications.

It remains to show that (6.2) holds for all CI(s), if it holds for all C(S).
Take any CI(S). The function is the restriction of some continuously differenti-
able function on E"/ to $ (this property is built in to the definition of C(S)). Now
apply Theorems 1.7 and 1.8 of 1, p. 5 et seq.] to the function 4’; we obtain a sequence of
functions {&i} in Coo(S) with the properties

( -F q ixf)(X t, U)" (6t + 6xf)(x, t, U),

$i(x, t) --> $(x, t),

as --> oo, uniformly over (x, t, u) S
But (6.2) is satisfied along the sequence { i} of infinitely differentiable functions.

Since the functions tz and/3 are continuous, and since the functions , 6t + $ff coincide
with the functions &, $ + eft on A f, we have that

/x (t + ff) fl (q)- (Xo, to).

We have shown that we may indeed suppose that (6.2) holds for all e C(S).

7. Proof of the main result.
Proof of Theorem 5.1. Let F be a compact subset of A, and let (Xo, to) be a point

in A. We shall abbreviate problem (Pr.(xo.to) to (P).
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Suppose that the point (x, tl) in F is reachable from (Xo, to). We have already
shown (Proposition 4.1) that, for any feasible &,

t (X 1, tl) d’ (Xo, to) ----< 0.
Certainly, then, we have

min & (x, t) & (Xo, to) =< & (x 1, tl) & (Xo, to) =< 0.
(x,t)F

Thus sup (P)-< 0. But then max (P)= 0, because & 0 is feasible.
We now prove the converse statement. Suppose that

max (P) 0.

Define the transformation from the linear space C(S) to the normed space C(A,x f)
as follows:

(G(O))(x, t, u) (&, + xt)(x, t, u) for all (x, t, u) A x f.

The functional r/(. on C(S) is defined (as before):

r/(&) min O (x, t) & (Xo, to).
(x,t)F

Problem (P) may be expressed: Maximize r/(&) over & C(S) which satisfy the
constraint G(&)e P(A x f), (P(A x I1) is the "positive cone" defined in 2). Now

(i) the function G is linear, and the function r/is concave on CI(s);
(ii) there exists & e CI(s) such that

-G(&) interior {P(A x f)}, (& (x, t) -t will do);

(iii) max (P) < o.
It is well known (see, for example, [13, p. 47]) that, in consequence of properties

(i)-(iii), there exists

such that

P* (A x f)

(7.1) max {r/(&)- A(G(&))} max (P)(=0).

We may associate with an element A cP(S x f) defined as follows"

(7.2) A(g) i(ff) for g C(S x ),

where g is the restriction of g to A x f.
It follows from the definition of A that

(G(&)) A(&t + &xt) for & e ci(s).

Equation (7.1) implies, then,

(7.3) min &(x, t)-&(Xo, to)-A(&t +&t)-<0
(x,t)F

for all & e C(S).
We proceed to show that existence of A c p* (S x i)) which satisfies (7.3) implies

that F is weakly reachable from (Xo, to). We shall require therefore (see 6) that

(7.4) A(da) 0,
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and that there exists some fl P(A) with support in F and of unit norm, such that

(7.5) A(t + &xf)= fl(&)-&(Xo, to)

for all C(S). Equation (7.4) follows from (7.2) since the restriction of dA to A f
is the zero function.

It remains then to construct the functional/3. Equation (7.5) suggests that we
should examine the linear functional

(7.6) A(bt h- exf) + b (Xo, to)

on C(S), and show that it extends to a continuous linear functional on C(S); the
extension may then be taken as defining/3. Since C(S) is dense in C(S), this amounts
to finding a number K such that

(7.7) [A(bt + 4’f) + 4’(Xo, to)l <-- g. max [(x, t)[
(x,t)S

for all & C(S).
By inequality (7.3), we have for any C(S),

A(&t + eft) + &(Xo, to) -h(-t- eft) -(-& (Xo, to))

=<- min {-(x, t)}.
(x,t)F

For all C(S) then,

(7.8) A(, + exf) + (Xo, to) <= max (x, t).
(x,t)F

It follows that

A(&t + exf)+ (Xo, to) -< IIllc(s>,
for all e C(S). But the functional (7.6) is linear; we have therefore

IA(, +f) + (Xo, to)l [1 I[c(s),
for all & C(S). Inequality (7.7) has been verified when K 1.

We have shown that the continuous linear functional fl C*(S) is indeed well
defined as the continuous extension to C(S) of the linear functional (7.6).

We now check that B has the required properties. The functional fl of course
satisfies (7.5) since it is an extension of the map (7.6).

Inequality (7.3) implies that

(7.9) fl () min (x, t)
(x,t)F

for all e C(S) and therefore for all e C(S), by density of C(S) in C(S) and by
continuity of the functions involved. We conclude that lies in the subspace P(S) of
C(S). Likewise, (7.8) implies that

(7.10)

However taking 1 in (7.9) we see that

11/311 =/3(1) 1.

It follows now from (7.10) that
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We deduce from (7.8) that

/3(b) -<_ max 4,(x, t)
(x,t)F

for all 4’ C($). If then b e C($) has support in the open set $\F, this inequality,
together with (7.9), implies that/3 (b) 0. In other words, the function/ has support in
F. This completes verification that fl has the necessary properties which ensure that F is
weakly reachable from (Xo, to). F then is reachable from (Xo, to) by Lemma (6.1).

8. A related characterization of the reachable set. Suppose that the point (x 1, tl) is
not reachable from (Xo, to). It has been shown by abstract methods that, in this case,
there exists some b C(S) which satisfies

(8.1) ()t .at- )xt)(x, t, U) 0

for all (x, t, u) A fl, and

(8.2) (xl, q)-d(Xo, t0) > 0.

It is tempting to try to exhibit such a function b directly. It is far from clear how this
should be done in a general context. However we can always find a function b which
satisfies rather weaker properties. Notice that if b satisfies (8.1), then it also satisfies the
condition"

(8.3)
For any trajectory x(. ), --> 4(x(t), t) is

a monotone nonincreasing function.

The following construction of a function b which satisfies (8.2) and (8.3) (rather
than (8.2) and the stronger condition (8.1)) is due to David Allwright.

Corresponding to (x, t) A, we define the set

x,t {(’, t) A" (x, t) .}.

Thus, x.t is the set of points reachable from (x, t) in "reverse time." Now take

(8.4) 4(x, t)= min {ll(xo, to)- yll: y

for all (x, t) s A.
Obviously, if x (s), <-s -< t, isa trajectory, then 3x(;).;c x(t),t. It follows from (8.4)

then that b satisfies condition (8.3). Now (xl, tl) is not reachable from (Xo, to). This
means that (Xo, to) xl,tl. But under our assumptions xl,t is closed; it follows that
b(xl, t)> 0. Note also that (Xo, to)s 3o.to, so that b(Xo, to)= 0. We have shown that

(x, t) (xo, to) > 0.

On the other hand, if there exists a function b on A which satisfies condition (8.3)
and also

b (:, ) b (x0, to) > 0,

for some (, )A, then (, ) is obviously not reachable. We have proved"
PROeOSITION 8.1. The point (xx, t) is not reachable if and only if there exists a

function qb on A satisfying condition (8.3), and such that

cb (x l, tl) b (Xo, to) > O.

The function qb may always be chosen as (8.4).
We remark that thefunction b given by (8.4) need not be continuous, since there is

no guarantee that the multifunction which carries points (x, t) into the subsets ,t
(equipped with the Hausdorff metric) is continuous.
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In one respect, Proposition 8.1 is superior to Theorem 5.1" in Proposition 8.1 a
single b serves to characterize all points which are not reachable from (x0, to). Theorem
5.1 associates a b function with merely every closed subset of points which are not
reachable from (Xo, to).

Theorem 5.1, however, provides a far tighter test for nonreachability than Prop-
osition 8.1. The theorem tells us that we can confine the search for b’s which satisfy
(8.2) to C functions subject to a simple pointwise constraint on the derivatives (8.1).
By contrast, application of Proposition 8.1 involves a search over general functions, and
ones which satisfy an awkward constraint, condition (8.3), involving as it does certain
properties of the totality of trajectories and therefore the solution to the differential
equation for all controls and all initial conditions.

The fact that Theorem 5.1 does not associate a single 4 with all unreachable points
we may view as the price paid for these advantages.

In the present context, we see the function 4 is of interest principally for suggesting
possible condidates for the function b, whose existence is guaranteed by Theorem 5.1.

9. An autonomous version of Theorem 5.1: a counterexample. Consider now the
situation when the right-hand side of the differential equation does not depend on time"
thus

it(t) f(x(t), u(t)),

and whenA is the cylinder set Q [0, T], with Q some compact subset of n. The set-up
is, otherwise, the same as in 3. We shall denote the set of points reachable from (Xo, 0)
byT

xo.0, rather than ,o,0, to emphasize its dependence on the parameter T.
We now address the problem of characterizing the set x comprising all points in

n reachable from (x0, 0) at some nonnegative time:

xo 15 {x (x,T)Txo)
TO

(we do not use the word "reachable" in the precise sense of 3). Note that oo, is a
subset of ", and not of ,/1

Let Xl, x0 be points in Q. Let K be a closed cube in " such that Q interior {K},
and let b be an element in Coo(K). Suppose that &(xl) 4 (Xo) > 0 and bxf(x, u) <= 0 for
all (x, u) Q f. Then the kind of elementary reasoning that led to Proposition 4.1
gives us that x x. The sufficient condition that results, under which the point X

does not lie in xo, is an autonomous version of Proposition 4.1.
It is natural to conjecture an autonomous version of our main result, Theorem 5.1,

say,
"Suppose that xlclosure {,o}; then there exists some 4 6 Coo(K) such that

cb,f(x, u) <- 0 for all (x, u) Q f, and 4 (x 1) 4 (x0) > 0."
Unfortunately the conjecture as stated is false. This is illustrated by the following,

in which there does not exist even a C function (let alone a C function) with the
required properties.

Example 9.1. Consider

(t)=x(t), t>-_O,
O [-1, +1], D, [-1, +1].

This is a control system in which the control action is trivial. The set o is the single
point {0}. Yet we shall show that there is no point x 0 and no element 4 C () such
that 4 (x 1) b (0) > 0, and

(9.1) 4x(X) X2 <-C
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for all x [- 1, + 1]. Suppose to the contrary that such a b exists. Suppose further that x
’Sis positive (negative X are treated similarly). Then, for e (0, X l],

4(x)-4()

(Ckx(X)" x2) x- dx.

But the integrand is always nonpositive by inequality (9.1). It follows that b(xl)-
b(e) -<_0. However, b is continuous, whence b(x)- b(x0) <=0, a contradiction.

It is instructive to examine the difficulties which we run into when we try to adapt
our methods to obtain an autonomous version of Theorem 5.1. Suppose that x, Xo O
are such that b(x)-b(x0)-< 0 for all b C(K) constrained by $,,f(x, u)<-0 for all
(x, u) s O fI. We should like to conclude (under appropriate conditions of course) that
x s Mimicking our previous arguments, we might consider under what conditions
we have

(i) there exists a functional A s P*(O fI) such that

A(bxf) t(x1) t(x0) for all b Coo(Q),

and

(ii) the existence of such a A implies X s Xo

The difficulties we now encounter are twofold. Firstly the map t" Coo(K)-->
C(Q x l)) defined by

does not automatically satisfy the property,

G(b) s interior {P(Q x )},

for some Coo(K), as is required to deduce (i) from standard theorems. Secondly, an
autonomous version of Lemma (6.1) (this is what (ii) amounts to) is not available.

A possible approach to the problem of obtaining conditions under which an
autonomous version of the theorem applies is to examine a priori assumptions under
which these difficulties may be overcome.
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THE POLYNOMIAL EQUATION QQ +RP= WITH APPLICATION
TO DYNAMIC FEEDBACK*

E. EMREf

Abstract. Based on some recent results in algebraic system theory, necessary and sufficient conditions are
given to achieve a given nonsingular matrix in the denominator of a matrix fraction description of a dynamic
feedback system. A characterization of the required dynamic feedbacklaws is presented.

To achieve this, first, a complete solution is given to a problem of algebra on polynomial matrix
equations.

1. Introduction. It is well known that if O, R are p x p and p x m polynomial
matrices where O is nonsingular and if is a p x r polynomial matrix, then there exist
polynomial matrices O, Pc such that OOc + RPc itI every common left divisor of O
and P is a left divisor of . However, in general, there does not exist a satisfactory
characterization of the polynomial matrices Oc and Pc to achieve this, although one can
find some partial results (see Rosenbrock (1970, Chaps. 2, 5), Wolovich (1974, Chap.
7), Rosenbrock and Hayton (1977), and the references therein). One can obtain a
characterization, the only complete one known, by obtaining a minimal basis for the
kernel of [O, R (see Forney (1977) and Rosenbrock and Hayton (1977)). This requires
first obtaining a particular pair O, P such that OOc + RPc . Then any other pair
Oc, Pc can be obtained as

where M is a minimal basis matrix for the kernel of [Q, R ], and L is some polynomial
matrix. Such an approach does not provide much insight into the problem because this
characterization is in terms of a particular solution which is not unique, and ofM whose
relation to [Q, R is only partially known.

In 2 of this paper, based on a realization given by Fuhrmann (1976), we give a
system theoretic criterion for the existence, and a characterization (a parametrization)
of Qo Pc such that QQc + RPc. This provides a method to construct all such Q, Po
and more insight into this problem. A nice feature of this characterization is that it
directly involves Q and R; these are fixed quantities, and any pair Qc, Pc can be
obtained directly, without first requiring the knowledge of a particular one. We then
show that these results also lead to a characterization of solutions of the general
polynomial equation AX B.

A more difficult problem is to achieve QQc / RPc , with the constraint that Qc
be nonsingular and PcQ- proper. This problem arises when we consider dynamic
feedback, especially in regards to stabilizing a system. For this, the reader is referred to
Rosenbrock and Hayton (1977), Wolovich (1974, Chap. 7), and Emre (1978a).

In 3, based on the ideas of 2, we develop an existence criterion as well as a
characterization (which also provides a method of construction) of all such Qo Pc under
certain conditions. Namely, we consider the set of p p polynomial matrices , for
which there exist two sets of nonnegative integers, {ai}=l and {i}=1, and a p p

* Received by the editors April 18, 1979, and in final revised form March 3, 1980. This research was
supported in part by US Army Research Grant DAAG-29-77-G-0225 and US Air Force Grant AFOSR
76-3034 Mod. B through the Center for Mathematical System Theory, University of Florida, Gainesville FL
32611.

Center for Mathematical System Theory, University of Florida, Gainesville, Florida 32611.
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nonsingular constant matrix T, such that

(1.1)
0 z-% 0 z-p

This last condition, which was first used in Rosenbrock and Hayton (1977) where T was
assumed to be a unit matrix, is a symmetric generalization of row and column
properness of polynomial matrices. It theoretically does not cause a loss of generality.
This issue is discussed in detail in 3. Furthermore, the results of the main theorems in

2 and 3 are valid for the case of an arbitrary commutativity ring, provided that Q is
row proper and T is invertible over the ring.

Finally, in 4, we apply the results of 3 to the problem of pole assignment. In
particular, we give another derivation of a general theorem of Rosenbrock and Hayton
(1977, Thm. 6) and discuss a conjecture given in that paper, which, in the author’s
belief, give more insight into these problems.

2. The equation QQc +RPc =. In this section, we consider the following prob-
lem: Given Q, R, , polynomial matrices with Q nonsingular, do there exist polynomial
matrices Qc, Pc such that QQc + RPc ? If so, how can one obtain such possible pairs
(Qc, Pc)? For this, we first introduce some notation and preliminaries, and then present
a system theoretic solution to the problem.

In the following, K is an arbitrary field. For an integer p _-> 1, KP[z] denotes the set
of polynomials in z with coefficients in Kp. Kp ((z-I)) denotes the formal power series of

--ithe form ,i=k aiz where k is an integer and ai is in Kp.
A formal power series a K((z-1)) is called proper (strictly proper) if k_>-

O(k > 0). z-lKP[[z-1]] denotes the set of strictly proper formal KP-power series. For a
p x p nonsingular polynomial matrix Q, Ko is defined to be the K-linear space of
polynomial vectors x in KP[z] such that Q-Ix is strictly proper.

The K-linear maps II and 1-Io are defined as follows"

II: K’((z-1)) z-1KP[[z-1]]; x -> the strictly proper part of x,

Ho: K’[z] - Ko; x ->OH(O-lx).

For a p x r polynomial matrix with the ith column qi, we define IIo(O) to be the
p x r matrix whose ith column is 1-Io(qi). It is easy to see that to each p x r polynomial
matrix and p x p nonsingular polynomial matrix Q, there corresponds a unique p x r
polynomial matrix QI such that

(2.1) = OOl + IIo(d).

For a K-linear map A" X --> 22 where X1, X2 are K-linear spaces, Im A denotes the
image of X1 under A as a K-linear space. For a matrix B, Sp:B denotes the K-linear
subspace spanned by the columns of B. For a polynomial matrix P, gci(P) denotes the
degree of the ith column of P.

If P is a p x m polynomial matrix with its ith column expressed as pi j’=o aiizl,
where ai, # O, we say that P is column proper iff a11, ’, a, is a linearly indepen-
dent set. P is said to be row proper iff its transpose is column proper (Wolovich (1974,
Chap. 2)).
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We will frequently use the well-known result that if Ol is a p x p column proper
polynomial matrix, then

ptQ-i is proper iff 8ci(Q1)--> ci(Px), 1,’’’, p.

(See Wolovich (1974, Chap. 5).)
Throughout this paper, Q, R are given p x p and p x m polynomial matrices with Q

nonsingular such that
Z := Q-1R

is a strictly proper rational matrix. In what follows, the following lemma and the remark
play a fundamental role.

LEMMA 2.2a (Fuhrmann (1976, 6)). Let 2, (F, G, H) be defined as follows"
G" K -Ko u -Ru,

F" Ko -Ko x -IIo zx ),

H" Ko KP x - (O-lx)_l,
wherefora KP((z-1)), (a)-i denotes the coefficientofz -1. Then E, with the state spaceKo,
is an observable realization of Z. Furthermore, E is reachable iff Q, R are relatively left
prime.

Remark 2.2b. In this realization, viewed as a discrete time system, an input
sequence u=(...,0,...,0, u(-q),...,u(-1),u(0);0,0,...), where q_->0 is an
integer, is denoted by the polynomial vector u(z)--u(-q)z q +...-t-u(O). Then,
IIo(u(z)) gives the state reached by 2, at time 1, with u applied to E which was at
zero-state at t=-q. If ylZ-l+y2z-2+ is the power series expansion of
Q-1IIo(Ru(z)) in z -1, then yi is the output of E at time i. In particular, if u(z) is an
input sequence as above and if Zu (z) P + S where P is the polynomial part and S is the
strictly proper part (as a power series in z-l), then the coefficients of P denote the
outputs of E for _-< 0, and those of S denote the outputs of E for > 0. For details of this
approach to realization theory, the reader is referred to Kalman, Falb, and Arbib (1969,
Chap. 10), Fuhrmann (1976), and Emre (1980).

Let
n := dim 2,

and

Wi :- Im G + Im FG +. + Im FG, 0, 1, ..
Now we have the following theorem, the main result of this section"
THEOREM 2.3. Let Q be a p x p nonsingularpolynomial matrix, and letR be a p x rn

polynomial matrix such that Q-1R is strictly proper. Let be a p x r polynomial matrix.
Then there exist p x r and rn x r polynomial matrices Qc and Pc such that

(2.4) QQc +RPc cb

if[

(2.5) SpK 1-Io((I))c Wn_l.

Proof. Suppose that (2.4) holds. Then using the representation (2.1), we have

ZPc O-llIo(O) + O1 Oc,

and hence

IIo(RP) no().
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But, then, from Lemma 2.2a and Remark 2.2b it follows that the ith column of Pc is an
input driving E from the zero-state to the state which is the ith column of Ho(). Also,
the ith columns of Q-IIo() and Q1- Qc are, respectively, the future and past-and-
present outputs caused by the application of this input. Hence (2.5) must hold.

Conversely, suppose that (2.5) holds. Then to the ith column of IIo() there
corresponds a polynomial vector pci which is an input driving E from the zero-state to
that state. Define Pc to be the matrix whose ith column is pci, 1, , r. Let Qp be the
polynomial matrix whose ith column is the past-and-present outputs caused by peg.
Then, by (2.2a) and (2.2b), we have

ZPc Q-1IIo(O) + Q..
If we define

we obtain
Oc := Ol-Op,

OOc + RPc 001 OQp +
COROLLARY 2.6. For anyp x rpolynomial matrix , there existpolynomial matrices

Pc, Qc such that (2.4) holds iff Q and R are relatively left prime.
Proof. From Lemma 2.2, if Q, R are relatively left prime, then E is reachable. Thus,

for any p x r polynomial matrix , we have

SpK IIo() c Wn-1.
Hence, by Theorem 2.3, (2.4) can be achieved. Since these arguments are reversible the
converse also holds.

Remark 2.7. From the proof of Theorem 2.3, we characterize pairs of polynomial
matrices (Pc, Qc) to achieve (2.4) for a given polynomial matrix , and obtain a
computational method to find them. We first compute a concrete realization from the
given Q and R, by calculating matrix representations/% , of the F, G, H defined in
Lemma 2.2, relative to some bases of K’, Ko and Kp. We also obtain the matrix
representation of IIo(), which will be a matrix over K, say . Then the condition’(2.5)
is clearly equivalent to the condition that

rank [t,/(,...,/n--l] rank [t,..., pn--l,
Then the set of all possible Pc to achieve (2.4) corresponds to the set of all possible
solutions of the linear matrix equations in X,

(2.8) + ItS, .,/O’S]X,
for all for which the resulting equation has a solution.

Of course, it would be more convenient to solve (2.8) for each column of
separately, thereby obtaining the corresponding columns of possible Pc to achieve (2.4).
Thus, (2.8) provides a characterization of such Pc’s. Once a Pc is obtained, we get the
corresponding Qp (past-and-present outputs caused by Pc), as the polynomial part of
Q-RPc. Then Qc is simply equal to Q1-Qp. Note here that to every Pc there
corresponds a unique

Remark 2.9. It also follows that the least possible value for 8c(Pc) is the least
integer k for which the ith column of IIo() is included in Wk. 8c(Qc) is determined by
the ith columns of Q and Q1.

Remark 2.10. The results of this section provide a characterization (parametriza-
tion) of solutions of the general polynomial equation AX B, where A, B are given
p x m and p x r polynomial matrices, and X is an m x r unknown polynomial matrix.
This can be seen as follows. If A is not of full row rank, then there exists a p x p
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unimodular polynomial matrix M such that MA [1], where A is a/(-<p) x m row
Baproper polynomial matrix. (See Wolovich (1974, Chapter 2).) Let MB [B2] be parti-

tioned accordingly. Then clearly a polynomial solution exists itt B2--0 and A1X B1
has a solution. Let A be the highest row coefficient matrix of A 1. As A is row proper,
A has full row rank. Hence there exists an m x m nonsingular constant matrix T1 such
that /IIT1 [Io, 0]. Let A1T1 [O, R] be partitioned accordingly. Then O is row
proper and gri(O) > gri(R). Thus Q-1R is strictly proper. LettingJ := T-(1X, we obtain
the equation

[Q,R]X=B1,

to which all the results of this section can be applied. Thus we can obtain a charac-
terization of all possible X.

3. Linear tlynamie feetlbaek. In this section we apply the ideas of 2 to the
problem of modifying a system by dynamic output feedback.

Let Z be a p x m strictly proper rational transfer matrix with the dynamic
interpretation

y Zu.

We apply the dynamic feedback law

u -Zcy + v,

where Zc is an m x p proper rational matrix and v is the external input. Then the closed
loop transfer matrix Z can be written as

Z lip + ZZc]-lZ.
We assume that Z is given in a left matrix fraction form as

Z

We express Zc in a right matrix fraction form as

Zc PcO-1.
Then we obtain a matrix fraction description of Z as

Now we consider the following questions" Suppose is a given p x p nonsingular
matrix. Can we find a proper rational matrix Zc with some matrix fraction description
Zc PO-2, such that OOc + RPc ? What are necessary and sufficient conditions on

to achieve this? How can we characterize such a matrix Zc when one exists? What can
be said about the dynamic orders of such Zc’s?

The following theorem gives an answer to these questions for the case where (1.1)
holds and a characterization of possible Oc, Pc can be obtained from its constructive
proof. In the following, whenever O is referred to as row proper, it will be assumed that
its highest degree coefficient matrix is Ip. Since this can always be achieved by a constant
nonsingular output transformation, this does not cause a loss of generality.

THEOREM 3.1. Let rb be a given p x ppolynomial matrix. Let 0 be a given row proper
p x p polynomial matrix with highest degree row coelficient matrix I and row degrees
tx >-" >- , and let R be a given p x m polynomial matrix such that O-aR is strictly
proper. Let Pc be a given m x p polynomial matrix. Then there exists a column proper
polynomial matrix Oc, such that PO-2 is proper and

(3.2) O0 +RP ,
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iff there exist integers yl >-" >- yp >- 0 such that the following conditions hold.

(i) !irn { * T
I._ 0 Z v-, z-V,

exists and is nonsingular, and

(ii) yi >-_ 8i(P) >= r l, i= 1, p,

where ri is the least integer k for which the ith column of IIo (), qi, is in Wk-1, and Pc is a
polynomial matrix whose ith column is an input which drives E from zero-state to
Further if (i) and (ii) holds, then T is the highest degree column coefficient matrix of Qc,
and yi is the ith column degree of Q.

Proof. Suppose that Z PQ is as in the hypothesis, and that (3.2) holds. Then
by Theorem 2.3 we have Sp Ho() W,_. Also, the ith column of P is an input
which leads from zero-state to the state i. Since ri- 1 is the degree of a minimum
length input driving to i from the zero-state, we must have 8(P)ri- 1. Then,
since pQX is proper, we must have yi=Sci(Qc)Sci(Pc)ri-1, which proves (ii).
Furthermore, we have

, }JL{
0 "z- L 0 "z -"

lim (00 +RP)
z- k 0 z-

=/p T+0=T,

which proves (i).
Conversely, suppose that (i) and (ii) hold for the given set of integers

yp-> 0. Now express as

Then, by (i), we have

(3.3) r lim ( QQ
"Z--*" 0

Suppose that

Z --’Y1

1irn {01
0
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does not exist. Then

Z -’/1

O1
0

is not a proper rational matrix. Since

neither is the product of the two rational matrices, which contradicts (3.3). Hence

0 Z -’/"

is a matrix with finite entries. Thus, the limit of the product is equal to the product of the
limits, i.e.,

T=Ip" limbO1
0 "Z

which proves that Q1 is a column proper matrix with the highest degree column
coefficient matrix T, and the column degrees 3’1,"’,

Now choose Pc such that the ith column of Pc drives E from the zero-state to qi and
such that Yi ci(Pc) ri 1. Let Q be the polynomial matrix whose columns represent
the past-and-present outputs due to Pc. Define Qc := Q1 Qp. Then QQc + RPc. As
Z is strictly proper, 8ci(Qp) < 8ci(Pc), "i 8ci(Q1) /ci(Pc) > 8ci(Qp), which implies that
Qc is column proper with the highest degree column coefficient matrix T and 8ci(Qc)
yi. As yi --> r 1, Zc := PcQ- is proper. This completes the proof.

Remark 3.4. The second part of the proof of Theorem 3.1 provides a charac-
terization and a method of construction of the possible pairs (Qc, Pc), to achieve (3.2)
with a proper Zc, along the lines given in Remark 2.7.

Remark 3.5. Equation (3.3) proves that for a given satisfying conditions (3. li-ii),
the upper bound of the orders of the compensators to achieve (3.2) is Y7=1 Yi. If the
resulting Qc, Pc obtained by the method suggested in Remark 3.5 are not relatively right
prime, one can achieve the same Zr with a compensator of lower order. Therefore, a
nontrivial problem of interest is to obtain Qc, Pc, satisfying (3.2), with nonunimodular
common right divisors, thereby obtaining simpler compensators. This indicates the
necessity of deeper research on the method of Remark 3.5.

Remark 3.6. Another problem of interest is to find conditions for relative right
primeness of Qc and QQc + RPc, and relative left primeness of R and QQc + RPc, for a
better understanding of the resulting system Zr.

Remark 3.7. In Theorem 3.1 we have assumed the condition (3.1i) on
Theoretically, this is not a constraint on because whenever OOc + RPc for some
Zc := PO-21 which is proper, there exist unimodular polynomial matrices M1, M. such
that MlCbME satisfies (3.1i) for some integers ,/1-->""-->’/p. However, there is not a
known general procedure to determine (the existence of) such M1, ME and {y}’= for a
general p x p polynomial matrix .
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First of all, for a given p p nonsingular polynomial matrix , the possible sets of
{i}i--1, ax= .=a 0 and ill- "’=ft.>0, are not in generalintegers {ai}7=l and " >.. > >- >. >

unique such that the condition

(3.8) lim MIM2 T,
z-,oo

0 0

where T is a nonsingular constant matrix, holds for some unimodular polynomial
matrices M1 and M2, if any exist. This fact is clear by considering the case where is a
scalar polynomial.

However, condition (3.1i) dictates that for (3.2) to be achieved, it is necessary to
have O /-/,i, 1, , p.

The question which arises now is the following. If we constrain O to be equal to

/xi for 1-<_ =<p, is the set of integers fl->_...’/3p->_0 unique for which there exist
unimodular polynomial matrices M1, M2 such that (3.8) holds?

The answer to this question is not known at the present. It can be approached by
considering those nonsingular p p ’s which can be written in the form
(I)1Tx T2(I)2, where x and (I)2 are p 3’ and y p’(y >- p) polynomial matrices of rank p.
Then M1 (or ME) can be chosen such that Mt:I)x((I)2M2) is row (column) proper. Ta, T2
are constant nonsingular matrices such that (3.9) holds for some nonsingular constant
matrix T. In this case, (3.1i) requires that the row degrees of M11 be {/zi}’=l. In
general, this approach requires considering such factorizations of a polynomial matrix. For partial results the reader is referred to Emre (1978b), Fuhrmann (1977) and the
references given there.

Another possible approach is to choose 1 and 2 in a suitable way a priori. The
simplest case, of course, is to choose y=p. In this case, we will have
QcapXTT- -XR. For a treatment of the pole assignment problem for this case, the
reader is referred to Emre (1978a).

Remark 3.9. In Remark 3.7 we have considered the general case of the existence of
Mx, M2, {ai}’=x, {/3i}’=x. If we consider the problem of pole assignment only, there is, as
we will see in the next section, a technique given in Rosenbrock and Hayton (1977,
Lemma 1), which makes the application of Theorem 3.1 to derive previous techniques
of pole assignment possible.

Remark 3.10. Clearly, the results of Theorem 2.1 and 3.1 are also valid in the case
where K is an arbitrary commutativity ring, provided that Q is row proper (i.e., the
highest coefficient row matrix of Q is invertible over K), and T is invertible over K.

4. Pole assignment. In this section, we will apply the results of 3 to the problem of
pole assignment. In particular we derive a theorem of Rosenbrock and Hayton (1977,
Thm. 6) and discuss a conjecture given there. Our derivation provides more insight into
this theorem, and also a characterization of the dynamic feedback systems to achieve
the desired pole assignment.

In what follows, for 4 K[z], (0) denotes the degree of
THEOREM 4.1. Let {0}’=1 be a sequence of monic polynomials with Oi dividing

0-1, 2, , p. Assume that Q and R are left prime. Let Vl be the largest reachability
index ofZ. Then a sufficient condition for the existence ofa proper rn x p rational matrix Zc
with a matrixfraction description Zc PcQ- such that the invariantfactors ofQQc + RPc

As it is shown in that paper, previous pole assignment results, such as those of Brasch and Pearson
(1970) and Rosenbrock (1970, pp. 190-193), can be obtained from this theorem.
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are !1, tp, is
k k

(4.2) Z 8(Oi)->- Z (/xi+Vl-1), k 1,...,p,
i=1 i--1

with equality holding when k p.
Proof. First we need the following lemma.
LEMMA 4.3 (Rosenbrock and Hayton (1977, Lemma 1)). Let {Ol {i}=1}=, be two

sequences of integers such that a >-. >- cep >- 0 and >-. >- p >- O. Let {0}’= be a
sequence of given monic polynomials such that d/ divides i-1, 2,. p. Then there
exists a p x p polynomial matrix whose invariantfactors are {}’= and which satisfies

lim [diag (z-’) diag (z-’)] Ip

6(0)>= (a+/3), k 1,...,p,
i=1 i=1

with equality holding when k p.
Now suppose we are given a set of polynomials {Oi}’= as in the hypothesis. Then

from Lemma 4.3 with ai =/xi and fl vl-1, 1,..., p, there exists a p x p poly-
nomial matrix which satisfies (3.1i) with yi vt- 1, 1, , p. As Q, R are
relatively left prime, is reachable. Since every state can be reached in Vl steps, ri in
(3.1ii) is always less than or equal to Vl. Hence, by Theorem 3.1, the proof follows.

Remark 4.4. A method to obtain a polynomial matrix as in Lemma 4.3 is given in
the proof in Rosenbrock and Hayton (1977). Results of 3 not only yield insight into
why Theorem 4.1 is true, but they also give a characterization (a parametrization) of the
possible compensators Z PcQ-2 to achieve QQ +RP.

Remark 4.5. There is a conjecture in Rosenbrock and Hayton (1977, 6) which
considers whether, assuming that p _-< m, (4.2) can be replaced by the more symmetric
and sharper condition

k k

(4.6) Y 8(4’,) -< Z (z, + v,- 1), k 1,..., p,
i=1 i=1

with equality holding when k p.
The validity of this conjecture would imply that for each such set of {Oi} i=1

satisfying (4.6), there exists at least one set of integers {t}’=, t >=... >-to >=0, not
necessarily t v, such that

k k

(i) Y’. 8(4,,) <- Y. (Ix, + t,- 1), k 1,..., p,
i=1 i=1

with equality holding when k -p,
(ii) there exists a polynomial matrix whose invariant factors are , , Op, as in

Lemma 4.3, with a =/zi and/3 ti 1, 1, ., p, such that the/th column of IIo()
is reachable in t steps.

However, the problem of checking whether this implication is true does not seem
to be tractable at this point.

Remark 4.7. In 3 and in this section we have assumed factorizations of the form
Z Q-1R and Z PcQ2. Dually, one can use factorizations of the form Z PQ-X
and Z =Q2R, use the expression Zr=Z(I,, +ZZ)-, and apply the same results
after transpositions. In this case, the roles of the reachability and observability indices
and p and rn change.
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NONLINEAR COMPLEMENTARITY PROBLEMS IN A
FUNCTION SPACE*

TAKAO FUJIMOTO?

Abstract. A class of nonlinear complementarity problems defined by compact operators is considered in
the space of continuous functions on a compact Hausdorff space, and an existence theorem established. The
method of proof is based on Schauder’s fixed-point theorem. Related topics such as a least element and
indifferent optimization problems are also discussed.

1. Introduction. Many contributions have been made concerning the existence
and the uniqueness of solutions for complementarity problems. In the case of nonlinear
complementarity problems (NLCP), the reader is referred to Karamardian [6], [7],
Eaves [3], Mor6 [11], [12], Kojima [8] etc. (For the linear case, see, e.g., Kaneko [5]). In
recent issues of this journal, Fisher and Tolle [4] and Watson [16] have provided
constructive algorithms for finding solutions to NLCP problems together with general
existence theorems (see also the literature in [4] and [16]). These algorithms are closely
related to those for finding fixed-points of nonlinear mappings or solving nonlinear
equation systems.

On the other hand, in 1972, Cottle and Veinott, Jr. [2] characterized the convex
polyhedral sets having a least element. Following this work, Tamir [15] showed
complementarity properties associated with z-functions and m-functions. Simple
proofs of these properties are given in Bod [1]. The purpose of the present paper is to
extend some of the results by Tamir and Bod to a function space. Our proof is similar to
that in the finite dimensional case and is based on a fixed-point theorem by Schauder.

:. Notation and complementarity problems. Let S be a compact Hausdorff space
and C(S) be the set of continuous functions on S. The symbol 0 stands for the null
element of the Banach space C(S). K denotes the cone of nonnegative continuous
functions on S. A partial order is introduced by the cone K; i.e., x >= y (x, y C(S)) if
x y K. A function x min (x, , x) for x, ., x C(S) eans that defined by
x(s) rnin (x(s), , x"(s)) at each point s in S; max (x ,. ., x is similarly defined.
Let T tge an operator from K into C(S).

In this paper we consider the following class of nonlinear complementarity
problems.

(NLCP): Find x K such that x Tx b >= 0 and min (x, x Tx b) 0, where b
is a given element in C(S). We make the following assumptions.

A.1. T is compact (or completely continuous).
A.2. T is monotone with respect to K; i.e., Tx >= Ty if x ->_ y for x, y K.
A.3. There exists an x K such that x- Tx- b >= O.

3. Existence. First we prove an existence theorem.
THEOrZM 3.1. Given A.1-A.3, there exists a solution to the NLCP.
Proof. Let us consider the mapping F defined as

F x K - Fx max Tx + b, 0).

F is also compact (Yosida [17, p. 278]). Next define the set D ={xlx K, x -<_x}, where
0x is the element given in the assumption A.3. D is bounded, closed and convex. By A.2

* Received by the editors September 10, 1979, and in final form March 10, 1980.
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it is clear that F maps D into itself, i.e.,

FD {Fxlx D} c D.

By A.1, the set FD is compact. Thus Schauder’s theorem [14, p. 175] insures the
existence of a fixed-point x*"

x* Fx* max (Tx* + b, 0).

It is not difficult to see that x* is a solution to the NLCP.
Remark 3.1. x* can be approximated by an iterative method. Define x 1=

max (Tx + b, O) and successively x n/l
max (Tx + b, 0). The sequence {x} is mono-

tone and convergent by A.1.
Remark 3.2. Note that a fixed-point x* found in Theorem 3.1 satisfies the

inequality x * -<_ x.
4. Least element. Now define the set E--{xlx K, x- Tx- b >-_ 0}. An element

x** of the set E is called a least element if x** -< x for all x E. We have
THEOREM 4.1. Given A.1-A.3, there exists a least element in E.
Proof. Denote by E* the set of fixed-points of the mapping F from D into D.

Clearly E*c E. E* is closed and contained in the compact set FD. So, E* is also
compact. Now define the set E for each s S"

Es =- {x’Ix* E*, x*(s) <= y*(s) for all y* E*}.

That is, Es is the set of functions in E* which attain the minimum value at s among those
functions in E*. Es is not empty, since E* is compact, and moreover E is closed. For
any finite set I={s, s}S, sEs . To prove ,this, take x* E for each
s L Then, the function x mins (x s* } is in E by A.2. Noting Remark 3.2, we know
the existence of an element z* E* such that z* <= x. This implies that z* < x* for all
s /, and thus z* sEs. This finite intersection property means sEs by the
compactness of E*. Denote by x** an element in 7)sSEs. Evidently x** E* and
x** -<_ x* for all x* E*.

Now take any x in E. Define x min (x, x) E D. Theorem 3.1 and Remark
3.2 ensure the existence of an element x*E* such that x* =<x<=x. Therefore,
x**<=x for all x E. [1

Remark 4.1. A least element of E is clearly unique.
Remark 4.2. A least element of E is a solution to the NLCP because x** is in E*.

5. Inditlerent optimization problems. A scalar function f(x) defined onK is said to
be isotonic if x-> y for x, y K implies f(x)>= f(y). Now consider the following pro-
gramming problem"

(P)" minimize f(x) subject to x K and x- Tx- b >= O.
THEOREM 5.1. Given A.1-A.3, a leastelementx** ofE is a solution to the problem

(P) whatever isotonic .function is specified as an objective function.
This theorem is easily proven by the definitions of a least element and the set E.

6. Uniqueness of a solution to the NLCP. We make one more assumption (see
Yun 18])"

A.4. x -< y for x, y e K implies x Tx y Ty.
Here x -< y means y-x e K-{0}. Almost needless to say, if T is contractive, i.e.,

IlTx Tyll < IIx Yll for x, y e K, then A.4 is satisfied (11" denotes the maximum-norm).
THEOREM 6.1. Given A.1-A.4, the NLCP has a unique solution.
Proof. Let x* be a solution and suppose z* is another solution different from x*.
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Define a set U ={sis S,, x*(s) < z*(s)}. Without loss of generality, we assume U is not
empty. First note that z*(s)> 0 for s U, and so

(6.1) (z* Tz* b)(s) 0 for s U,

because z* is a solution to the NLCP. Next define a function y --max (x*, z*). From
A.2 and A.4, we have

(6.2) (y Ty)(s) > (x* Tx*)(s) >- b(s) for some s e U.

By A.2, on the other hand, we have

(6.3) (z*- Tz*)(s) >= (y Ty)(s) for all s e U.

From (6.2) and (6.3), it follows (z* Tz*)(s) > b(s) for some s U, contradicting (6.1).
Thus, x* must be a unique solution.

7. Additional remarks. When the operator T is a linear integral operator on
C([a,/3 ]), a necessary and sufficient condition for T to be compact is known (see Radon
[13]). Closely related to our analysis is the memoir by Krein and Rutman [10] in which
nonlinear compact operators were dealt with in relation to the eigenvalue problem of
positive operators (see also Krasnoselskii [9]).
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ON KALMAN’S PROCEDURE FOR THE COMPUTATION OF
THE CONTROLLABLE/OBSERVABLE CANONICAL FORM*

DANIEL L. BOLEYT

Abstract. An example is given in which the algorithm given in [Kalman, SIAM J. Control Ser. A,
(1963), pp. 152-192] to compute the joint controllability-observability decomposition fails.

In 7 of Kalman [1], there is described a procedure to compute the joint
controllability-observability decomposition of a linear time-invariant dynamic system,

x=Fx+Gu,
(1)

y Hx,

where I follow the notation in Kalman [1]. In its basic outline, the decomposition
proceeds in four steps which are sketched as follows:
(2.a) Controllability decomposition.

Compute a transformation to transform the system (1) to the form:

y=Hi.

(2.b) Provisional observability decomposition.
Treating each subsystem

11 Viii1 + Gin,

2 F222,

in isolation, compute the observability decomposition of each of those two subsystems.
The result has the form

At this point,

F F2 F F41
i=

0 F;3 F;4
x+

0 0 F4/

y=[0 H 0 n].

U

fl represents the controllable unobservable part C 0,
F2 represents the controllable observable part C O,
F3 represents the provisional uncontrollable unobservable part C O,
F4 represents the provisional uncontrollable observable part O.

(2.c) Decoupling.
Compute a transformation to zero out f3, the coupling between the controllable

observable (C O) part and the uncontrollable unobservable (C O) part, without filling
in the zeros already computed.

* Received by the editors October 16, 1979, and in final form February 29, 1980. This research was
supported in part by the U.S. Army Research Office under grant no. DAAG29-78-G0179.
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KALMAN’S FROCEDURE 625

(2.d) Final observability decomposition.
Compute a transformation that will adjust the observability split in the

uncontrollable half (C O + C O) to give a final result that has the form

r=[0 H 0 H]z.

In Kalman [1 ], it is stated that the dimension of the C O part, F33, should be at least
as big as the same part, F3, in the complete decomposition after step (d); and
conversely, the C O part, F4, should be no bigger than the same part, F44, in the
complete decomposition, since the two parts together will have the same dimension.
However, an example is presented here which does not have this property.

In this example, part C O, which should be of dimension 1 in the complete decom-
position, comes out empty. We start with the final decomposition, and transform it into
a form in which part C O will be empty by applying only similarity transformations. We
start with

-2 -1 1 1 1

(3) F=
0 2 4

G= H=[0 1 0 1].

0 0 0 1 0

Note that this is in a fully decomposed state, in the same order as is described in step (d).
Note also that this system has distinct eigenvalues, and thus is diagonalizable. We apply
the transformation"

1 0 0 0
0 1 1 0

0 0 1 0
0 0 0 1

by computing F TFT-1, G TG, H HT-, to get the equivalent system represen-
ted by:

-2 -1 2 1 1

00-135 10(4) F=
0 2 4

G= H=[0 1 -1 1-].

0 0 0 1 0

In the same way, we then apply the orthogonal transformation

0 1/4 1/4’
0 1/4-1/4J
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to return H to its original zero structure [0 X 0 X]. We obtain:

-2-1 3/4 1/4 1

0

0

-1 8/x/ -2/x/
(5) F=

0 7/2 -3/2
G= H=[0 1

0 0 5/2 -1/2

Note that the controllable part (upper left 2 2 block) has been left unchanged.
If we treat each half, controllable and uncontrollable, in isolation, and compute the

observability decomposition for each half, we get a (correct) C O/CO split into two
parts of dimension 1 and 1 respectively for the controllable half, but we get a
(misleading) C O/CO split into two parts of dimension 0 and 2 respectively for the
uncontrollable half. In short, it looks as if the entire uncontrollable part is observable.
Since part C O (block F3 in (2.b)) is empty, steps (c) and (d) are empty steps--there is
no coupling to adjust for and we have what the procedure would give as the final
decomposition. When part C O of dimension 1 is added in, it would appear that the
dimension of the entire observable part is 3, whereas it should be 2. This should be clear
both from system (3) and from the fact that rank [H, HF, HF2, ...] 2, for one can
easily compute that HF2= H.

Conclusion. An example has been exhibited which fails to have a property essential
to the commonly used procedure for computing the joint controllability-observability
canonical form of a linear dynamic system.
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NONUNIQUENESS OF SOLUTIONS IN THE CALCULUS OF
VARIATIONS: A GEOMETRIC APPROACH*

DOMINIQUE HENRII"

Abstract. Differential topology is the latest of the many mathematical tools which have been used in the
study of optimization problems. In this paper we apply it to the fundamental problem of the calculus of
variations in ":

e,r Inf f(x(t), 2(t)) dt,

x(0) :0, x(T) :.
We show that if f is smooth, coercive (i.e., grows quickly at infinity), and convex with respect to , this

problem has exactly one solution for almost every end condition (, T). Then, using Thom’s transversality
theorems, we classify those points (t, T) in n where there is more than one solution (the singularity set).
If the dimension is low (n-<_ 4), there are but a finite number of singularity types which will fit almost all
functions f.

Preliminaries.
0.1. Value function. Let f:nx In- be a C mapping satisfying the three

following assumptions.
(i) For every " n, the mapping r/-> f(r, /) is convex.
(ii) There exists a convex, monotone function @, bounded from below, from / to

R, such that

@(t)
lim +oo

t-> /oo

and

(iii) For every (, ) x, the matrix of the second partial derivatives of f with
respect to W,

is positive definite.
We associate with f the problem

T

inf fo f(x(t), 2(t)) dt,

where the infimum is taken over all absolutely continuous functions x, from [0, T] to Nn
(with derivative 2 almost everywhere) satisfying

x (0) so0, x (T) :,
so0 being a fixed point in " and (sc, T) lying in x ]0, +oo[.

Let ,T denote this problem and V(s, T) the value of this infimum.
DEFINITION 0.1. The function (, T)-> V(, T) defined on x ]0, +oo[ is called

the value function (or the Ltatnilton-Jacobi-Bellman function) of the problem.

* Received by the editors December 12, 1978, and in revised form November 23, 1979.

" Centre de Recherche de Math6matiques de la D6cision, Universit6 Paris-Dauphine, 75775-Paris
Cedex 16.

627



628 DOMINIQUE HENRI

It is a well-known fact (see [8]) that, under the hypotheses (i) and (ii), the
problem .r admits, for every (:, T), at least one optimal solution satisfying the Euler
Lagrange (E. L.) equation

d
f’(x(t), (t)) -fn(x(t), (t)).

It follows from condition (iii) that this last equation can be solved with respect to
5/(t), yielding

(E. L.) /(t) E(x(t), (t)),

which shows that the optimal solutions are smooth.
But, in general, the optimal solution is not unique for every (sc, T), and it is

intuitively clear that one of the reasons for which V may fail to be differentiable lies in
this fact. This point will be dealt with in Theorem 1.

We first state the simplest result concerning the value function.
THEOREM 0.1. V is locally Lipschitz on Rn ]0, / [.
LEMMA 0.1. Let K be a compact subset of ]0, / [. Then, there exist non-

negative constants Ar and B: such that, for every optimal solution x of ,T with
(, T) K, we have

IIx(t)l]<=A II(t)ll<_-B t[0, T].

Proof. See [9]. (This is an unpublished result of I. Ekeland.)
COROLLARY. Let K be a compact subset of ]0, +oo[. Then, the family of all

optimal solutions of ,, with (, T) K, as well as the family of their derivatives, are
equi-Lipschitz.

Proof. Immediate consequence of Lemma 0.1 and the (E. L.) equation.
Proof of Theorem 0.1. Let (:, T) and (: T’) be two points in K, x and x’ optimal

solutions of ,r and ,T’, respectively.
We associate with x and x’ the path y defined on [0, T] by

y(t) x - T’ +(- ’).

Since y (0) :0 and y (T) , we have

(,) foTf(y(t), p(t)) dt >- V(, T).

Using Lemma 0.1 and the fact that ]’.is locally Lipschitz, we can easily find constants
M and N (depending only on K) such that

T T’

Jo f(y’ y;) dt <- Jo f(x’, :’) dt +MII- ’11 + NIT T’I,

which, taking (*) into account, yields

w(, T) W(’, T’) _-< MII- ell / NI T- T’I.
We complete the proof by introducing

tT)y’(t) x +--7(: :),

which leads to

V(sc’, T’) V(sc, T) -<_ MII ’l[ / NI T r’l. Q.E.D.
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0.2. Local e-supports. Let E be a Banach space, E* its topological dual. Let
(.,.) and I1" denote respectively the bracket: E* E -> R and the norm on E.

DEFINITION 0.2. Let f be a real valued function on E, and let e > O. We shall say
that f is locally e-supported at Xo E, if there exists an open neighborhood ll of Xo and a
bounded linear functional u, such that

(x)-f(xo)>-(u*o,x-xo)-IIx-xoll Vx e .
This definition can be looked upon as a weak differentiability property. For more

details, see [6]. Its main interest lies in the following theorem:
THEOREM 0.2. Suppose that the mapping x -> Ilxll: E-> + is Frdchet differentiable

on E -{0}. Then, for every lower semicontinuous function f E --> R, and for every e > O,
the set of points where f is locally e supported, is dense in E.

Remark. The assumption made upon E covers the case of spaces En and more
generally, of all Hilbert spaces, but also of many standard spaces of analysis, for
example Lp, with 1 < p < +.

We shall apply Theorem 0.2 to the value function V in order to derive a uniqueness
result about the optimal solutions.

1. Generic uniqueness and differentiability of the value function. We keep the
notations and hypotheses of the preliminaries and state now a first result about generic
uniqueness.

PROPOSITION 1. The set of points (, T) ]0, +oo[0 such that there exists a
unique solution to the problem ,T, contains a dense Ga.

Remark. If f(x, 2)= (a(x)2, 2), where a(x) is a positive definite matrix, Pro-
position 1 is nothing else but a well-known result of Riemannian geometry, which
holds in infinite dimension (see [4]).

The proof of Proposition 1 will involve two lemmas.
LEMMA 1.1. Let K be a compact subset of ffn]O, +c[. Then there exists a

nonnegative constant Mr such that, for every e >0, if V is locally e-supported at
(, T) K, the following inequality holds for every pair (Xl, x2) of optimal solutions of

II2 T) 2(T)II <- MKe.

Proof. Suppose V is locally e-supported at (:, T) e K. There exist c > O, u [n, 0 e
such that

I[-’[l+ IT- T’I_<- c => v(’, T’)- V(, T)_->(u, ’-)

+ O(T’- T)-e(II-’II+]T- T’I).

Let x be an optimal solution of e,T. With every :’ such that I1’- ll <- a, let us associate

the path ye, defined on [0, T] by

y(t) x(t) +(’- ).

We have

ye,(o) x (o)= o,
ye,(T) x(T) + (’- )

In other words, a countable intersection of open dense subsets.
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therefore,
T

V(’, T’)_<- J0 f(Ye’, ))e’)dt,

which gives, using the first inequality,

x(t) +T(’- 2(t) + 2(t)) dt <u, ’-)- ell- ’11.

Now, by Lemma 0.1, there is a B > 0, depending only on K such that, if II -  ’lI B,
T

[ {f(X(t)+(’-),2(t)+’; -f(x(t),2(t))Idt
N i (f,x,t), 2,t)), ;(,’-,)5 dt+ i (f(x,t), x,t))," dt + e I1"-’11.

Using the Euler equation, we can express the right-hand side integrals in the form

T

0

so that, for every :’ in a suitable neighborhood of ,
<u f(x(r), (r)), ’-> --< 211’-11.

which implies

Ilu -f’n(x(T), 2(T))II <- 2e.

In particular, we have, for any pair (Xl, X2) Of optimal solutions of e,T:

IIe;,(,, 2(T))-f(sc, 2a(T))II_-< 4.

Now, the existence of Mr follows easily from the assumption (iii) made upon f, and
from Lemma 0.1.

COROLLARY. Suppose V is differentiable at the point (, T). Then there exists a
unique solution to the problem e,r.

Proof. V is, in this case, locally e-supported at (:, T), for every e > 0. Therefore,
we have 21(T)= 22(T), for any pair of optimal solutions. Since, on the other hand,
x(T) x2(T)= :, and Xl and x2 both satisfy the (E. L.)equation, we have xa x2 by the
uniqueness theorem for the Cauchy problem.

We now introduce the following
Notation. Let K be a compact subset of Nnx ]0, +oe[ and 0 a constant >0. We

denote by Ro,K the set of points (:, T)K such that, for every pair (Xl, x2) of optimal
solutions of ,T, the inequality [121(T)-22(T)II < 0 holds.

By Lemma 1.1 and Theorem 0.2., RO,K is a dense subset of K, for every 0 > 0.
Furthermore, consider the following lemma:

LEMMA 1.2. For every 0 > 0 RO,K is an open subset of K.
Proof. Suppose the contrary holds. Then there exist a 0>0, (, T)eRo,K, a

sequence (sen, Tn) in K, converging to (s, T), and, for every integer n, two optimal
solutions x in and x] of :e,,r, such that



NONUNIQUENESS OF SOLUTIONS: A GEOMETRIC APPROACH 631

By Lemma 0.1, there exist constants A and B > 0 such that

Ilx i (t)[I <- A, ]1i. (t)ll < B n e N, ’t e [0, T,], 1, 2,

;o that we may assume (in(T,)) converging to some limit /-)i.

Let y and y2 denote respectively the maximal solutions of the (E.L.) equation with
initial conditions:

yl(T) ,
y2(T) :, 3)2(T) v2,

and ]T- ai, T + bi[ the interval where Yi is defined.
We shall prove that T-ai < 0 and the restriction of yi to [0, T] is optimal, which

will contradict the fact that (, T) belongs to Ro,K, since

First of all, set

[[Vl-v2l[ liml[ I(T) .2-xn(r.)l[>-_o.

z.(t)=x.(t+(T.-T)) forte[T-T., T].

The z i. are solutions of the (E. L.) equation and

lim z(T)= lim xi. (T.)= ,
lim 2i,(T) lim k (T,)= vi.

Therefore, for every e > 0, z i" may be extended to a solution of the (E. L.) equation on
[T-T,, T]t..J[T-a+e, T+b-e] when n is big enough, and the sequence z;
(respectively z’in) converges to Yi (respectively p) uniformly on [T-ai-i-e, T + b-e].

Recall now that, by the corollary of Lemma 0.1, x i. and .i. are equi-Lipschitz.
We derive the following from the preceding assertions and Ascoli’s theorem:
(1) For every e > 0, x i. may be extended to a solution of the (E. L.) equation on

[0, Tn 12 T ai + e, T + bi e when n is big enough.
(2) The sequence x i. (respectively i). converges to y (respectively))i) uniformly

on [T-ai+e, T+bi-e].
(3) There exists subsequences of x . and k i converging uniformly on [0, T].

This last assertion shows that T- ai 0 (recall that Yi is a maximal solution of the (E.
L.) equation).

The last point to be proved is that yi is optimal. We have

yi(T) sc, by assumption,

y(0)--lim x(0)- so0,

and

f(Y, 3)) dt lim f(x ., ). dt lim V(sC., T.)= V(:, T),

because of the uniform convergence on [0, T] and the continuity of V. Q.E.D.
ProofofProposition 1. Let K be a compact subset of I ]0, +[. By Lemmas 1.1

and 1.2, R1/,.: is an open dense subset of K, for every integer n. Therefore,
G CI ..R1/.,: is a dense G of K. If (:, T)e G and (xl, X2) is a pair of optimal
solutions of ,7-, we have I(T) 2(T) and consequently Xl x2.
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What follows now is standard. The relationship between the differentiability of V
and the uniqueness of optimal solutions being very close, Proposition 1 will imply that V
is differentiable on an open dense subset.

First recall"
DEFINITION 1.1. Let (:, T)"]0, +oo[, x an optimal solution of ,,T and v

(0). We can define a mapping & from a suitable neighborhood of (v, T) to " x ]0, +oa[
by setting

(w,S)=(xw(S),S),

where Xw is the solution of the (E. L.) equation with initial conditions Xw (0) o, 2w (0)
w. (This makes sense when (w, S) is sufficiently close to (v, T), Xw being then well
defined on the whole interval [0, S].)

We shall say that (s, T) is conjugate to (:0, 0) along x (or x is a degenerate solution
of /),T) if

Jac &(v, T) 0.

We are now able to prove the following:
THEOREM 1. There exists an open dense subset 12 of R" x ]0, +oo[ such that"
(a) If (, T) fl, .T admits a unique optimal solution and this optimal solution is

nondegenerate.
(b) The restriction of V to fl is C.
Proof. Let F1 be the set of all points (:, T) which are not conjugate to (:o, 0) along

any optimal solution. By Sard’s theorem, F1 contains a dense G of R" ]0, +eo[ (see
[1]).

On the other hand, if 1-’2 denotes the set of all points (:, T) such that e.r admits a
unique optimal solution, F. contains a dense G by Proposition 1 and, therefore, so does
F1 F2.

We shall prove that (a) and (b) hold when fl is a suitable neighborhood of F1 f) F2.
Take (:, T) F1 f’l F2 and let be the unique optimal solution of @gf. Set J 2(0).
There exists an open neighborhood 0//of t3 and an e > 0 such that the solution Xw of

the (E. L.) equation with initial conditions

Xw (o) o, w(o) w,

is well defined on [0, S] when (w, S) og x ]T- e, T + el.
Furthermore, we can choose 0//and e so that O (defined in Definition 1.1) is a C

diffeomorphism from 07/x ]T- e, T + e[ onto some neighborhood 7/’x ]T- e, T + e[ of
(c, T), with inverse 0.

We claim that the proof is reduced to the following:
SUBLEMMA. There exists an open neighborhood tg’of (, T) such that, for every point

(, S) in and every optimal solution y of e.s, we have

(3) (0), S) q/x ]T- s, T + el.
For, if this is proved, we shall have by definition of 0

v(, s)= J 0(:, s) v(, s)e r,
where J assigns to each (w, S) the scalar 0s f(Xw, 2w) dr This will yield (a) and (b).

Proof of the Sublemma. Suppose the contrary holds. Then, there would exist a
sequence (:,, S,) converging to (:, T) and, for every integer n, an optimal solution z of

..s. such that

e. (o)
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By the same kind of argument as in Lemma 1.2, this would define an optimal
solution z? of Ngf, such that (0) a// and therefore g, which is impossible since
(:, T) lies in

Notice at last that at any point where V is differentiable (it results from several
steps of this chapter, but it is a well-known fact) we have

VeV(:, T)=f(, :(T)),

8V
0- (:’ T) =f(, 2(T))- (f(:, (T)), (T)),

where x is the unique optimal solution to t,T, SO that V is a solution of the
Hamilton-Jaeobi-Bellman equation"

OV
0T

(’ T)+Max {(TtV(, T), u)-f(, u)}= 0.
l

2. Generic singularities. We are now going to study the complement of the open
dense subset defined in Theorem 1. Let us give first a precise definition.

DEFINITION 2.1. We shall say that a point (, T) ]0, +[ is a singularity (or a
singular point) of the problem in one of the following cases:

either the problem admits at least two distinct optimal solutions,
or (, T) is conjugate to (o, O) along an optimal solution of ,.

A nonsingular point will be of course called a regular point. The set of all singular
points is included in a nowhere dense closed subset of ]0, +0o[ (Theorem 1), and, as
we shall see now, this set cannot be crossed by an optimal solution.

PROPOSITION 2.1. Let (, T) be a singular point of the problem and x an optimal
solution of .7-. Suppose x’ is a solution of the (E. L.) equation on the interval [0, T + e

(where e > 0), whose restriction to [0, T] coincides with x. Then x’ is not an optimal
solution of the problem

Proof. In the second case of Definition 2.1, Proposition 2.1 is a well-known
theorem of Jacobi (see [8]).

Suppose .7- admits an optimal solution y distinct from x. Set

z(S)=y(S) ifs[0, T],

z(S)=x’(S) ifs[T,T+e].

If x’ was an optimal solution of x’(T+e),T+e, SO would be z, which is impossible since. is discontinuous at T.
COROLLARY 1. If t,T admits two distinct optimal solutions x and y, we have

x(t) y(t), /t 6 ]0, T[.
COROLLARY 2. The union of the set of singular points and of the point (o, O) is

pathwise connected.
For, if (, T) is regular, the unique solution x of ,7- leads (so0. 0) to (:, T) without

crossing any singularity.
Our aim is now to give a description of generic singularities and, if possible, to

classify them. Before stating the main theorem, we must introduce a notation and recall
a definition.

+Let be a convex, monotone function /-, such that

lim +0o.
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Let a be a nonnegative real number and n a nonnegative integer. We denote by
(n) the set of C functions f" " x" satisfying:

(i)

(ii)

Condition (ii) implies the convexity of r/- f(’, r/) and we can apply the results of 1
to every f e 5g, (n).

,(n) is provided with the Whitney C topology. (A sequence (.f,) is said to
converge in,(n) if it converges uniformly on any compact subset, and so does each of
its derivatives.) It is a complete metric space, therefore a Baire space. A property will be
said to hold almost everywhere (or generically) in ,(n), if it holds on a dense G of

DEFINITION 2.2. (See [11]) By a Whitney stratification of a p-dimensional C
manifold M, we mean a partition ofMinto submanifolds Zi, ofcodimension (called the
strata) such that:

(1) Zi Zi+.

(2) Let l <=i <j <=p.
For any sequences (x,) ofpoints in Zi and (y,) in Z converging to some point x in Zi, such
that the secants xyn converge (in the projective space) and the tangent spaces Tx.Zi
converge (in the Grassmannian), we have

D c 7r, where D lim x,y,, rr lim Tx.Zi.

THEOREM 2. Suppose n <-_ 4. Then, for almost every f in ,, (n we have"
(1) For every (, T) e " ]0, +c[, the problem .7- admits at most a finite number

of optimal solutions.
(2) The space ]0, +oo[ is provided with a Whitney stratification whose stratum

of codimension 0 is exactly the set of regular points of the problem associated with f.
We shall specify later the significance of the higher codimension strata. Let us be

explicit only for the case n 1, illustrated in Fig. 1.
The stratum Z0 corresponds to the open dense subset f of Theorem 1.
The stratum Z1 consists of points (, T) such that e,7- admits two distinct

nondegenerate optimal solutions.
The stratum Zz consists of isolated points corresponding to one of the two

following cases:
Zz" three distinct nondegenerate optimal solutions.
Z2b" one degenerate optimal solution.
Notice that, because of Proposition 2.1, no schema of the type in Fig. 2 may occur.
The proof of Theorem 2 is based on the concepts of codimension and unfolding.

The main idea consists of the choice of a suitable gradient model which allows us to
interpret " ]0, +oo[-f as a catastrophic set. Then, applying Thom’s tranvsersality
theorem, it is proved that generically only elementary catastrophes may occur. For the
basic concepts of unfolding, catastrophe, codimension, transversality, see [1], [2], [12],
[13].

The construction which will follow now is, to a great extent, inspired by K. Jinisch
[10] who relates the caustics of a wave front to the bifurcation set of a gradient model.

The proof will consist of five steps.
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T

FIG. 2

(A) We first fix f M, (n). Let (, T) [" ]0, +oo[ and be an optimal solution of
g,f. Fix So ]0, T[ and set

;o {(’, s) " ]o, +oo[, v(’, s) v((So), so)}.

By Proposition 2.1, V is ditterentiable on a neighborhood of ((So), So) and is the
unique solution of X(so),so. (Note that (sc, T) need not be a regular point.) We have:

v v((so), so)= ;,((so), (so)),

OV-- ((so), so)= ((so), (So))-((so), ((so), (so))),

so that, under the assumptions made upon/e

0V
(vv((So), so), - (Z(so), So)) o.
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Consequently, there exists a neighborhood’//o of ((So), So) in nx ]0, +oo[ such that
Y-.o f) ?/o is a 1-codimensional submanifold of [n x ]0, +oo[.

(B) Note now that, if ’//o is sufficiently small, we can find a neighborhood 7/’0 of
(, T) such that, for every (, T) 7/’0 and (’, S) Y-.o f’) q/o, the problem

inf f (x, 2) dr,

x(S) st, x(T) =
admits a unique optimal solution.

Furthermore, the value function W((’, S), (, T)) of this problem is smooth on the
product (Y-.o f) a//o) x To. (Since the initial condition is not fixed, this is not exactly the
result of 1, but it may be proved easily by the same kind of arguments.) See Fig. 3.

(s__o)_.., so)
o lt

.,,,
(so, O) FIG. 3.

The interest of making the initial condition run over Eo fq q/o lies in the following fact.
Let (:, T) 7/’0. Suppose x is an optimal solution of ,r such that there exists

]0, T[, with (x (D, ) Eo f3 a//o (we shall say that x crosses Y-,o
Then, by Bellman’s optimality principle,

W((x(f), i), (c, T))= Min W((’, S), (, T)).
(’,S) ;ofqo

(Recall V is constant on Eo (q o.)

So, when :,T admits two distinct optimal solutions crossing Eo
7/’0), the function W((., ), (sc, T)) attains its minimum at two distinct points.

Likewise, when a point (sc, T) 7/’0 is conjugate to (so, 0) along an optimal solution
crossing o a//o, W((., ), (:, T)) has a degenerate minimum on o

Recall now that, if W((.,. ), (sc, T)) attains its minimum at k distinct points ((u Sg)
and if r denotes respectively the codimension of the germ of W((., ), (s, T)) at (sr, Sg),
we have by definition,

k

codim W((.,. ), (sc, T))= k 1 + r.
i=1

We can specify the singularities which occur when codim W((., ), (sc, T)) p -< 5.
The case p- 0 corresponds to one nondegenerate minimum, p- 1 to two nonde-
generate minima, p 2 to three nondegenerate minima or to a cusp,....

We have only to consider here singularities associated with local minima: nonde-
generate, cusp, butterfly. Swallow tail, mushroom and wave are excluded (see [2], [12]
and [13]).

(C) LEMMA 2.2.1. We can suppose 71o and 7/’0 sufficiently small so that, for every
(, T) 7#o, every (rl, S) and ((2, $2) Y-,o f"l q/o, and every x and x2 such that

xi(Si)’-’i, I
T

f(xi, i) dt W((,, S,), (, T)),
xi(T) , S,

we have, whenever ("1, S1) ("2, S2),

(Xl(tl), l(tl)) # (XE(t2), kE(t2)) tl, t2.
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Proof. Suppose there exist tl and t2 with

x(t) x:(t), 1(tl) 2(t2).

Then, since x and x2 are both solutions of the (E. L.) equation,

xl(t + (tl- t2)) x2(t),
which shows, since xl(T)= :, x2(T)= ,

tl t2, xi(t) x2(t) Vt >--_max (81, 82).

But, since the mapping t- ((t), t) is transversal to Eof-)//0 at ((So), So), this cannot
occur, whenever q/o and 0 are small enough.

(D) Before stating the chief lemma, let us introduce some convenient notations.
Let J be the ring of polynomials in n variables of degree _-<8. The product space ./7 is
provided with a stratification whose ith stratum Q1 is nothing but the space of multijets
of codimension i. We denote by 6ei the closed subset of Qi consisting of the singular
multijets associated with local minima, for 1_-<i_-<5, and R the set of all multi-
singularities of codimension-> 6. (For a precise study of these sets, see [13].)

LEMMA 2.2.2. For every (, T) ro and (, S) qlo f3 o, let jW((, S), (, T))
denote the 8-let of Wwith respect to (, S). Then, for almost every f ,(n ), the mapping

((, T), (rl, Sl), , (r7, S7)) --> (/’W((rl, $1), (:, T)), ,/’w(r7, ST), (, T)),

/"0 X (’-’0 0"0)7 _. ./7,
is transversal to the i’s and to R, whenever the (i, Si)’S are pairwise distinct.

Proof. We shall show that, if (:, T) is fixed, the mapping

(/, (ffi, Si)l<_i<_7) (JW((’i, Si), (:,

is a submersion. For it wll follow that the mapping

(f, (, T), (i, Si)) -’> (JW((i, Si), ( T)))

is a submersion and the lemma will then be an easy consequence of Thorn’s trans-
versality theorem.

Take (:, T) o. For every ((,S)Eof]o, let X.s be the unique path
satisfying

x:.rtS) (, Xc,s( T) ,
and

Ts f(X dt W(((, S), (, T)).,s)g,s,

Let us perturb f by 6f and let Xc,s + 8Xc,s be the new path associated with (’, S). We
have, omitting the second order terms,

T T

8W((, S), (, T)) Is 8f(x:,s,c,s) dt + Is (f’x(Xc,s, iq,s)SXc,s) dt

r

+ Is (f’ (X,s, 2, s), 6,s) dt

r

Is 6f (Xc,s, c.s) dt + [(f’ (Xc.s, YCC,s), 6Xc,s)].

But, since, for every f, X.s(S)= , X.s(T)= ,
3Xc.s(S) 6X,s( T) 0,
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and, hence
T

8W((, S), (, T))= Is 8f (x,s, 2,s) dt.

Finally, we only have to show that the mapping, which assigns to g the 8 order jet of the
function

T

d/(, S)= Is g(x,s, 2,s) dt,

is surjective. By part (C), there exists a scalar to ]So, T[ and an e > 0, such that the set

{(Xc,s(t), 2c.s(t)), (, S) Eof-) go, 6 ]to, to + e[}

is a submanifold diffeomorphic to (Eo f) a//o) x ]to, to + e [.

If O is fixed, we can choose a C function g such that

g(x,s(t), 2,s(t)) (, S)4)(t),

where b is a function with compact support included in ]to, to + e f, satisfying

e+
oh(u) du 1.

We have then
T

Is g(X.s, 2,s) dt 0((, S) V(’, S) s Y-,o f’) ?/o. Q.E.D.

COROLLARY. For almost everyf (n ), the number ofsolutions of.7- is finite, for
every (:, T) " x ]0, +[.

Proof. By (B) and Lemma 2.2.2, for almost every f, there is a finite number of
solutions to e,r crossing Y_,o?/o, for every (, T)7/’o. But, since
{((, S), So <- S _-< T} is compact, and since Nn x ]0, +[ can be covered by a countable
infinity of neighborhoods like 7/’o, the corollary results from Baire’s theorem.

(E) End of the proof. The first part of Theorem 2 has just been demonstrated. The
last difficulty lies in the fact that the optimal solutions of e,r, where (:, T)e 7/’o, need
not cross Eo fq o; hence, the function W, as defined in (B), doesn’t provide us exactly
with the gradient model needed.

Anyway, let (:, T)s ["x ]0, +c[. We may suppose that there are p and only p
solutions to e,f" gi,""",

Let us associate with each of the gi’s a submanifold Y-,o f) a//i defined as in (A), and a
mapping W/,

(-0 Oi) 1/’0 -’> , as in (B).

Whenever 7/0 is sufficiently small, the optimal solutions of ,T, with (, T)
//’o, cross necessarily one of the submanifolds Y-.o f3 a//i.

Set Y_. ’--1 (Y-,o agi) and define W’Y_, 7/’0 by

Wlzon%) W/.

(Suppose the Y-,of-)0i’S are pairwise disjoint.)

Now, the set of singularities belonging to 7/’0 is exactly composed of the points
(, T) 7/’0 such that

codim W((.,. ), (sc, T)) => 1.
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Applying again Thom’s transversality theorem, just as in Lemma 2.2.2, we can
show that, for almost every f, the mapping

((, T), (i, S,)1,7) - (]W((, T), (,, Si))1--i7

is transversal to the i’s and to R, whenever the (ri, Si,)’s are pairwise disjoint.
This concludes the proof of Theorem 2.
The meaning of the strata of codimension => 1 is now clear. There are three types of

generic optimal solutions:
Type I: associated with a nondegenerate minimum of W((.,. ), (, T)).
Type II" associated with a cusp.
Type III" associated with a butterfly.
We thus obtain Table 1.

TABLE

Strata Z0 Z1 Z2 Z3

Number of solutions

TypeI 2 3110 411
Type II 0 0 0 0111
TypelII 0 0 0 0 0 0

24

010

Z5

0101110
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A SHIFT OPERATOR APPROACH TO BILINEAR SYSTEM THEORY*

ARTHUR E. FRAZHO

Abstract. Using a transform representation, we present a bilinear realization theory for a Volterra series
input-output map. The approach involves the definition of appropriate shift operators on linear spaces
associated with the transforms of the kernals in the Volterra series. This approach yields in a very simple
manner a theory of minimality and connections with the concepts of span reachability and observability. It
also leads to a characterization of finite dimensional realizability in terms of rationality properties of the
transforms.

1. Introduction. Shift operators have played an important role in linear operator
theory [23], [32], and linear system theory [3], [19], [24]. Our purpose here is to extend
these ideas to the study of discrete-time nonlinear dynamical systems of the bilinear
type. This extension is carried out by introducing an appropriate abstract state-space
and certain nonlinear shift operators defined on this space. The consequence is an
elegant and illuminating treatment of the key theoretical issues. New results are
obtained, and many prior results are derived in a simple way.

The presentation can be divided into four main parts. The first concerns a transfer
function representation for nonlinear input-output maps. This requires a special
transform (called the A-transform). An advantage of our transfer function is that it is
simply related to input-output maps of bilinear and state-affine systems. In the second
part, certain shift operators are applied to the transfer function and this results in an
abstract shift realization of the corresponding input-output map. The importance of the
shift concept in nonlinear realization questions has been noted by [2], [6], 17], [31 ], and
others. The shift operators used here are believed to be new. They are basically linear
and nonlinear transformations on a "Fock space." The third part shows how the
abstract shift realization can be applied to obtain a theory of minimality, teachability,
and observability for bilinear systems. Simple proofs for many of the standard results on
minimality, reachability and observability for bilinear systems [7], [11], [26] are
included. The last part is devoted to the question of finite dimensional realizations of the
bilinear type. It includes regularity conditions on the transfer function, a test that
determines whether or not finite dimensional realizations exist, and the exploration of
special rational forms that guarantee the existence of a finite dimensional realization.

To make our discussion more explicit, we now introduce some notation and
terminology. It forms the basis for our treatment of bilinear systems. Throughout,
q/, 7/’, , are linear spaces over the field YL The dimension of these spaces can be finite
or infinite, and no topological structure is assumed. The infinite dimensional spaces are
handled in the purely algebraic setting [22]. The set of nonnegative integers is denoted
by I {0, 1, 2, .}, and I I x I x I x.. x I is the n-fold Cartesian product of I.

The input-output maps we consider are formally given by
n,i2

y,, x(n --il)[Uit]+ 02(i2--ix, n --i2)[uit, ui2]+"
it =0 i2=0,it =0

(1.1)
rt, irn,. ,i

E E Om(i:z-ix, i3-i2,’’’, n -i,,,)[uit, uiv’’’, Uiva],
m=l im =O,im_l =O,..’,il =O

* Received by the editors January 11, 1979, and in final revised form March 17, 1980. This research was
supported in part by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, under
grant AFOSR-77-3158.

t School of Aeronautics and Astronautics, Purdue University, W. Lafayette, Indiana 47907.
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where un 07/, yn for nI and m(kl, k2,..., kin) is a m-linear operator for all
(kl, k2," , k,,) Im, m > 0. We call {,}=1 the kernel sequence for system (1.1). The
summation convention on il, , i,, puts the kernels in lower triangular form. As in [6],
[25], [26], [29], this turns out to be especially convenient in our subsequent formulation.
One can also express input-output maps in symmetric form [7], [10]. Throughout this
paper, strictly lower triangular (SLT) kernel sequences will be used. The kernel
sequence {,}=x is strictly lower triangular if

(1.2) ft,, (kl, ’, k,) 0 if one or more of the ki’s are zero and m > 0.

Since we have not defined a topology on , the infinite sum in (1.1) does not make
any sense. To get around this difficulty it is always assumed that the input sequence
{ui}/_-o has finite support. If {ui} has support in [0, k] and (1.1) is SLT, then

(1.3) ,(i2-il,""", n --im)[Uil,’’’, Ui,]=0, if m > k.

This implies that (1.1) contains only a finite number of nonzero terms. Thus SLT
input-output maps are legitimate input-output maps whenever the input sequence has
finite support.

The bilinear system we study is given by

Xn+l Axn + N(un)Xn + Bun,
(1.4)

y. Cxn,

where un 0//, xn f, yn 0 for n /, A, B, C are linear operators on the appropriate
spaces, and N: 07/x is a bilinear operator; i.e., for fixed x eg, N(u)x is a linear
operator in u; and for fixed u ll, N(u)x is a linear operator in x. (For convenience the
bilinear operator N for (1.4) is always written as N(. ).) System (1.4) is denoted by
{A, B, C, N, }. For (1.4) it is always assumed that the initial condition is zero; i.e.,
x0=0.

By recursively computing the solution for Z {A, B, C, N, } (with Xo 0), it is
easy to show that Z generates a SLT input-output map whose first two kernels are given
by

(1.6)

/1:(i 4- 1) CAiB, if e L
Ois(i) O, if O;

2(i + 1, ] + 1)[Ul, uz] CAiN(uz)ABux,

02r.(i, ]) O, if or ] is zero.

The general term is

O’nr.(ix + 1,’’’, in + 1)[Ul, ", Un] CAi"N(un)Ai"-IN(un-) N(uz)AqBux,
(1.7)

On(kx,..., kn)= 0, if one or more of the k’s are zero,

where (ix, i2, in) In, ug 6 ag, n > 0. In (1.7) the bilinear operator N appears (n 1)
times. Thus each Onr.(il,’" ", in)[’, ", "," is a n-linear operator.

Within this framework, we pose the following problem of bilinear realization"
given any SLT input-output map (1.1) with kernel sequence {0n}n=X, find a system
Z {A, B, C, N, } such that (1.1) is the input-output map for E. Specifically, if for E

,,(ix, , in) Onr.(il," in) for all n _-> 1, (ix," , in) e In,
then E is called a realization of {n}. The following additional terminology will be useful.
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System {A, B, C, N, W} is finite dimensional if dimension ()< 00. System Z is a
minimal realization of {fin} if dimension (g) <_- dimension (e) for all other realizations
{/,/, (2, , } of {n}. If Ei {Ai, B, C, N, Wi}, 1, 2 are two realizations of
and there exists a linear operator H: fa -> 2 such that HAa A2H, HBa B2, C2H
Ca, and HNa(u) Nz(u)H for all u e q/, then Hsends 1 into . IfH is an isomorphism
that sends -1 into Y-.z then -1 is equivalent to

To complete this section we summarize the organization of the paper. Section 2 is
devoted entirely to notation and the definition of the A-transform. In 3 the A-
transform is used to introduce the transfer function corresponding to the input-output
map (1.1). This leads to the transfer function 0. for the bilinear system 2;

{A, B, C, N, }. In 4 shift operators are applied to a transfer function to obtain a
restricted backward shift realization (RBSR) which (abstractly) solves the bilinear
realization problem. In 5 the RBSR is shown to be a minimal realization which is
equivalent to all minimal realizations. In 6 shift operators are used to treat questions
of reachability, observability, and minimality. In 7 necessary and sufficient conditions
for a transfer function to admit a finite dimensional bilinear realization are given.
Concluding remarks and further references to the literature are given in 8. In a future
paper (Part II) we discuss state-affine systems and realization algorithms.

2. Transform notation and operators. First we introduce some general notation. Yf
is a field and I is the identity element on :7{’. If B is a Hamel basis for the linear space
then dim (W) is the cardinality of the set B. Let O be a subset of; then /O denotes the
(finite) linear span of the set O. The linear space of all n-linear operators T" q/n __> is
denoted by (0?/n; ). By convention we set (07/o., )_ . If H (0//., 0) then
(H) is the range of the linear operator H. If 0 is a linear subspace of a//then HI@/1 is
the linear operator H restricted to 07/1. The identity operator on 07/is denoted by Lu. A
linear operator is an isomorphism if and only if it is one to one and onto.

If i is an infinite set of linear spaces then @]o ?/’i c/’10 f/’2 O 3 0" is the
direct sum of the linear spaces V, ->_ 1. Clearly @]o v e @]o T’ if and only if vi T’i for
all i-> 1. Whenever we write ( vi, it is understood that the index starts at one; i.e.,
@vi @o vi, or @//’,+3 //’4 @ T’5 @ T’6 @’". Sometimes elements in @?/’i are
represented by an infinite tuple; i.e., @vi ={Vl, v2, v3," "}@. The notation
and {va, v,...} is used interchangeably to represent the same element in
Addition and scalar multiplication on@ are defined respectively in the usual way:
OUi-[-OVi "-"O(Ui-["Vi); (Q/)i) G(/)i), where @ui, Gf)i eOo[/"i and a

For n > 0 the linear space of all sequences Sn from I to 7/" is denoted by n (?/’).
If n 0 then own(7/’)"- 72. Addition and scalar multiplication on own (7/) are defined in

t.he usual pointwise fashion: (tn + n)(ia, , in)-" tn(i, , in)+ n(ia, ",

(atn)(il,""", in) "--a,(ia, in) where gn, ftn n(T#), a Yf and (i,, in)eln.
For each n > 0 we define the linear space own (7/’) by the set of all formal series vn

such that

(2.1) v,(X,..., ,,) Y
ix =0,...,in =0

t(ia, , in)h 1 h inn

where tn 57n () and h a," , An are the indeterminates. If n 0, then 5an () . Let
An be the linear mapping defined by (2.1); i.e., Angn vn. Then An is an isomorphism
from 5n() onto own (). We call vn the An-transform of tTn, and always use tTn to denote
the unique element in 5’n() given by A,, v,.
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Consider the following linear spaces"

(2.2)

Then A is the isomorphism from 5,(,) onto 5,(//’,) defined by

(2.3) A({.) {A.,

where it.)5.(//.). Let t={., v={v, and v=A; then v is called the

A-transform of . A" is always used over the unique element in.(.)[.(.)] given
by A v[A.. v.] respectively.

We say that v. .(.) is a polynomial if

finite

(2.4) v,(Ax,... A,)= E 6,(ix i,)A...A "
i 0,...,i =0

where , (). A v, ,() is called rational if there exists a scalar valued
polynomial d ,(Y{), d (0, 0,. , 0) 0, and a polynomial q (), such that

(2.5) d(A,..., A,)v,(A,..., A,)= q(A,... ,a,).

When (2.5) holds, then vn is written as vn q!d. The condition d(0) # 0 guarantees that
d(A1,"’, An) contains only strictly positive terms in its formal series. (The usual
definition of rationality does not require that d(0)# 0. But when dealing with causal
systems we always have d (0) 0. So this additional assumption has been incorporated
in our definition.)

We say v )6en (Fn) is a generalized polynomial if v )vn and vn 0 for all large
n. If v )vn is a generalized polynomial, this does not imply that vn is a rational
function for all n.

To complete this section we define several operators needed throughout this paper.
The backward shift operator Sn is the linear operator from 6en (7#) to () defined by

1
(2.6) SnVn(Aa, a,’’’,An)’---l[Vn(aa, Az,’’’, An)--Vn(0, A, A3,""’, an)],

where vn Sen (//’)(n > 0). Sn is called the backward shift operator because S, shifts the
A x-coefficient in the formal power series expansion of vn. For example, if v2 5e(//’) is
given by (2.1), then

(2.7) Szvz Y’. t2(i, ])A ]-A , k _-> O.
=k,j=O

The evaluation operator E. is the linear operator from 5n() to Yn-l() defined by

(2.8) Enl)n(al, a2, ", An)’--- I)n(O, al, a2," An--l),

where vn 0,(F)(n >0). For example, if v3 5e3(V) is given by (2.1), then

(2.9) E3v3(A 1, / 2, / 3) E 3(0, i,/’)a a/2.
=o,/=0

Note that the domain of Sn and En is On (7/’). The same symbol $,, En is used to denote
all operators defined by (2.6), (2.8) respectively, regardless of the particular space Uwe
are working with.
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The generalized backward shift operator S is the linear operator from @6en (n) to

@n() defined by

(2.10) S @ Dn "--@ SnDn {S1DI, S2D2, S3D3,

where vn n(7). The generalized evaluation operator E is the linear operator
from 6e() to 71 defined by

(2.11) E

where @v e @hen (7/’n). The same symbol S, E is used to denote all operators defined by
(2.10), (2.11) respectively, regardless of the particular space @o%(7&), they are
defined on.

3. The transfer function. Throughout the rest of this paper the input space 07/arid

output space are fixed linear spaces, unless stated otherwise. In this section the
A-transform is used to define our transfer function for system (1.1) and N=
{A,B, C,N,}.

To begin we define the following linear spaces"

e(u; ) ._- @.(e(; )),

(3.)
(u; ) @e. (e(0-; )).

Since SLT input-output maps play an important role in our theory, the following spaces
are also defined:

ea(; Y)"-{@& e ’(?/; 0Y)l{ffm} is SLT, i.e., (1.2) holds},
(3.2)

For notational convenience we drop the emphasis on a//, 0y in the above spaces, and
simply write , , A, a to represent the spaces defined in (3.1), (3.2) respectively.
Clearly a[zx] is a linear subspace of [].

Consider any input-output map of the form (1.1) with kernel sequence {,n}. Then
"-@0",,, is an element of , and 0 AO is well defined. We call 0 the transfer ]’unction

for system (1.1). Transfer functions are elements in . If system (1.1) is SLT, then its
transfer function 0 is an element in a. Since A is an isomorphism, there is a one-to-one
correspondence between elements in the space [a] and input-output maps of the
form (1.1) [SLT input-output maps of the form (1.1)].

Let {A, B, C, N, }. The transfer function for is denoted by 0z. Since bilinear
systems generate SLT input-output maps (see (1.7)),

LEMMA 3.1. The transfer function 0. corresponding to {A, B, C, N, g} is given
by 0=@0eA, where the first two terms are 01r.=CFiB, O2r.[Ul, Uz]
CF2N(uz)FBul.

The general term is

(3.3) On.[Ul, uz, ", u,] CF,N(u)F,_IN(un_I) N(u)F1Bul, n > O,

where u 71 and F,, is the formal series defined by

(3.4) Fm 2 AiAi+l
i=0
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Remark 3.2. The bilinear operatorN in (3.3) appears (n 1) times. Therefore each
0n is a formal power series in Al, AZ,’’’ ,An with values in (0?/n; 0). It is also
important to note the "backward" order of the ui’s in (3.3). On occasion the ui’s are
not inserted in (3.3) and the equation is written as

(3.5) 0 CFnNFn 1N NF1B.

Proof. The kernel sequence {n.} for E is given by (1.7). Thus 0.= A(@n.)
@0.. From the definition of A, (2.3) with (1.7) and (2.1), we see that (3.3) holds.

Since A is an isomorphism, the bilinear realization question is equivalent to the
following: Given a 0 e a, then find a system Z {A, B, C, N, } such that 0 0..

4. The backward shift realization. In this section we obtain a solution to the
bilinear realization problem. The approach is based on the following property of shift
operators:

E S il(4.1) EISI" 2 - EnSn vn n(il, iz, in), vn

(recall that v Ang). Consider any 0 @0n s OA. From (4.1),

(4.2) E1S}/IE2S-1/1 EnSi+10n ffn(il+ 1 i2+ 1 in +1)

for all (il, i2,"’,in)eI and n>0. By (1.7) and (4.2), Z={A,B, C,N,} is a
realization of 0 if

(4.3)
EI$"/E2Si2-/ En$’/On[u,n u, u,]

CA’,,N(u,)A’,,-N(Un_x)... N(u:z)AqBul,

for all (il, iz, , in) I n, all Uk all, and all n > 0. So we obtain a solution to the bilinear
realization problem by finding a system Z {A, B, C, N, }, consisting of shift opera-
tors and evaluation operators such that (4.3) holds.

We introduce several operators that will aid us in doing this. For each xn
Sen (Sf(?/ )), n >0, let xn: 07/ Sen ((07/-1; )) be the operator defined by

(4.4) xnu "--xn(A1,’’ ", An)[u, ", ",...,’], u o?/,

where Xn(AI,’’", An)[b/, ", ",’’’ ,’] is a (n- 1)-linear operator in a//, and A1,’’’ ,An
are indeterminates; i.e., xnu n((0?/--a., eg)). The same symbol xn is used to
represent both the linear operator given by (4.4) and the element xn in

The state space we choose for is ,, where
(4.5)

For each x (07/; ) we define a linear operator x" 07/ (07/; ) by

(4.6) xu @xnu @x, (a , a, )[u, , ],

where u 07/, x @xn Yg. The same symbol x is used to denote both the operator
given in (4.6) and the element x in . Finally, we introduce the bilinear operator
T. 07/x-.
(4.7)

T(u)@xn S@En+lXn+lU
S{X2(0, A 1)[U], X3(0, A 1, A2)[/,/," ], X4(0, A 1, A2, A3)[U, "," ],’" "}.
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A system E {A, B, C, N, } that satisfies (4.3) is given by , A S, C E,
N T, and B SO, where

Bu SOu S @ Gu
(4.8)

@ S,O,[u, .,..., .], u e all, 0

To show that 5; is a realization of 0 consider the casen 2 with u, u2

CAiN(u2)A iBu ESiT(uz)Si+10u
ESir(u2){si+l si+l /+1

VlUl, 2 02Ul, S3
(4.9) i+a +ES S{E2S2 02[Ul,/g2], E3S 03

x[u,, u,, ], FS4+’O4[u,, u,, ., .],...}

ESix+IE2$+O[u,

i.e., (4.3) holds. A calculation similar to (4.9) verifies that (4.3) holds for all n > 0. Thus
PROPOSITION 4.1. If 0 )A, then F {S, $0, E, T, } is a realization of O.
F is called the backward shift realization (BSR) of 0. We need
DEFINITION 4.2
(i) If E {A, B, C, N, o} is any bilinear system, then Y’. is the linear space defined

uim)A N(ui_l) N(ug2)AqBua
(4.10)

I(i1, ", i,,) I", ui q/for I}.

(ii) If F is the BSR of 0, then /g0 is the linear subspace of defined by
o (o(z; ))r.

The restricted backward shift realization (RBSR) of 0 is obtained by restricting
S, SO, E, T to the space 7g/’0. More precisely, the RBSR of 0 is defined by
{So, SO, Eo, To, 7g0}, where the operators are

(i) So" Wo - liFo, So $1
(ii) SO" ql #o, (SO)u SOu if u
(iii) Eo" 7o J, Eo
(iv) To" 1 x 7Uo 7go, To(u)x T(u)x if x e /#0 and u

The same symbol SO is used to denote both operators, SO mapping q/into - and SO
mapping q/into

Clearly the RBSR satisfies (4.3). Thus
PROPOSITION 4.3. If O Yga, then the RBSR {So, SO, Eo, To, 7#o} is a realization of O.
The RBSR is of lower dimension than the BSR. In the next section it is shown that

the RBSR is a minimal realization of 0.

5. Minimal realizations. In this section we use the RBSR to develop a theory of
minimality for bilinear systems. A linear operator Hx will play an important role in this
theory. For each bilinear system {A, B, C, N, f} we define the operator H map-
ping into by

(5.1) H.x S @ ,x, x ,
where FM is given in (3.4) and lv.X-’--CFax, 2[ua]x CF2N(u2)Fxx,’",

(5.2) [u2, ", u]x CF,N(u)F,_IN(U,_I). N(u2)Fax, n > 0, ug

Clearly ,xx ow, (Se( -’, )) for all n > 0 and x e 9K
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The following is needed:
LEMMA 5.1. If Z is a bilinear realization of 0 then H. sends Z into the BSR of O.
Proof. Let Z {A, B, C, N, W}. First we make some observations concerning F1

given by (3.4). Let 1,/1 be respectively the backward shift operator and evaluation
operator on 5el(W); i.e., iv(A)=(v(A)-v(O))/A, and Ev(A)=v(O)if v Se().
Reference to (3.4) shows that the following results are valid:

(5.3) gF, gFIA, ff,glF [.

We now show that the required identities are valid. Because of (3.3) and (5.2),
0n nxB for all n > 0. Thus from (5.1) and 0 0,

(5.4) H.B SOz SO.

By the properties of E, S, and (5.3),

EH. E S,On E1SI(I)IE
(5.5)

EICIFI CJIIF1-- C.

From (5.3)

(5.6)
SHr. S2bnr. CFnNFn-IN NF1

CFnN" NIFIA SnnA H.A.

Finally, taking u 6 07/and using (4.7), (5.3)

T(u)H.x T(u) @ Snn

(5.7)

S @ (En+lSn+ln+ar.U)

S (En+aCFn+xN"" NFzN(u);IFI)
S (CFnN"" NFIN(u)ESF)

S @ cbn.N(u) H.N(u).

Equations (5.4)-(5.7) imply that H sends E into the BSR of 0. [3
LEMMA 5.2. If 2;= {A, B, C, N, gT} is a realization of 0 then 71/’o Hg. In

particular, 74/’0 Yt (H).
Proof. Since SO HB we have

(5.8) si’TS i’-x T TSilSO si,TS i’,-t T TSqHr.B.
From the definition of "into," H can be moved to the left-hand side of (5.8) to give

(5.9) si"TSin-iT. TSqSO HyAiNAi,-1N NAqB,
for all (il, ", in) In, n > 0. By Definition 4.2 this implies /g0 H.. [3

Let Y_. {A, B, C, N, } be a realization of 0. By Lemma 5.2, 7g’0 Yt (H). From
[30, Thm. (4.7.7)], dim (7///0) -<dim ((H)) -<dim (). Thus we have

PROPOSITION 5.3. The RBSR of 0 is a minimal realization of O.
COROLLARY 5.4. 0 WA admits a finite dimensional bilinear realization ifand only

/f dim (/’0) <.
Let {A, B, C, N, } be a realization of 0. If Yt (H.)= ?g0, then we define the

operator J. mapping T onto /’0 by: J.x H.x where x o. In particular, J is defined
when . (see Lemma 5.2). Following the proof of Lemma 5.1, J sends 2; into the
RBSR of 0. Combining these observations we have
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LEMMA 5.5. Let {A, B, C, N, g} be a realization of O. If
then Jz sends 2, inw the RBSR of 0 and J is onto to.

One of the main results of this section is
PROPOSITION 5.6. Let 0 a admit a finite dimensional bilinear realization. Then

any minimal realization of 0 is equivalent to the RBSR of 0.
Proof. Let 51 {A, B, C, N, } be a minimal realization of 0. By Proposition 5.3,

dim (/4/0) dim () < oe. From Lemma 5.2, 7/V0
_

(Hz). Thus /4/0 (H). Applying
Lemma (5.5) with dim (kV0) =dim () < ee we see that Jx is an isomorphism that sends

into the RBSR. Hence is equivalent to the RBSR.
COROLLARY 5.7. If 0 admits a finite dimensional bilinear realization then any two

minimal realizations of 0 are equivalent.
Proof. This follows from the fact that all minimal realizations of 0 are equivalent to

the RBSR and system equivalence is transitive.
It is interesting to note that our theory of minimality for bilinear systems follows

directly from the RBSR and does not make explicit use of the concepts of reachability
and observability. In the following section we use the RBSR to develop a theory of
reachability and observability without using the concept of minimality.

6. Span reachable and observable bilinear realizations. The purpose of this section
is to show how the RBSR and H can be used, to offer simple proofs, to many of the
standard results on reachability and observability for bilinear systems [7], [11], [26].
The results presented here hold for finite and infinite dimensional linear spaces. Thus
our results are slightly more general than those existing in the literature.

To begin we establish some standard terminology.
DEFINITION 6.1. Let E {A, B, C, N, f}.
(i) is span reachable if

(ii) ; is observable if for all x such that the (n-1)-linear operator
CA"NA"-’N NA6x =0 for all (il, ", i)eI and all n >0, then x =0.

Clearly, z is the linear span of the reachable set for ;. If N 0 then E is a linear
system and these definitions reduce to the usual definitions of reachability and obser-
vability for linear systems [8]. The RBSR is span reachable. To show that the RBSR is
observable, we need

LEMMA 6.2. Let 0 @0 A, and let ,1 be the linear subspace of defined by

(6.1) V (/2/3 /r(n)l(n tn((0"n-l"

Then Vo
_. In particular any x liFo can be put in the following form"

(6.2) X "-0 (/2/3 /n(n)-- (10/2(2 O/2/3(3 O"’’,

where &, 5((0--1. )) n > 0
Proof. First observe that is an invariant subspace for S and T(u), u ell. This is

shown in the following calculation:

(6.3) T(u) @ h2h3" hn(gn=S O/1h2""" hnEn+lCn+lU

=@h2h3 hnEn+cn+lU .
The sequence {,} is SLT. From (1.2) with the definition of A, there exists a, ,((0-//-; )) such that 0, (h 112" h,), for all n > 0. Thus 0 can be put in the
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form, 0 )h 1/2 /n (I)n Applying S with u 0-//, we obtain

(6.4) SOu @ (hh3" hu).

Thus SO 1. Since 1 is an invariant subspace for S and T(u), u we have
0 x, and the proof is complete.

PROPOSITION 6.3. I[ 0 a then the RBSR of 0 is span reachable and observable.
Proof. The RBSR is span reachable, so we show the RBSR is observable. Consider

any x 0. From (6.2), x @(hh3 h). By applying an argument similar to that
given in (4.9) with (4.1), we obtain

EoSToSoX ESiT(AA3 Ansi

ss (... h+s+l+
(6.5)

E @ (h2 hnSEn+lS in +ln+l)
EISE2S2 2(i, j).

In the general case the calculations in (6.5) give

(6.6) EoS i"
0 roSid’-lro Tosix ix

o x E1S’I"E2S’
Therefore (6.6) is zero for all (il,""", in)I and n >0, if and only if &n 0 for all
n > 0. From (6.2) the RBSR is observable.

The operator Jx is the key to showing that any two span reachable and observable
realizations of 0 are equivalent. To this end we give

PROPOSITION 6.4. If E is a span reachable and observable bilinear realization of O,
then Z is equivalent to the RBSR of O.

Proof. Let {A, B, C, N, W} be a span reachable and observable realization of 0.
From Lemma 5.5 with W , the operator J. sends into the RBSR of 0. ClearlyJ is
onto. To complete the proof we show that J is one-to-one.

Consider any x 6 W such that Jx 0. Then

(6.7) EoSio"ToS-’To." ToS o Jx O,

for all (il," in) I and n > 0. From the definition of "sends into," the J. moves to
the left-hand side of (6.7); i.e.,

(6.8) EoJv.A i"NA i"-lN NA ilx O,

for all (i1,"" ", in)I and n >0. Since EoJx C, (6.8) becomes: CAi"NAi"-IN
NAiXx 0 for all (il, , in) I and n > 0. System E is observable, so x 0 and Jx is
one to one.

From Proposition 6.4 and the transitivity of system equivalence the following is
evident.

COROLLARY 6.5. Any two span reachable and observable bilinear realizations of 0
are equivalent.

COROLLARY 6.6. If E is a span reachable and observable bilinear realization of 0
then E is a minimal bilinear realization of O.

The converse to Corollary 6.6 is not true. It is easy to construct infinite dimensional
bilinear systems that are minimal and not span reachable and observable. In the finite
dimensional setting this does not happen; i.e.,
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PROPOSITION 6.6. Let 0 e Yga admit a finite dimensional bilinear realization. E is a
minimal realization of 0 if and only if 2, is a span reachable and observable realization
o0.

Pro@ Any minimal realization of 0 is equivalent to the RBSR (Proposition 5.6).
Any span reachable and observable realization of 0 is equivalent to the RBSR
(Proposition 6.4). Since system equivalence preserves minimality, span reachability,
and observability, and the RBSR is minimal, span reachable, and observable, the proof
is complete. [3

7. Finite dimensional bilinear systems. In this section we use the RBSR to develop
conditions for the existence of a finite dimensional bilinear realization. This section is
broken up into two parts, A and B. In part A, all transfer functions for finite dimensional
systems are shown to satisfy a special condition (called regularity). An example of how
one uses this regularity condition to compute the RBSR is given. In part B the regularity
condition on 0 is used to develop a special rational form for 0 (called factorable). This
factorable form leads to necessary and sufficient conditions for 0 to admit a finite
dimensional bilinear realization.

A,. The regularity conditions. To begin, we define the following linear subspaces of
r0(0 ):

k

/’l(k) V siso, /’18 V (i),
=0 =0

(7.1) /’(k)-" [ / {SiT(u)wlw 7/U-1, u ?/}] V o/#.-1 ifq> 1,
i=0

7#’ V 7/g’(i), if q => 1.
i=O

From these definitions we obviously have"

(7.2)

(7.3)

(7.4)

(7.5)

/’(k) c_ 7#’(k + 1)c_ 7g/’, q >_- 1, k >=0,

7g’ c_c_ 7#’+k
_

bg’o, q 1,

0=V r,
q=l

q

rV { (ui) r(u)S SOu](i, ., i,,) e Ira; u for e I}.
m=l

Let 0 e a admit a finite dimensional bilinear realization. By Corollary 5.4,
dim (//go) < oo. This implies that the dimensions of the spaces 7#’g (k), o/g are bounded
for all integers k, q. This suggests the following.

DEFINITION 7.1. Let 0 e
(i) 0 is S-regular if for all q > 0 there exists a iq " 0 such that
(ii) 0 is T-regular if there exists a finite integer O > 0 such that kUo 74/’o.
(iii) 0 is regular if 0 is S-regular and T-regular.
Remark 7.2. If 0 @0, is a generalized polynomial, then 0 is T-regular. In fact, if

0, 0 for all n ->_ O then tgo
Remark 7.3. Let 0 e Yga be regular. Combining parts (i), (ii) of Definition 7.1 shows

that there exists a finite integer Q > 0 and an upper bound m, such that 7g/’0 (m) 7#’ok for
1 _-< k _-< Q, and 7#’0 74/’0 (m)= 7g’0. (Note that (7.2)implies 7#’o (ik +j)= /4/’0k whenever
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(ik) /g’0k, SO such an m can be chosen for finite Q.) From (7.5) with these bounds
and m, Q, and 0 regular, we have

(7.6)

[/0-- / {Si"T(ui,)si’-lT(ui,,_l) T(ui2)silSOuil

10 --< i. _-< m,/" 1, , n and ui ll for I}.

Finite dimensional systems have regular transfer functions. If not, then dim /(k))
would approach infinity as k and q approach infinity, (7.1)-(7.4). However, not all
regular O’s admit a finite dimensional bilinear realization. For example, 0=
{h llou, 0, 0, .} with dim (a//) is regular and dim (/C0) . By Corollary 5.4, this 0
does not admit a finite dimensional bilinear realization. The connection between
regularity and finite dimensional bilinear systems is given in

PROPOSITION 7.4. 0 Wa admits a finite dimensional bilinear realization ifand only
if 0 is regular and

(7.7) dim(Tg’(i))<=Mi,q< for all >_-0, q >0.

Proof. Let 0 admit a finite dimensional bilinear realization. As shown above 0 is
regular. Condition (7.7) follows from Corollary 5.4 and /g’(i)___ 7//#0 for all i, q. The
converse follows from Corollary 5.4 and Remark 7.3; i.e., 74/’o 74/’0(m) implies
dim (/0)<=Mm,o < cx3. [-]

COROLLARY 7.5. Let 0 Ha(?/; ) with dim (07/)< c. 0 admits a finite dimen-
sional bilinear realization if and only if 0 is regular.

Proof. If 0 is regular, then Remark 7.3 with (7.6) and dim (0-//)< implies
dim (/g0) < c. The converse is obvious.

COROLLARY 7.6. Let 0 Y(all ) be a generalized polynomial with dim (0-//) < c.
0 admits a finite dimensional bilinear realization if and only if 0 is S-regular.

Proof. Let 0 be S-regular with dim (q/) < c. From Remark 7.2 0 is T-regular. Thus
Corollary 7.5 implies that 0 admits a finite dimensional bilinear realization. The
converse is obvious.

The hypothesis dim (0//) < in Corollary 7.5 cannot be replaced by dim () < c.
For instance, consider the following" 0

(7.8) 01(A1) (A1, A 1, A, A, .), 0,=0 ifn >1,

with ’{ , the real numbers and , the linear space of infinite tuples with
compact support. By choosing ui 71 to be the ith unit vector (the ith column is 1 and all
other columns are zero), it is easy to show that dim (7C0) . Clearly SnOql $Oall for
all n > 0. Thus 0 is regular, dim ()= 1 and dim (70)= c.

The following can be used to determine whether or not 0 is regular.
LEMMA 7.7. Let 0
(i) t/U kt (iq) if and only if

(7.9) (i + 1)= /(i).

(ii) /C0 /C0/f and only if
(7.10) IT(u)wlw 7g’o, and u 71}

_
Proo]

(i) If (7.9) holds, then U(iq) is an invariant subspace for S. By (7.1) 7#’
7#"(iq). The converse is obvious.
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(ii) If (7.10) holds, then W’0 is an invariant subspace for all T(u), u and S. By
(7.1) to (7.4) 7/V0 74/’0. The converse is obvious. [3

Remark 7.8. Let 0 a. From Definition 7.1 and Lemma 7.7 the following is
evident.

(i) 0 is S-regular if and only if for all q > 0 there exists an iq >= 0 such that (7.9)
holds.

(ii) 0 is T-regular if and only if there exists a (finite integer) Q > 0 such that (7.10)
holds.

(iii) Finally, 0 is regular if and only if there exist Q > 0, iq-> 0 such that t/I/"(iq)=
/’ (iq + 1) for q 1, , Q and (7.1 0) holds. [3

If 0 is regular, then (7.9) and (7.10) give us a recursive procedure for calculating the
space 7g’0. First, set q 1 and iterate on io until (7.9) becomes valid. Once (7.9) holds, set
1,t2’ t/I/"(iq),q =q-t-1, and repeat the above procedure until (7.10) holds. Once
(7.10) becomes valid, Y/V0 7g’ (with q Q). If (7.9) or (7.10) never become valid, then
0 is not regular and a finite dimensional bilinear realization of 0 does not exist. Upon
obtaining /g0 (i.e., a valid (7.9) and (7.1 0)), it is a simple matter to find a basis for /4/0 and
a matrix representation for the RBSR. In fact we obtain a basis for 74/’0 as we recursively
compute each 742(iq). To demonstrate this procedure we give

Example 7.9. Let 0 a(, ) be given by

(7.11) 0 (1-X)’ (1-21)(1-3)’0’0"’"
where is the field of real numbers. (Note that (1 -ah)- is the formal series given by

(7.12) (1 ah)-x E (aA)’,
i=0

where a and A is an indeterminate.) For this 0 we find a basis for /4/o and a matrix
representation for the RBSR of 0.

First, some notation is established, yg.n denotes the linear space of n-column
vectors, and ei is the ith unit vector; i.e., the ith column of ei is 1 and all other columns of
ei are zero. Since 0?/= y y{, we identify SO: It with the element SO and the
bilinear operator T: 0-//x-owith the appropriate linear operator T: (because
u u 1 we have T(u)x uT(1)x uTx when u 0?/= y{" and x .)

Using S,(1-aA1)-l= a(1-aA1)-1 where a, n >0 (see (2.6)) we have:

{ 1
),

h
0 0, "}":-" W1,(7.13) SO=

(1-1 (1-21)(1-3)’

1
)’ 0,0,... "-w2,(7.14) SSO=Swl= (1-A1 (1-2A)(1-3h2)’

{11_A1, 4a }(7.15) S2SO=Sw2
(1 2h7i_ 312),

0, 0, 2wl+3w2.

Thus (7.9) holds and wl, w2 span 7g’0. Using the definition of $ and T we have"

(7.16) Tw1 (1--hl)’ O, 0,... w3,

(7.17) 2h }rw2 (1 ---h 1)’
0, 0, 2W3,
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(7.18)

(7.19)

(7.20)

STwl Sw3 (1 3 1)’
0, 0, w4,

STwz 2w4, S2Twz 6w4,

S2Twx Sw4 3w4.

Thus (79) holds and {wi}4i= span /0. Clearly Tw w3, Tw:z 2w3, Tw3 Tw4 0. So
(7.10) is valid (Q 2), and {w/}/4=x spans /g0 7//#2o.

Let {A, B, C, N, 4} be a matrix representation of the RBSR {So, SO, Eo, To,
where wi is represented in 4 by ei for 1,..., 4. From this representation with
(7.14), (7.15), (7.18), (7.20), we have: Aea e2, Ae2 -2ea + 3e2, Ae3 e4, Ae4 3e4,
or

(7.21) A

0 -2 0 0

1030000 0

0 0 1 3

From (7.13) with B representing SO we have B e; i.e.,

(7.22) B=[1 0 0 0]t,

where denotes transpose. Since C represents E, C [Ewl, Ew2, Ew3, EW4]. From
(7.13), (7.14), (7.16), (7.18) C becomes

(7.23) C=[1 1 0 1].

Finally, using (7.16), (7.17), Tw3 Tw4 0 we have: Nel e3, Ne2 2e3, Ne3 0,
Ne4 0 or

(7.24) N

0 0 0 0

2 0
0 0 0 0

The system {A, B, C, N, 4} is a matrix representation for the RBSR. By Pro-
position 5.3, {A, B, C, N, 4} is a minimal realization of 0.

The method outlined in Example 7.9 leads to a procedure for calculating the
minimal bilinear realization of 0. Use Lemma 7.7 and $,E, T, to find a matrix
representation for the RBSR of 0.

B. The factorable form. In linear system theory it is shown that the transfer
function admits a finite dimensional linear realization if and only if it is rational. The
natural generalization of this result is not true even if the transfer function is a
generalized polynomial and 0-//= yf .

Example 7.10. Let OYga(.9’{,Yf) be given by 0-----{0, AIA2(1-AIA2)-1, 0,0,"" "},
where (1-A1A2)-1 is defined by (7.12). 0 does not admit a finite dimensional bilinear
realization. This follows from Corollary 7.6 and the fact that 0 is not S-regular, as the
following argument shows:

(7.25) siSou 0,
(1-hlh2)’

0, 0,...

where u
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Let E {A, B, C, N, W} be a finite dimensional bilinear system. From the Cayley-
Hamilton Theorem:

1 M

RiA(7.26) F,,
d (/m) i=0

where d(h,,) is a scalar valued polynomial in h,,, d(0) 0, F is defined in (3.4), and
Ri (; ) for 0, 1,..., M. Substituting (7.26) into (3.3) or (3.5) gives:

(7.27) 0 2 CR.NRi._N... NRiBA d(h
in =0,’" ",il =0

and 0 0,. Equation (7.27) is the form of interest.
DEFINITION 7.11. Let 0 0, (; ). 0 is said to be factorable if and only if

there exists a universal bound M< and a scalar valued polynomial d (h),
M

(7.28) d (h) 2 dih ’, d (0) O,
i=0

such that

(7.29) 0, Y
in =0,’" ",il =0

Kn(il,"’, i,)h 1 h d(hi

for all n >0 where gn(il,’’’ ,in)E(’lln; o’if) forO<_ii<_M,j= 1, 2, , n.
Remark 7.12. Definition 7.11 says that 0 @_)0n is factorable if and only if 0 can be

put in the form displayed by (7.29). For example the 0 given in (7.11) is not in the form
expressed by (7.29). By multiplying the numerator and denominator of 0n by the
appropriate terms, this 0 ( 0n can be put in the form (7.29); i.e., the 0 given in (7.11)
is factorable. Throughout this paper we use the sameM in (7.28) and (7.29). A boundM
is usually obtained by setting the appropriate K(il,. , in) or di equal to zero.

Remark 7.13. Definition 7.11 is stated for transfer functions in W. This will be
useful in studying state-affine systems.

By (7.27) all finite dimensional bilinear systems have factorable transfer functions.
From this, one might suspect that all factorable 0’s admit a finite dimensional bilinear
realization. This is not true even if -Y(- . It turns out that all factorable 0’s are
S-regular and not necessarily T-regular.

Example 7.14. Let 0 E (yr, g.) be given by

(7.30) 0 1 (. fi /i ))i=1 (1 -/i

Clearly 0 is factorable. Applying T recursively with S(1 h )-a (1 h )-1 and input
u 1 gives:

(7.31) TkSO ,G=I (I’ -- k 1 i=2 i -Xi

Using the fact that e 1 ’nC__ h "/n! is not rational, it is easy to show that {TkSO}k=o
is a linear)y independent set. Thus 0 is not T-regular.

To stiow that all factorable O’s are S-regular we need
LEMMA 7.15. Let v e 1([/’) be rational; i.e.,

(M(7.32) v iii
i=0 d(A)
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where d(A) is the scalar valued polynomial given by (7.28) and zti E o for
O, 1, , M. Then

(7.33) /=0V g v
___
span

In particular,

) (M+l)2

dim V v <(M+I)2 and V 1 V
i=>0 =0 =0

Remark 7.16. is the backward shift operator on 1(), i.e., u(A1)
(u(A)-u(O))/A if u 6 x().

Proof. Without loss of generality, assume d(0)= 1. By applying to (7.32)"

(7.34) ID [ (i_odi) -1] 1

i=1 d(l)"

Repeated application of to (7.34) leads to (7.33).
PROPOSITION 7.17. I[0 is actorable, then 0 is S-regular. Further, iMis an upper

bound or 0 given in Definition 7.11 then

(7.35) ((M+ 1)), or all q >0.

Pro@ Let 0 @0 be given by (7.29). 0n can be written as

(7.36) 0n d(1)

for all n > 0, where P, e ((n; )) and Pn, contains no I terms (k > 0). For
u , this implies

(7.37) Ou @ Onu
1

P,iu
n=l d(A 1) i=0

By Lemma 7.15 with S , =, and (7.37)"
(M+I)

(7.38) V sisou V sisou.
=0 =0

Since M in (7.29) is independent of u, (7.35) holds if q 1. For q 1 we note that the
operators T(u), u e , and S do not destroy the orm of 0 displayed in (7.29) (this is
shown by applying S, T to and using (7.34)). Thus (7.35) holds for all q > 0.

From this proposition with Proposition 7.4, Corollary 7.5, and Corollary 7.6, we
immediately obtain the following results.

Corollary 7.18. O a admits a finite dimensional bilinear realization if and
only if is factorable, T-regular and condition 7.7 holds.
Coov 7.19. Let 0 a(; ) with dim ()< m. admits a finite dimen-

sional bilinear realization if and only if is factorable and T-regular.
CorollAry 7.20. Let 0 a( ) be a generalized polynomial with dim () <

m. 0 admits a finite dimensional bilinear realization if and only if is factorable.
Consider any @, ea where each , is rational. This condition is necessary

for , to admit a finite dimensional bilinear realization. To see if O admits a finite
dimensional bilinear realization, one can check for factorability, T-regularity and
condition (7.7). Checking for factorability can become rather involved, i.e., one may
have to factor polynomials of several variables. An alternate way to check for the
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existence of a finite dimensional bilinear realization is to apply Lemma 7.7 with
Conditions (7.9), (7.10). This was done in Example 7.9 and Example 7.10. Note that the
operators Sn, En can be applied directly to the rational functions 0n, see (2.6) and (2.8).
Therefore, Lemma 7.7 with Examples 7.9 and 7.10 gives a recursive procedure to find
/g0 and determine whether or not 0 admits a finite dimensional bilinear realization.

Another result of this section is that it gives us a procedure to determine a minimal
bilinear matrix realization of 0. Assuming 0 admits a finite dimensional bilinear
realization, an algorithm is summarized [17]: Let 0 0n be given in rational form, i.e.,
each 0n is a rational function. (i) Using Lemma (7.7), find a basis for /g0. (ii) Using this
basis for /g0, find a matrix representation Z={A,B, C, N, yl.n} for the RBSR of
O, {So, $O, Eo, To, /g0}. Thus is a minimal realization of 0. Note that the above
algorithm lives in the transform domain, see Example (7.9). It is easy to implement
because the operators Sn and En can be directly applied to rational functions, see
Example 7.9, Example 7.10, and (2.6) and (2.8). The simplicity of the algorithm is due
to the shift operators S, E and our transform for a Volterra series input-output map. (It
is this transform theory that lead to rational kernels 0n which gives an easy implemen-
tation of the algorithm.)

8. Conclusion. In this paper we have used shift operators to present a theory of
bilinear systems. Shift operators can be used to solve other nonlinear problems [2]. Our
shift operator approach to nonlinear system theory is summarized in the following
steps.

(i) Find the input-output map for E (E is a state-space representation).
(ii) Use shift operators to find a backward shift realization (BSR) for an input-

output map.
(iii) Restrict the state-space in the BSR to obtain the restricted backward shift

realization (RBSR) of the input-output map.
(iv) Find the linear operator Hr. that sends Y_, into the BSR.
(v) Use H and the RBSR to develop a theory of minimality, reachability and

observability.
(vi) Use the RBSR to develop a theory of regularity and finite dimensional

systems.
The importance of a transform representation for a Volterra series is well demon-

strated in [4]. In this paper, we have introduced a new transform for a Volterra series.
Our transform is defined as the n-dimensional z-transform of the kernels in the lower
triangular Volterra series. For n-homogeneous systems, our transfer function [factor-
able transfer function] collapses into the regular transfer function [recognizable transfer
function] given in [9], [10], and [29] respectively. The transform theory allowed us to
use the concepts of rationality, factorability and regularity to further develop the theory
of finite dimensional bilinear systems. The transform representation also provided an
ideal setting for a realization algorithm; see Example 7.9 and [17]. This algorithm lives
in the frequency domain. It is extremely easy to implement, because the operators Sn
and En are naturally suited to act on rational functions; see (2.6) and (2.8). Obviously
our realization theory can be converted to the time domain. (Recall that A is an
isomorphism.) However, in this setting the concepts of rationality and factorability
becomes obscure. Even more distressing is that a time domain realization algorithm is
much harder to implement. One becomes rapidly convinced of this by working out
several examples in both the time and frequency domain. Note a time domain version of
our algorithm involves checking for linear independence of vectors @3n(il,’"’, i)
formed by an infinite direct sum of infinite multivariable sequences. Therefore even
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constructing a matrix realization for a relatively "simple" kernel sequence {0n}, will
demonstrate the advantage of our transform theory.

Conclusion" Our transform representation provides a compact notation that is a
real asset for finding minimal matrix realizations for a Volterra series! Finally, it is noted
that our transform representation can be applied to other problems in nonlinear
systems; it is used to determine the stability of certain homogeneous systems [10].

Other transforms for a Volterra series have also been used, [1], [4]. A particularly
interesting approach involves the noncommutative formal series [13], [14], [15]. Here a
finite number of noncommutative indeterminates x0, x1,’’’, xn are used to obtain a
transfer function for a bilinear system. The number n of noncommutative variables
depends on the dimension of the input space q/. The noncommutativity of x0, x 1, , xn
is the price one pays for eliminating our (possibly) infinite number of commutating
variables 1, z," In other words, there is a trade-off: one can choose between
finitely many noncommutating variables and infinitely many commutating variables.
Note that if the Volterra series is a polynomial, i.e., if 0 is a generalized polynomial, then
both theories use a finite number of indeterminates. However, ours commute.

Other approaches to realization theory are given in [25], [26], [31] and elsewhere.
Basically these papers arrange the input-output data into one huge "Hankel matrix"
and then use this matrix to solve the realization problem. In this paper, Hankel matrices
were not used; the input-output data are given by the transfer function 0 where 0 sits in
the space . We have also developed a theory of minimality, reachability and
observability directly from the RBSR and the operator Hz. This approach is believed to
be new. For other methods on proving some of the results in 5 and 6, see [26], [31].
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NEWTON’S METHOD AND THE GOLDSTEIN STEP-LENGTH
RULE FOR CONSTRAINED MINIMIZATION PROBLEMS*

J. C. DUNN?

Abstract. A relaxed form of Newton’s method is analyzed for the problem, minn F, with fI a convex

subset of a real Banach space X, and F:X-1 twice differentiable in the sense of Fr6chet. In this iterative
scheme, feasible directions are gotten by minimizing local quadratic approximations Q to F, and the
relaxation parameters, or step lengths, are obtained from Goldstein’s rule. The local and global convergence
theorems established here yield two significant extensions of an earlier theorem of Goldstein for the special
case I)= X a Hilbert space. In one extension, growth rate conditions on the local approximation Q
subsume the classical uniform positivity restriction on F"; connections are made here with a recently
formulated classification scheme for singular and nonsingular extremals. In the second extension, uniform
growth rate conditions are replaced by assumptions of the compactness and boundedness type. This
development establishes global convergence of the Newton-Goldstein algorithm for a large class of problems
with singular critical points.

1. Introduction. Newton’s method has a natural extension for the constrained
minimization problem,

(1.1) min F(y),

with 1 a nonempty subset of a real Banach space X and F"X --> R twice differentiable
in the sense of Fr6chet. Thus, for each x , let O (x, denote the corresponding local
quadratic approximation to F(.) F(x), i.e.,

(1.2) O(x, y)=(F’(x), y-x)+1/2(F"(x)(y-x), y-x)
where (u, v) signifies the value of a linear functional u X* (= dual of X) at v X, and
F’(x) and F"(x) are, respectively, the first and second Fr6chet derivatives of F at x. With
x fixed, consider the problem

(1.3) min O(x, y),

in place of (1.1), and let To(x) denote the corresponding solution set,

(1.4) To(x) { fZlO(x, )= inf O(x, y)}.
y

As x ranges over , (1.4) defines a set-valued map To: fI 2n. If 1" and F are convex,
the fixed points of this map are precisely the minimizers of F in fI; i.e., F()=
infyn F(y) if and only if To(). More generally, if 1) is convex but F is not convex,
the fixed points of To and the minimizers of F are always extremals, i.e., fixed points of
the operator TL defined by,

(1.5) TL(X) { ]L(x, :f) inf L(x, y)},

where L(x,. is the local linear approximation to F(. )-F(x),

(1.6) L(x, y)= (F’(x), y-x).

* Received by the editors November 21, 1978, and in final revised form March 10, 1980. This
investigation was supported by the National Science Foundation under Research Grant #ENG 78-03385.
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If neither l) norF is convex, no simple relationship exists between the fixed points of To
or TL and the solutions of (1.1); however, even at this level of generality certain types of
regular fixed points of To do provide strong local minimizers of F in 12; if F" is
continuous, these special fixed points are also strong local attractors for the Picard
iteration scheme,

(1.7) x,+1 To(x,), Xoe f.

When X and F is convex, (1.7) reduces to the classical Newton recursion

(1.8) F’(x,) + F"(xn)(Xn+l Xn) O.

Kantorovich 1], Goldstein [2], and others have investigated (1.8), and the more general
process (1.7) has been analyzed by Levitin and Polyak [3] under conditions somewhat
more restrictive than those invoked in the present article. More recently, Pshenichnyi
[4] and Robinson [5] have studied a different extension of the Newton process for
solving mixed systems of equations and inequalities, and Robinson [6] has investigated
convergence rates for a class of nonlinear programming algorithms containing (1.7) as a
special case.

In [7], [8] it is shown that the asymptotic behavior of conditional gradient
sequences is sensitive to the rate at which the local linear approximation L(, y) grows
as y moves away from an extremal : into t2. It turns out that the Newton iterates (1.7)
are governed by the growth rate of the corresponding local quadratic approximation
O(,. near a fixed point c of To. For the special case I)=X, a modification of
Goldstein’s development in [2] shows that local Lipschitz conditions of the sort,

(1.9a) xI),

are satisfied by the Newton operator To, with

(1.9b) lim K(r) 0,
o._0

provided F" is continuous and the growth condition,

(1.10) > 0, Vy , O(:, y)_-> vlly ’ll2

is satisfied, with O(:, y)=(F (:)(y-:), y-:). Growth conditions of this type also
arise naturally in analyses of gradient methods and quasi-Newton methods [9]. In 3 it
is shown that (1.10) is also the key to (1.9) when f is an arbitrary subset of X, except that
now F’(:) need not vanish, and therefore O(:, y)=(F’(:), y-:)+1/2(F"(:)(y-:),
y -:). The regularity condition (1.10) implies that : is a strong local minimizer of F in
12. The Lipschitz condition (1.9) implies that any sequence {x,}c I) generated by (1.7)
converges to : superlinearly (i.e., faster than any geometric progression), provided Xo is
sufficiently close to , e.g., close enough to make K(llXo- :[I) < 1. The strong regularity
condition,

also implies that is a strong local minimizer of F, and for continuous F", guarantees
that To(x) for x near ; evidently, this last condition insures that Newton iterates
which converge to must actually terminate at beyond some finite value of n.

If and F are convex and is a minimizer of F, then (F’(), y-)_->0 and
(F"()(y ), y ) _-> 0 for all y 6 ft. Under these circumstances (1.10) will hold if either
of the following conditions is satisfied"

(1.12) =la>0, Vy, (F’(:),y-:)->clly-,ll2,
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or

(1.13)

The second condition is related to the curvature of the level surface {x e XIF(x) F(:)}
at :, and is automatically satisfied if F" is positive definite, as in [2] and [3]. On the other
hand, when F’() # 0 the first condition is a manifestation of curvature in the boundary
of 12 at :, and plays an important role in the analysis of conditional gradient processes;
extremals : satisfying (1.12) are said to be regular in [7]. If F’(:) . 0, and if f obeys the
uniform convexity condition,

(1.14) ::lu>0, Vx, y , IlzlJ <-_ .llx yll= x / Y
/ z f,

2

then (1.12) holds with a--211F’(:)ll. However, (1.12) does not require uniform
convexity; in particular, an L version of (1.12) is closely related to classical notions of
nonsingularity for optimal control problems on hypercubes. These points are consi-
dered at length in [7].

The strong regularity condition,

(1.15) ::ias > 0,

is also introduced in [7]. At every extremal sc, the vector -F’(sc) must lie in Kn(:) the
cone of normals to 12 at :; however at a strongly regular extremal, -F’(:) falls in the
interior of Kn(:). (This can happen, for instance, at the vertices of polyhedral convex
sets l)). For convex F, condition (1.15) implies (1.11).

While convergent Newton iterates tend to converge rapidly, it can easily happen
that {xn} does not converge to any limit even though F is convex and x0 is quite close to
an extremal sc. For example, on l)=X R1, consider the strictly convex function F
defined by the conditions,

d2F 1
dx

(x) a +
1 + 4(x/A)

>= a,

dF
dx(Ol=F(O)=O,
a =1/2tan-1 2->0,

where A is an arbitrarily small fixed positive number. This function has a unique
minimizer at sc 0. Moreover, the associated Newton operator To is single-valued and,

x >=A = To(x)<__-A,

x <_-A To(x)>_A.

Consequently, the corresponding Newton iterates diverge if IXo- s[ IXol >- A.
On the other hand, for convex F and ) it is sometimes possible to induce

convergence from all remote starting points Xo 1 with certain relaxed Newton
schemes of the form

(1.16a) Xn+l= Xn -’[-O)n(.n--Xn),

(1.16b)

where the relaxation parameters, or "step lengths," on [0, 1] are usually chosen to
secure a decrease in the functional F from its value at x. In the classical line
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minimization scheme, to, is determined implicitly by

F(x. +to.(.-x.))= inf F(x. +to(.-x.)).
0o-1

In the implicit scheme of Goldstein [2], [10], w, is determined as follows. Fix 8 in (0, 1/2)
and put

g(x, ; o)-
F(x)-F(x +to(-x))

o(F’(x), x )

when (F’(x), x -) 0. For continuous F’, g is continuous in to on [0, 1] with x and
fixed. Moreover, lim_.0/ g(x,; to)= 1; consequently if g(x,; 1)<8, the set

W(x, 2)= to e [0, 1]18 -<_ g(x, 2; to)-<_ 1- 8}

is not empty. For convex F, one can show that (F’(x), x -} is always nonnegative for
To(x) (see inequality (4.3)), hence -x specifies a "descent direction" for F, and

the corresponding set,

W(x, 2) J{1}
[ W(x, 2)

if (F’(x), x ) O,
if (F’(x),x-.f)>O and g(x,.; 1)->_8,
if (F’(x),x-.)>O and g(x, 2; 1)<8,

rule now requires that

(1.17)

in (1.16), or equivalently,

(1.18)

,o. e W(x., x.)

Xn+l To,6(Xn), Xo ’,

where To, is the set-valued operator defined by

(1.19) To,(x) {y 111=1 e To(x), ::lto (x, ), y x + w(2 -x)}

as x ranges over . In a very rough sense, (1.17) approximates the line minimization
condition along the feasible direction specified by 2,-x, (see [8]). A related but
somewhat simpler step-size scheme proposed by Armijo in [11] for gradient methods
has also been adapted for classical Newton processes (Polak [12]).

When X a Hilbert space, Goldstein has shown that the iterates generated by
(1.18) always produce minimizing sequences with extremal limit points, provided that
on the level set

(1.20) no {x alF(x) F(xo)},

F" is continuous and uniformly bounded, and satisfies the uniform convexity condition

(1.21) <F"(x)v, v) >- tx]lvll2

for some/ > 0 and all v X and all x fl0. Moreover, under these conditions, one finds
that for sufficiently large n, either F, inf F or ton 1 (i.e., (1.18) reduces to the basic
Newton scheme (1.7)). Extensions of these results are established in 4 below for
convex fl in a Banach space. In one of these extensions the uniform convexity
assumption (1.21) is replaced by a weaker uniform growth condition on Q, viz.,

(1.22) O(x, y)-O(x, )> lly-ll,

is well defined and nonempty at each (x, ) with To(x). The associated step-length
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for some y > 0, all y 6 f, all To(x), uniformly for x fo. In another extension,
compactness of fo is the dominant assumption.

The present analysis reveals that the convergence behavior of Newton methods
depends on the structure of the feasible set f only indirectly, through the growth rate of
the quadratic functions O. However, when it comes to implementing (1.7) or (1.18), the
nature of f assumes a new and more immediate significance. For polyhedral I), the
subproblem (1.3) can be attacked with extensions of the simplex algorithm such as
Wolf’s method (cf. [13]), or still more specialized procedures suited to the particular
type of linear constraints which specify f. One can also devise effective specialized
algorithms for (1.3) when f is a sphere, or the intersection of a sphere and a hyperplane,
and so on. Beyond this, there is little that can be said here about the difficulty of (1.3)
vis-a-vis (1.1) when f is an arbitrary set, or even an arbitrary convex set. The related
question of how imperfections in the solution of (1.3) propagate through a computation
with (1.7) or (1.18) has practical significance but receives no further consideration here.

2. General lemmas. The following results are used later on in the analysis of the
Newton algorithms (1.7) and (1.18).

LEMMA 2.1. LetXand Ybe realBanach spaces and let G be a realfunctional on the
Cartesian product X Y. Let f be a nonempty subset of Y and define the associated
functional "X-> (-, oo] by the rule

,(x) sup G(x, y) _-< .
Suppose that for each fixed y f, the functional G(. y) X - is continuous at x f.
Then is lower semicontinuous at x.

Proof. If lim_. [Ix. x[[ O, then for each fixed y lq,

lim (x.) _-> lim G(x., y

lim G(x, y)

Consequently,

lim (x.)>_-sup G(x, y)
n--eo y

O(x). Q.E.D.

Note 2.1. See [14] for an extensive treatment of the continuity properties of
maximum and minimum sets.

LEMMA 2.2. Let X be a real Banach space, let F:X- R have a second Frchet
derivative F" near x f, and suppose that F" is continuous at x. Then for all u, v X,

(2.1) (F"(x)u, v)= (F"(x)v, u).

Proof. The following proof is a straightforward generalization from the special
case X R treated in [15]; still more general symmetry theorems are proved in [16],
[17] for Nth order derivatives.

For fixed h >_-0, put

D(u, v)=F(x +hu+hv)-F(x +hu)-F(x +hv)+F(x),
and

qb(t) F(x + tu + hv)-F(x + tu),
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with O<=t<-h. Then D b(h)- b(0), and consequently for some 7"1E[0, h]

d
D=c(t)lt=rl" h

{(F’(x + 7"1b/ q- hv), u)-(F’(x + 7"1b/), b/)}h.

A second application of the mean value theorem now yields

(2.2) D (F"(x + 7"1u + rlv)v, u)h 2,
for some o-1E [0, h]. On the other hand, if one puts

4(t) F(x + hu + tv)-F(x + tv),

then D b(h)- b(0), and a similar argument yields

(2.3) D (F"(x + 7"2// -- O’2/))U v)h,
for some 7", tr 6 [0, h]. The symmetry condition (2.1) follows from (2.2) and (2.3) in the
limit as h --> 0 Q.E.D.

LZMMA 2.3. LetXbe a real Banach space, let be a nonempty convex subset ofX,
and let F"X 1 have a second Frgchet derivative F". Furthermore, let L(x,. and
O(x, signify the local linear approximation and the local quadratic approximation to
F(. )-F(x) at x, defined by (1.6) and (1.2) respectively. Finally, let Tc and To denote the
set-valued operators in (1.5) and (1.4), and let l)vbe the set ofminimizers ofFin . Then

(2.4) F Tt.(),

and

(2.5) 6 To(sc) :ff sc E TL(sc).

IfF is convex, the converses of (2.4) and (2.5) also hold.
Proof. Proofs for (2.4) and its converse for convex F may be found in standard

references, e.g., [18], [19].
If : Tt(), there is a z in f for which

(F’(:), z s) <=- < 0.

For a [0, 1], put z s + cr (z ). Then z , and

Q(, z) -as + 1/2a(F"()(z ), z )

Since the right side of this inequality is negative for sufficiently small a > 0, it follows
that s To(). This establishes (2.5). If F is convex and s e TL(), then

Q(, y)= (F’(s), y- so:)+1/2(F"()(y- s), y so:))

=>0

Q(, ),

for all y , i.e., s To(:). Q.E.D.
Note 2.2. If F is not convex, the condition To(:) is neither necessary nor

sufficient for 6 DF. For example, consider F(x) x 3 on [-1, 1] 1. F achieves its
global minimum over at s=-1 and nowhere else; however, Q(-1, y)=

dF( dF
xx -1)(y + 1)+1/2-ffx (-1)(y + 1)= 3(y + 1)-3(y + 1), and this quadratic function
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attains its minimum over I) at y= 1. Thus, -1 To(-1)={1}. Moreover, at
2dF d F

:=0, one has (0)=x2 (0)=0; consequently Q(0, y)-=0 and therefore

0 To (0) [-1, 1 ], even though the inflection point 0 is not even a local minimizer of F
over f.

DEFINITION 2.1.
i) X is a regular paint of the operator To in (1.4) if and only if To(x) consists of a

single element {2}, and

(2.6) O(x, y)-O(x, vlly - 11
for some y > 0 and all y 6 f. In particular, : is a regular fixed point of To if and only if
To() {:} and Q(, y) satisfies (1.10); i.e., for all y in lq.

y) >- vlly

ii) x is a strongly regular point of To if and only if To(x) {2?} and

(2.7) O(x, y)-O(x, rslly

for some ys > 0 and all y e . In particular, is a strongly regularfixed point of To if and
only if To()= {:} and O(:, y) satisfies (1.11).

Note 2.3. According to Lemma 2.3, : To() TL(), therefore when fl X
one has F’(c) 0 and consequently O(, y) 1/2(F"()(y ), y ) at all fixed points of
To. In this special case, regularity of : relative to To means that F"() is positive
definite. More generally, when fl is a convex subset of X, the linear term (F’(), y c) is
always nonnegative for y l-I at an extremal ; consequently if F"(:) is positive definite,
then is a regular fixed point of To even though : may be a singular extremal in the
sense of [7] (i.e., (F’(s), y ) 0 for some y 1", y so). On the other hand, : can be a
regular fixed point of To even though F"(sc) is indefinite, provided the linear term in
O(, y) grows rapidly enough because of "curvature" in the boundary of f at so; in
particular, if F"() is positive semidefinite and is a regular extremal (i.e., (1.12) holds
at ), then : is a regular fixed point of To. Thus, if F is convex and is an extremal, then
(1.12) ff (1.10) and (1.13) =), (1.10); furthermore, (1.15) :ff (1.11). Finally, if f is
bounded, then (2.7 =), (2.6) and (1.11) (1.10).

LEMMA 2.4. Let X be a real Banach space, let f be a nonempty subset ofX, and
suppose thatF:X - 1 has a second Frdchet derivative F". IfF" is continuous at and if
is a regular or strongly regular fixed point of the operator To in (1.4), then is a proper
strong local minimizer ofF over 12.

Proof. If (1.10) holds at :, then for y f, there is a sr on the line segment joining :
to y for which

F(y)-F(,f)= (F’(,), y -)+1/2(F"(()(y -), y-)
O(sc, y) + 1/2((F"(()- F"(s))(y s), y sc)

>-- (3’ 1/21[F"(() F"(s)[[)[[y sll3.
Choose o- > 0 such that IIz 11 < r IIF"(z) F"()II < 2y. Then 0 < [lY 4:11 < and
yllff-:ll< and F(y)-F()>0. A similar argument leads to the same
conclusion when (1.11) holds at . Q.E.D.

LEMMA 2.5. Let f be a nonempty subset ofa realBanach spaceXand letF:X 1
have a second Frchet derivative F". Suppose that is a regularfixed point of the operator
To in (1.4) and that F" is continuous at . Then for all x fl sufficiently close to , To
satisfies the local Lipschitz conditions (1.9). Moreover, if also satisfies the strong
regularity condition (1.11), then To(x)= {} for all x sufficiently close to .
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Proof. With some manipulation, it follows from (1.2) and Lemma 2.2 that for all
ro(x),

O<=O(x,)-Q(x,)

1F" x--(F’(x),-)-( )(-),-)+(F"(x)(x-),-).

Consequently, the mean value theorem yields

(F’(), ) <- (F’(), ) + O(x, ) Q(x, )

V" x((F"(x)-F"(())(x ), )--(

for some " on the line segment joining x to so; equivalently,

((F"(x)-F"(())(x ), ) >- Q(, ) + 1/2((F"(x) F"())( ), ).

According to (1.10), one then has

(2.8) Ilv"(x)-V"(ff)llllx [lll ll>= ( -1/2[[v"(x)-V"()ll)ll ll2.
Since F" is continuous at sc, it follows that for sufficiently small r > 0,

(2.9) () sup IIF"(y) f"()ll <,
Ily-51l_<-r

with

lim e (or) 0.
0

Consequently, for fix- sell sufficiently small, conditions (1.9) hold with

(2.10) K(o-)
2e (or)

,/-(o-)

Finally, if (1.11) also holds, one obtains

(2.11) IlF"(x) F"(st)II Ilx :11 II; 11 ( 1/2[IF"(x) F"(s)[I II; 11)11 11
along with (2.8), where sr is once again somewhere on the line segment joining x to .
But in view of (1.9) and the continuity of F" at , it follows that for all To(x),

provided x is sufficiently close to . Therefore (2.11) implies that ; sc for all ; To(x)
with x l-I in some sufficiently small neighborhood of so. Q.E.D.

LEMMA 2.6. Let I) be a nonempty convex subset of a real Banach space X, and let
F:X R have a secondFrdchet derivative F". Suppose that is a regularfixedpoint ofthe
operator To in (1.4) and that F" is continuous at . Then for all e >0 there is a
corresponding d(e > 0 such that

(2.12) xf, Ilx-ll<d(), and ;Zo(x)O(x,x)-O(x,;)(-)llx-ll2,

where /> 0 is the constant in the regularity condition (1.10).
Proof. Since O(x, x)= 0, one has

(2.13)
Q(x,x)-Q(x,;)=-Q(x,;)

(F’(x), x -)-1/2(F"(x)(.f-x), -x).
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and therefore

(2.17) [Ix -’ll=e 1
1 +K([Ix ll))" IIx 11=,

for x near : and 2 To(x). It follows from (2.16) and (2.17) that for all x sufficiently
close to :, and all To(x),

with

O(x, x)- O(x, ) e v’llx 11=,

v’-- [v -IIF"()- F"(x)II-1/211F"(x)ll(g(llx ’11))=3 [1 + K([lx ’11)3-=,
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Furthermore, since 12 is convex and minimizes O(x,. over f, it follows that

0<(O (x, ), y-)
(2.14)

=(F’(x)+F"(x)(-x), y-),

for all y I). In particular, for y :, this gives

(F’(x), -)>=-(F"()(-x),

and consequently,

O(x, x)- O(x, ) >- (F’(x), x lj)-(F"(x)( x), -)
(2.15)

1/2(F"(x)( x ), x ).

By writing

(F"(x)(x-),x-j)=(F"(x)(x-2 +- :), x-+2-:)

(F"(x)(x 2), x ) + (F"(x)(x 2), 2 )

+ (F"(x)( c), x ) + (F"(x)( j),

and applying Lemma 2.2, one can carry (2.15) further to

-/F,,rxQ(x,x)-Q(x,)>-(F’(x),x--1/2(F"(x)(x-),x-)/\ )( ),

O(, x) + (F’(x)-F’(), x )-(F"(x)(x ), x )

F"(x ,+, )(-),-)

For all x sufficiently close to sc, condition (1.10), Lemma 2.5, and the mean value
theorem now yield

O(x, x)- O(x, ) >- O(, x)+ ((F"(sr) -V"(x))(x -), x -)

(2.16) + (F"(x)( ), )

_-> , -I[v"(ff) F"(x)ll- 1/2[[F"(x)[I(K (llx ll))=311x 11,
where r is somewhere on the line segment joining x to :, andK is the Lipschitz constant
in (2.10). A second application of Lemma 2.5 gives

IIx 11- IIx / 11
-->llx-ll-II-ll
_-> IIx 11- g(llx ll)llx 11,
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and sr somewhere on the line segment joining x to :. Condition (2.12) is now an
immediate consequence of (1.9b) and the continuity of F" at :. QED

LEMMA 2.7. Let , X, F, and satisfy the conditions of Lemma 2.6, and in
addition, suppose that F is convex. Fix 6 in (0, 1/2). Then for all x sufficiently close to ,

ro,(x) To(x);

i.e., the Newton-Goldstein operator in (1.19) reduces to the Newton operator in (1.4) for x
near .

Proof. For e To (s), the Lipschitz conditions (1.9) established in Lemma 2.5 yield
I1- sell o, and therefore To,($) To() {:}. According to Lemma 2.4, s is a proper
local minimizer of F in 1, and for convex fl and F, this means that : is the unique global
minimizer of F over . By Lemma 2.3, it then follows that there are no fixed points of
TO other than so; hence x : To(x) for x in 1 and x s. Fix y* in (0, y). Since F is convex,
Lemma 2.6 gives

(F’(x), x -)= Q(x, x)-O(x, ,) + 1/2(F"(x)( -x), -x)

->- *11 xll
>0,

for 2 To(x) and all x f sufficiently near but not equal to :. With Taylor’s formula and
(2.14) one then gets

g(x,;
F(x) -F()
(F’(x),x-)

(F"(x)( x ), , x
2(F’(x),x-)

((F"()-F"(x), (-x), -x)
2(F’(x),x-)

IIF"(g)-F"(x)II
=2 y*

with sr somewhere on the line joining x to 2. It now follows from Lemma 2.5 and the
continuity of F" at s that g(x,; 1)>-6, and therefore To,(x)= To(x), for all xsc

sufficiently close to s in 12. Q.E.D.

3. Convergence near regular fixed points of To. The following theorems are
straightforward corollaries of Lemmas 2.5 and 2.7. Notice that convexity of F or f is
not invoked in the first theorem. The principal assumption is that the local quadratic
approximation O(:, y) grows rapidly enough as y moves away from the fixed point
inside 12. This regularity assumption is also a basic sufficient condition for strong local
minimality (Lemma 2.4).

THEOREM 3.1. Let l) be a nonempty subset of a real Banach space X, and let
F:X -> ffl have a secondFrYchet derivative F". Suppose that is a regularfixedpoint ofthe
operator To in (1.4), and thatF" is continuous at . Then for all Xo f sufficiently close to, any sequence of Newton iterates {xn} generated by (1.7) converges superlinearly to
Moreover, if is also strongly regular, then xn for n sufficiently large.

Proof. According to Lemma 2.5, there is a o’o > 0 such that x l), IIx- 11 -< <
cro=>K(o-)<-K(cro)<l, and for all To(x), where K(cr)is
defined in (2.9)-(2.10). If {xn} satisfies (1.7) with Ilxo-:ll< o, then IIx-ll -<

[g(o)]" Ilxo-ll for all n->_0, by induction, and consequently imllx-ll-0.
Furthermore, the local Lipsehitz conditions in Lemma 2.5 also insure that To(s
therefore XN =)’ X, S for all n >-N. On the other hand, if [Ix, -sell > 0 for all n => 0,
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one finds that

lim Ilxn +1 ll_
lim K([Ixn [[) 0.

-0 []x 11
Finally, if (1.11) holds, then To (x) {:} for all x f sufficiently close to and therefore
xn o : ::), x for n sufficiently large. Q.E.D.

Note 3.1. If F" is Lipschitz continuous, it follows from (2.9)-(2.10) that
g(llx- cons. IIx-  11; the Newton iterates in (1.7) then converge quadratically to :
for Xo sufficiently close to .

THEOREM 3.2. Let f, X, F, and satisfy the conditions of Theorem 3.1 and in
addition, let f and F be convex. If {x}c D. is generated by the Newton-Goldstein
algorithm (1.18) and if {xn} converges to , then {x,,} eventually satisfies the Newton
recursion (1.7) for sufficiently large n. In this case, {x} converges superlinearly to ;
moreover if is a strongly regular fixed point of To, then x for n sufficiently large.
Finally, if Xo is sufficiently close to , {x,} must converge to .

Proof. Immediate from Lemma 2.7 and Theorem 3.1. Q.E.D.

4. Global convergence theorems tor convex tunctionals. In their analysis of the
basic Newton scheme (1.7), Levitin and Polyak [3] assume that f is a convex subset of a
Hilbert space X and that F is uniformly convex, with F" Lipschitz continuous on 1 and

(4.1)

for some A, Ix > 0, all v X, and all x f. Although these global constraints on F are
much stronger than the local regularity condition (1.10) imposed in Theorem 3.1, the
corresponding convergence theorem in [3] is still a local theorem; indeed, the example
in 1 shows that no global convergence theorem is possible for (1.7) on the class of
functionals treated by Levitin and Polyak (the analysis in [3] does produce a test which
can sometimes decide at the outset whether x0 falls in the domain of attraction of a
minimizer of F; however this test is often a rather conservative sufficient condition for
convergence, and to apply it one must have values for tx in (4.1) and a Lipschitz constant
for F"). On the other hand, for convex F, Goldstein has shown that the relaxed process
(1.18) can converge from all remote starting points Xo under circumstances where (1.7)
converges only locally. The following results significantly extend the principal theorem
in [2].

THEOREM 4.1. Let f be a nonempty convex subset ofa realBanach space X, and let
F X 1 be convex, twice Frdchet differentiable, and bounded below on f. For a given
Xo f suppose that the second derivative F" is continuous on the corresponding level set
in (1.20) and also uniformly bounded there; i.e.,

(4.2) IIF"(x)l[ < A,

]:or some h > 0 and all x fo. Finally, with 6 fixed in (0, 1/2) let {x} c f, {,} f, and
{to,} [0, 1] satisfy the Newton-Goldstein conditions (1.16)-(1.17) and suppose that the
defect sequence {,-x,} is bounded. Then {F,,} converges monotonically downward to
>= infer F > -, and x, belongs to fo for all n >- O. Furthermore, if {x,,} has a limitpoint

in fo then lies in the set fFofminimizers ofFover f, and infn F; in particular, if fo
is compact then infer F, fF is not empty, and {x,,} converges to the set fF; i.e.,

lim inf Ilx,-xll-0.
x’
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Proof. Since Q(x., x.) O, . To(x.), and F is convex, one has

(4.3)
(F’, x. x.) [O(x., x.)- O(x., x.)]+ 5(F.(x. .), x.

>-_0.

Consequently, (1.16)-(1.17) yields

(4.4) F,, -Fn+l >-tOn6(Fn, Xn -.n)>-O,

for all n -> 0. Thus {F,} is monotone nonincreasing and bounded below, and therefore
must converge to some limit -> infa F > -c; it follows that F, <- Fo, and hence x, f0,
for all n -> 0.

According to (1.16)-(1.17), (4.3), and Lemma 2.3, (F’, x, -,)= 0 :::> x, e To(xn),
and w. 0 Xn+l Xn ’F (F’n+l, x.+l -.+1) 0", consequently F’s; XN N)
0 Xn XN ’r for all n _-> N, by induction. If (F’, x. n) 0 for all n _-> 0, one either
has to. 1 and

(4.5) Fn -Fn+l -> t(Fn, Xn n) > O,

or else

1-6 > >-6,

in view of (1.16)-(1.17). In the latter case, Taylor’s formula yields,

F. -F.+
1-6__>

oo. (F"(()(x. .f.), x.
2 (V’,,xn-2,)

where sr is somewhere on the line segment joining x, to x,+a in the convex set o. This
inequality and (4.2) now produce,

(4.6) co,->
llx.-ll2

and consequently,

(4.7)

26(F’, x

262
--> (F’, x.--Adz

where d is an upper bound on the defect norms [Ix, -,1[. Together, (4.5) and (4.7) give

(4.8)
262

F. -Fn+l ->min {6(V, x. -.>, -(F’,,, x. .>2}.

Since F. => F.-F.+ "- 0, it now follows that

(4.9) lim (F’, x. -Y.)= 0.

In view of (4.3) this yields

(4.10a) lim 0(x.) 0
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where

b(x) sup (-Q(x, y))
(4.10b)

O(x, x)- inf O(x, y) => 0.

For each fixed y 12, Q(., y) is continuous on f0 because F"(. is continuous on
Therefore by Lemma 2.1, the nonnegative function 4 is lower semicontinuous, and it
follows from (4.10) and Lemma 2.3 that x,k sc lq0 = O(:) 0 =), l)F. Further-
more, by the continuity of F, x,k fv = Fn F(sc) infa F. If fl0 is compact, then
{x,} necessarily has limit points sc in fF # , and so infa F. Finally, if {x,} does not
converge to l-IF one obtains the contradiction, infxa IIx- for some e > 0 and
some limit point sc of {x,}. Q.E.D.

THEOREM 4.2. Let f, fo andFsatisfy the conditions of Theorem 4.1, and suppose
that the local quadratic approximations Q obey the uniform growth condition (1.22) on
fo. For fixed in (0, 1/2), let {x,}f, {,}f and {w,}[0, 1] satisfy the Newton-
Goldstein conditions (1.16)-(1.17). Then F has at most one minimizer in f, {F,}
converges monotonically downward to /->infaF>-o, x, fo for all n >-0, and
lim,_. fix, ,11 0. Furthermore, if {x,} is bounded, then infa Fand every weak limit
point of {x,} coincides with .

Proof. If fv, then sc To(), by Lemma 2.3. Furthermore (1.22) :ff (1.10) for
all y f; consequently is a regular fixed point of To. According to Lemma 2.4, : is
then a proper local minimizer of F in f, and for convex F and this means that : is the
unique global minimizer of F over f.

Inequalities (4.2), and (4.3) through (4.6), remain valid under the present hypo-
theses; therefore {F,} converges monotonically downward to some limit l->_infn F>
-, and so x, lq0 for all n >= 0. Furthermore, as in the proof of Theorem 4.1, one finds
that either x, XN sc for all n beyond some N, or else (F’, x, ,) > 0 for all n >= 0. In
the first case, it follows from (1.10) that , and therefore 2 x, 0 for n => N; in the
second case,

(4 11) F,-F,+I >min {6, 262 (F’ x,-.,>}. (F’,, x,a IIx.- .ll
For convex F, the second term on the right in (4.3) is nonnegative, and so the growth
condition (1.22) gives

(4.12) (F’,,, x.- ;.>_->  ,llx. -;.112.

With (4.11) and (4.12)one now gets

(4.13)
F, -F,+a =>min r{a, 2.._3,}.a= (F, x.

min {&/, 22}
for all n -> 0, and consequently,

(4.14) lim (F’., x. .) lim IIx. )nl[2 0,

since F, + =), F,- F,+ - 0.
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For convex F, one also has

F(y)>F,,+(F y X,,)

-F,,+(F’ y -.)+(F., .f. -x.),
for all n >_-0 and y 6 X; therefore it follows from (2.14) and (4.2) that

(4.15)
F(y) =>F,, (F(.f,, x,,), y -n)-(Fn, Xn --2n>

F

for all y D. But in view of (4.14), {n} is bounded because {x,} is bounded; hence (4.14)
and (4.15) give F(y) -> limn_ Fn -> infn for all y I), in which case infn F.

Finally, a continuous convex functional F is also weakly lower semicontinuous;
therefore F-infnF :ff all weak limit points of {x,} fall in the minimizer set

IIF {so}. Q.E.D.
Note 4.1. For compact 120, (4.2) automatically follows from the continuity of F".

For continuous F, the level set

(4.16) So {x XlF(x)<-F(xo)}

is closed; consequently if f is compact and F" is continuous, then lqo( f So) is
compact, (4.2) holds, and {, -x} is bounded. If So is compact and f is closed but not
bounded, then Do is again compact and (4.2) holds, but {-x} is not necessarily
bounded. Nevertheless, the latter condition can be verified for many interesting
problems on unbounded closed l)’s. As a simple illustration, consider F(x)= x 4 on
f X R1. The unique minimizer for F, viz. : 0, is "singular to second order," in the
sense that both the local linear approximation and the local quadratic approximation to
F at have multiple minimizers (in fact, both functions vanish identically);
consequently Goldstein’s Theorem [2] and Theorem 4.2 of the present article, are
inapplicable. On the other hand, Theorem 4.1 can be applied here. The level sets So for
F are compact, and at each x O, To (x) is single-valued with

{ F’(x)To(x) {2) x F"(X)] {}x}.

At the minimizer ( O, O vanishes identically hence To (0) X R1, and therefore the
single-valued branches of To are defined by

f x, x O,
(4.17) x ] y, x 0,

with y an arbitrary real number. Evidently, each of these branches is bounded on
bounded sets. Moreover, in the first part of the proof of Theorem 4.1, it is shown that
sequences {x,} generated by (1.16)-(1.17) remain in lqo irrespective of whether{ x,}
is bounded. But in the present case, {xn}c IIo => {x,} is bounded => {n} is bounded;
consequently {x,} must converge to sc from arbitrary x0, according to Theorem 4.1.
(Notice that sequences {x,} generated by the basic Newton scheme (1.7) also converge
to 0 from arbitrary x0; however, because of the singularity in F"(x)-1 at x0, the
convergence rate is now merely linear with ratio ). A similar development is possible
for a large class of functions F: N -[ with singular critical points; the basic require-
ment here is that the minimum norm solution V*(x) of F’(x) + F"(x)v 0 should remain
bounded as x ranges over any bounded set. In another recent investigation, Reddien
[20] characterizes the local behavior of classical Newton iterates near a certain type of
singular zero.
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Note 4.2. For all x, y X and To(x) one has

(4.18) Q(x, y)-Q(x,)=(Q’y(x,), y-) +1/2(F"(x)(y-), y-).
If f X, then Q’y(x, )= 0 and the growth condition (1.22) is equivalent to the right
side of (4.1). More generally, if is an arbitrary convex subset of X, it is still true that

(4.19) (Q’y(x,), y-)0,

for all y ; consequently (4.1)ff (1.22). On the other hand, (1.22) can hold even
when F is not convex. Thus, if satisfies the uniform convexity condition (1.14) and if
the derivative norms IlQ’y(x, ) are uniformly bounded away from zero on , i.e., if for
some e > 0,

(4.20) IIO’ (x,
for all x , To (x), then it can be shown that

(O’y(x, ), y -)2veily -il2,
for all x, y e , e To(x) (see the proof of Theorem 3.4 in [7]). Therefore, for any
convex F (1.14) and (4.20)ff (1.22), since the second term on the right in (4.18) is
nonnegative; in fact (1.22) will still follow even for a nonconvex F, provided

2re g inf
(F"(x)(y-), y-)

Ily- t 

for all x o, To (x).
Note 4.3. Let F be convex and let be a regular extremal of F in , i.e., (1.12)

holds at . By Lemma 5.2 in [7], it follows that is the unique minimizer of F in , and
that every minimizing sequence converges to , i.e., F(x,) infn F x, . Moreover,
if n satisfies the uniform convexity condition (1.14) and if ]lO’y (, )] IIF’()ll # 0, then
is automatically regular (Theorem 3.4, [7]).

Note 4.4. Let X be reflexive and let be closed and convex. Furthermore, let F
satisfy the right side of (4.1). Then it can be shown that the level set fl0 is bounded, closed
and convex, and therefore weakly compact. It now follows from Theorems 4.1 and 4.2,
and [18, Chapt. 1], that F has a unique minimizer and every minimizing sequence
converges to .

Note 4.5. For convex F, Lemma 2.3 asserts that To(); in this case, (1.22)
(1.10).

In light of these observations, one can now see that Theorems 3.1, 3.2, 4.1, and 4.2
contain and substantially extend the principal theorem of Goldstein in [2] for X a
Hilbert space.

REFERENCES

[1] L. V. KANTOROVICH, Functional analysis and applied mathematics, Uspehi Mat. Nauk., 3 (1948), pp.
89-185.

[2] A. A. GOLDSTEIN, On Newton’s method, Numer. Math., 7 (1965), pp. 391-393.
[3] E. S. LEVlTIN AND B. T. POLYAK, Constrained minimization methods, U.S.S.R. Computational Math.

and Math. Phys., 6 (1966), pp. 1-50.
[4] B. N. PSHENICHNYI, Newton’s method for the solution of systems of equalities and inequalities, English

translation in Math. Notes, 8 (1970), pp. 827-830.
[5] S. M. ROBINSON, Extensions ofNewton’s method to nonlinear functions with values in a cone, Numer.

Math., 19 (1972), pp. 341-347.



674 J.C. DUNN

[6], Perturbed Kuhn-Tucker points and rates o]: convergence )or a class o]: nonlinear programming
algorithms, Math. Programming, 7 (1974), pp. 1-16.

[7] J. C. DUNN, Rates o] convergence ]:or conditional gradient algorithms near singular and nonsingular
extremals, this Journal, 17 (1979), pp. 187-211.

[8] , Convergence rates ]’or conditional gradient sequences generated by implicit step length rules, this
Journal, 18 (1980), pp. 473-487.

[9] D. G. LUEN3ERGER, Optimization by Vector Space Methods, Academic Press, New York, 1962.
[10] A. A. GOLDSTEIN, On steepest descent, SIAM J. Control Ser. A, 3 (1965), pp. 147-151.
[11] L. ARMIJO, Minimization o]: [unctions having Lipschitz continuous first partial derivatives, Pacific J.

Math., 16 (1966), pp. 1-3.
[12] E. POLAK, Computational Methods in Optimization: A Unified Approach, Academic Press, New York,

1971.
[13] G.B. DANTZIG, LinearProgramming and Extensions, Princeton University Press, Princeton, NJ, 1963.
[14] G. B. DANTZIG, J. FOLKMAN AND N. SHAPIRO, On the continuity o]:the minimum set o]:a continuous

[unction, J. Math. Anal. Appl., 17 (1967), pp. 519-548.
[15] A. E. TAYLOR AND W. R. MANN, Advanced Calculus, 2nd edition, Xerox College Publishing,

Lexington, MA, 1972.
16] L.M. GRAVES, Riemann integration and Taylor’s theorem in general analysis, Trans. Amer. Math. Soc.,

January 1927, pp. 163-177.
[17] L. M. GRAVES AND T. H. HILDERBRANDT, Implicit ]:unctions and their differentials in general

analysis, Trans. Amer. Math. Soc., January 1927, pp. 127-153.
[18] V. F. DEMYANOV AND m. M. RUBINOV, Approximate Methods in Optimization Problems, American

Elsevier, New York, 1970.
[19] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[20] G. W. REDDIEN, On Newton’s method ]:or singular problems, SIAM J. Numer. Anal., 15 (1978), pp.

993-996.



SIAM J. CONTROL AND OPTIMIZATION

Vol. 18, No. 6, November 1980
1980 Society for Industrial and Applied Mathematics

0363-0129/80/1806-0008/$01.00/0

FACTORIZATIONS OF TRANSFER FUNCTIONS*

H. BART,’, I. GOHBERG$, M. A. KAASHOEK" AND P. VAN DOOREN

Abstract. This paper is concerned with minimal factorizations of rational matrix functions. The treatment
is based on a new geometrical principle. In fact, it is shown that there is a one-to-one correspondence between
minimal factorizations on the one hand and certain projections on the other. Considerable attention is given
to the problem of stability of a minimal factorization. Also the numerical aspects are discussed. Along the
way, a stability theorem for solutions of the matrix Riccati equation is obtained.

Introduction. The problem of factorizing a rational matrix-valued function W(A)
into "simpler" rational factors has network theory as one of its origins. In this theory
W(A) appears as a transfer function of a network. Its minimal factorizations (see
Chapter II) are of particular interest because it allows one to obtain the network by a
cascade connection of elementary sections which have the simplest synthesis [6], [22].

In the present paper the treatment of the factorization problem is based on a new
geometrical principle. This principle has been observed independently by the first three
authors and by the fourth (and has been communicated at a miniconference on
Operators and System Theory held at Amsterdam and Delft, February, 1978). For the
fourth author network theory [22], [23] has been the main motivation, while the first
three authors were inspired by [31, [7], [20].

The new geometrical principle referred to allows for a unifying approach to
seemingly disjoint topics such as the network problems mentioned above, the matrix
Riccati equation [19], the factorization theory of characteristic functions for linear
operators [7], the theory of Wiener-Hopf (or spectral) factorization [10], [11] and the
divisibility theory of operator polynomials [3], [12], [13]. Here we treat only the first
two topics; the other connections will be investigated in detail in a forthcoming
publication [5].

The problem of computing numerically the minimal factors of a transfer function
led us to investigate the stability of divisors under small perturbations. We pay
considerable attention to the measure of stability.

The matrix functions studied here are viewed as transfer functions of systems. A
system consists of three matrices A, B, and C, of appropriate sizes, and the correspond-
ing transfer functions are of the form

W(A)=I+C(AI-A)-IB,
where A is the complex variable and 1 the identity matrix. In the first chapter
multiplication and division of transfer functions are described in terms of systems.
Applications to matrix Riccati equations are also considered here. The special type of
minimal factorization and its properties are studied in Chapter II. In geometrical terms
an explicit description of all minimal factors is given. Stability and numerical aspects are
studied in the last two chapters. Throughout the paper we confine ourselves to the finite
dimensional case, but with minor modifications the results of Chapters I and III are also
valid in the infinite dimensional situation (see [5]).
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As far as notation and terminology is concerned we stipulate the following. The
term linear space stands for a complex vector space. All linear spaces appearing below
are assumed to be finite dimensional. In Chapters III and IV it is also assumed that they
are endowed with a norm, which is always denoted by [1" [[. By an operator we mean a
linear transformation between two linear spaces. The null space and range of an
operator T are denoted by Ker T and Im T, respectively. The identity operator on a
linear space X is always denoted by L The symbol In is used for the n n identity
matrix. Whenever this is convenient, an m n matrix A will be identified with the
operator from C into C given by the canonical action of A with respect to the
standard bases in C and C". In particular a rational n n matrix function may be
viewed as a rational function whose values are operators acting on C.

I. Divisibility of transfer functions and the Riccati equation. In this chapter
multiplication and division of transfer functions are described in terms of systems. The
main result on factorization is presented in 1.1. A slightly more sophisticated
factorizationtheorem,involvingthenotionof an angularoperator, isgivenin 1.2. In 1.3
we discuss the operator Riccati equation.

1.1. Multiplication and divisibility of systems. A system is a quintet 0=
(A, B, C; X, Y) of two linear spaces X, Y and three operators A:X X, B: Y X and
C:X Y. The space X is called the state space; the space Y is called the input/output
space. The operator A is referred to as the state space or main operator. A common way
to give systems is to specify three matrices of appropriate sizes. To be more specific, if A
is a 8 x 8 matrix, B is a 8 x n matrix and C is an n x matrix, then (identifying A, B, and
C in the usual way with operators) the quintet (A, B, C; C, C) is a system.

Two systems 0 (A1, B1, C; X, Y) and Oa (A, Ba, C; X, Y) are said to be
similar, written 0 0, if there exists an invertible operator S:X1 - Xa, called a system
similarity, between 0 and 0 such that

A1 S-1A2S, B1 S-1B2, C1 C2S.

The relation is reflexive, symmetric and transitive.
Let 0 (A, B, C; X, Y) be a system, and put

(1.1) W(A) I + C(hI -A)-IB.

Then W(h) is a rational operator function and W(ce)= I. This function is called the
transfer function of 0, and is denoted by Wo. Obviously, similar systems have the same
transfer function.

If W(A) is any rational function whose values are operators acting on Y and
W(oo) =/, then it is known from system theory (cf. [2]) that W(h can be represented in
the form (1.1). Such a representation is called a realization for W(h); we also use this
term for the system (A, B, C X, Y).

Our terminology is taken from system theory, where the transfer function (1.1) is
used to describe the input/output behavior of the linear dynamical system

2(t)=Ax(t)+Bu(t), y(t) Cx(t) + u(t).

In the theory of characteristic operator functions, certain systems with special proper-
ties are called nodes (see, for instance, [7]). The connections with this theory are further
developed in [5]. In the next paragraph we shall define the product of two systems. The
definition is motivated by the notion of a series connection of two linear dynamical
systems. For details, the reader is referred to [18] (cf. also [7]).
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Let 01 (A1, B1, C1; Xl, Y) and 02 (A2, B2, C2; X2, Y) be systems. Put X
XI @X2, and

A=[x BxC2]A2J, B= [BI]B2, C=[C1 C2].

Then (A, B, C;X, Y) is a system It is called the product of 0, and 02 and denoted by
0,02. A straightforward calculation shows that

(1.2) Woo (h Wol(h Wo2(h ).

So if 0 and 02 are realizations for Wa(A) and W2(A), respectively, then 0a02 is a
realization for Wa(A) W2(A ).

If 0 (A, B, C; X, Y) is a realization for the rational operator function W(A), then

0 (A- BC, B,-C;X, Y)

is a realization for W(A )-. We call 0 the associate system of 0. The operator A BC is
called the associate (main) operator of 0. By abuse of notation, we write A=A-BC.
Note that A depends not only on A, but also on the other operators appearing in the
system 0. One checks without difficulty that (0) 0 (so in particular (A) A) and
(002)---00, the natural identification of XX2 and X2X being a system
similarity.

Consider the system 0 (A, B, C; X, Y) and let H be a projection of X. So H is an
idempotent operator on X. With respect to the decomposition X Ker H Im l-I, we
write

(13) A=rA Ax2] IBm] C=[C C2].
I_A2a A22J’

B=
B2

The system prn(0) (A22, B2, C2; Im H, Y) is called the projection of 0 associated with
H (cf. [7]). Observe that prz_n(0) (A , Bx, C; Ker H, Y). One easily verifies that
prn(0) prn(0). The projection FI is said to be a supporting profection for 0 if

(1.4) A[Ker II] Ker H, AX[Im II] Im II.

If H is a supporting projection for 0, then I- II is one for 0 x. The second part of (1.4) is
equivalent to the rank condition.

ral2 B1] =dim Y.(1.5) rank
[ C2 I

This is immediate from the fact that the left-hand side of (1.5) is equal to rank (A 12-
B Cz) + dim Y.

The following theorem admits a very simple proof. Nevertheless it is one of the
cornerstones for the rest of the present paper. A somewhat more sophisticated
factorization theorem will be presented in 1.2.

THEOREM 1.1. Let H be a supporting profection for the system 0 (A, B, C; X, Y).
Then

(1.6) 0 prt_n(0), prn(0).

If W(A), W(A) and Wz(h) are the transfer functions of 0, prx-rI(0) and prn(0),
respectively, then W(h Wa(h W2(h). In other words,

I + C(AI-A)-IB [I + C(AI-A)-I(I [[)B][I + C[I(AI-A)-IB].
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Proof. With respect to the decomposition X Ker II3Im H, we write the opera-
tors A, B, and C as in (1.3). Then A may be written as

A [All-B1C1A21 -B2C1
A12-BIC2]
A22-B2C2J"

Hence (1.4) is equivalent to A21--0 and A12-BIC2 =0. It follows that

A22 J"

But then (1.6) is clear from the definition of the product of two systems. The second part
of the theorem is now an immediate consequence of formula (1.2).

In a certain sense Theorem 1.1 gives a complete description of all possible
factorizations of the system 0. Indeed, if 0 0102 for some systems 01 and 02, then there
exists a supporting projection II for 0 such that 01 prx_n(0) and 02 prn(0).

1.2. Angular operators and the division theorem. Throughout this section, X is a
linear space and II is a projection ofX onto Xz along X1. (Block) matrix representations
of operators acting on X will always be taken with respect to the decomposition
X --XI@X2,

A subspace N oX is called angular with respect to 11 if X Ker II@N. If R is an
operator from X2 into X1, then the space

N {Rx + x Ix X2}

is angular with respect to II. The next proposition shows that every angular subspace is
of this form.

PROPOSITION 1.2. LetNbe a subspace ofX. Then N is angular with respect to II if
and only ifN NR for some operator R from X2 into

Proof. We have already observed that if N NR, then N is angular with respect to
II. To prove the converse, assume that N is angular with respect to H, and let Q be the
projection of X onto N along X1. Put Rx (Q H)x for x e X2. Then N NR.

Given an angular subspace N, the operator R for which N NR is uniquely
determined. It is called the angular operator for N with respect to H. This notion was
introduced by M. G. Krein in [17]. We are now in a position to bring the division
theorem for systems into a slightly more general’form.

TnzoazM 1.3. Let 0 (A, B, C; X, Y) be a system, let II be a profection ofXonto

X2 along X1, and let N be an angular subspace ofX with respect to II. Assume that

(1.7) A[X1] Xl, AX[N]c N.

Further, let

A22J’ I_ 3B2

be the matrix representations ofA, B and C with respect to the decomposition X Xl
Xz, let R be the angular operator [or N with respect to H, and put

01 =(AI, B1-RB2, C1; X1, Y),

(1.9) 02 (A22, B2, C1R + C2; X2, Y).

Then 0-" 0102. More precisely,

0102 (E-IAE, E-B, CE; X, Y),
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where E is the invertible operator

Pro@ For convenience, put =E-AN, I=E-B, =CE and =(,/}, ; X, Y). Observe that E-AE. Now E mapsX onto X1 andX onto N.
Thus (1.7) implies that

A[x ] A EXd
Apply now Theorem 1.1 to show that

pr,-u()" prn().
But prz-n() 0 and prn() 02, and the proof is complete.

Suppose that the angular subspace N in Theorem 1.3 is the image of X= under
some invertible operator

S
S S=J X1X X1Xa.

Then it is not dicult to prove that S is invertible. Moreover the angular operator R
for N is given by R SIS. By substituting this in (1.8) and (1.9), we get

O =(AI,B-SaSB, C;X, Y),

O (A=, B, C&S + C; X, Y).

This together with formula (1.2), can be used to give a quick proof of Theorem 4 in
Sahnovi’s paper [20].

1.3. Te Neefiefi. As in the previous section, X is a linear space and H is a
proection of X onto X along X. In view of Theorem 1.3 the following question is of
interest. Given an angular subspace N of X and an operator T on X, when is N
invariant under T? The next proposition shows that the answer involves an operator
Riccati equation.
Pooso 1.4. Let N be an angular subspace oX with respect to , and let

Tit Till.T=
T21 r22J

Xl@X2Xl@X2

be an operator on X. ThenNis invariant under Ti[and only ithe angular operatorRorN
satises the Riccati equation

(1.10) RTaR +RT=- TR T O.

Proof. The operator

I
E=

0 R]. X1(X2 -’> X1(X2

is invertible and maps Xz onto N. So

E_TE =[T-RTz -RT21R-RTz2+ T11R + Tlz]T21 T22 + T21R

leaves invariant Xz if and only if T leaves invariant N. But E-TE leaves invariant Xz if
and only if (1.10) is satisfied, and the proof is complete.
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In view of formula (1.2) and Theorem 1.3, the problem of finding factorizations for
transfer functions of systems is related to that of solving a certain Riccati operator
equation. As a matter of fact, the condition AXIN] c N is equivalent to the requirement

RB2CIR +R(B2C2-A22)+(A-BC1)R +A2-BIC2=O.

Here we use the notation of Theorem 1.3.
Now let us introduce some more notation and terminology. Let T be an operator

on X and let tz be an eigenvalue of T. The subspace Ker (tzI- T), where m is the
dimension of X, is called the generalized eigenspace of T corresponding to . If
A 1," Ar are eigenvalues of T, the space

(1.11) Ker(hI-T) .Ker(hI-T)

is called the spectral subspace for T corresponding to the eigenvalues h 1, , h. This
spectral subspace can also be described as follows. Let F be a contour in C such that
h 1," , h are inside and the remaining eigenvalues of T are outside F. Put

P(T; F) (aI- T)-1 da.

Then the spectral subspace (1.11) coincides with the image of P(T; F). In view of this,
(1.11) is also called the spectral subspace for T corresponding to F. The operator
P(T; F) is a proection of X, called the Riesz projection corresponding to T and F (or

PROPOSITION 1.5. LetN be an angular subspace ofX with respect to H, and let

T=
21 22J Xl@X2Xl@X2’

be an operator on X. Then Nis a spectral subspaceor Ti[and only ithe angular operator
R [orNsatises the Riccati equation (1.10) and the operators T-RT andT+ TR
have no common eigenvalues.

It will appear from the proof that if N is the spectral subspace for T corresponding
to the contour F, then the eigenvalues of Ta + TR are inside F and the eigenvalues of
T RTI are outside F.

Pro@ Define E as in the proof of Proposition 1.4. It is clear that N is a spectral
subspace for T (corresponding to a contour F) if and only if X is a spectral subspace
(corresponding to the same contour F) for S =E-TE. With respect to the de-
composition X X@X, we write

S=
821 S22J"

Recall that S T-RT,S=-RTR -RT+ TIeR + TI, S1 T2, and $22
T+ TR.

Now suppose that $1 0 and thatS andS have no common eigenvalues. Let F
be a Cauchy contour such that the eigenvalues of $1 are outside and the eigenvalues of
S are inside F. Then P(S; F) has the form

and it follows that X Im P(S; F).
Next assume thatX is the spectral subspace for S corresponding to the contour F.
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Then in particular X2 is S-invariant and so S12 0. Write P P(S; F). The operator $22
is the restriction of S to Im P. Thus the eigenvalues of. $22 are precisely the eigenvalues
of S lying inside F. Let So be the restriction of S to Ker P. Then the eigenvalues of So are
precisely the eigenvalues of S lying outside F. In particular $22 and So have no common
eigenvalues. It remains to prove that So and $Xl have the same eigenvalues.

Since Im P X2 Im H, we have I-P (I- P)(I- H) and the map

F (I- P)[XI:Xx Ker P

is an invertible operator. One easily verifies that SoF FSxx. So So and Sxx are similar,
and the proof is complete.

If, Minimality and minimal faetorizations, In this chapter we discuss minimal
systems and minimal factorizations of rational matrix functions. The main result is
Theorem 2.2, which shows that there is a one-to-one correspondence between minimal
factorizations and supporting projections of minimal systems.

2.1. Minimal nodes. Let X and Y be linear spaces. A pair of operators (A, B),

A:XX, B:YX,

is called controllable if, for k sufficiently large,

(2.1) Im B + Im AB +. + Im Ak-XB X.

Similarly, a pair (A, C)

A:X-X, C:X- Y,

is said to be observable if, for k sufficiently large,

(2.2) Ker C f) Ker CA f’) Ker CAk-1 (0).

Observe that the left-hand sides of (2.1) and (2.2) are independent of k, provided k is
larger than or equal to the degree of the minimal polynomial of A.

A system 0 (A, B, C; X, Y) is called minimal if (A, B) is controllable and (A, C) is
observable. Such systems play an important role in the sequel. Below we collect
together a number of facts concerning minimal systems that are either wellknown or
easy to prove (cf. [2], [16] and the references given there).

If 0 is minimal, then so is 0 x. Similarity of systems implies that their transfer
functions coincide. The converse of this is not true in general. However, if 0 and A are
minimal systems for which Wo Wa, then 0 and A are similar. This result is known as
the state space isomorphism theorem. If $ is a system similarity between two minimal
systems, then S is uniquely determined. In other words, the only system similarity
between a minimal system and itself is the identity operator. Given a system 0, there
exists a minimal system (unique up to similarity) whose transfer function coincides with
that of 0. The product of two minimal systems need not be minimal. However, if the
product of two systems is minimal, then so are the factors. In particular, if II is a
supporting projection for the minimal system 0, then prn(0) and prt_n(0) are both
minimal.

2.2. Minimality and McMillan degree. Let W(A) be a rational n n matrix
function, and let ho be a complex number. Then ho is at worst a pole of W(h). So, taking
p sufficiently large, we may write

w() E ( o)W,
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the expansion being valid in some deleted neighborhood of ho. The rank of the block
Hankel matrix

W-1 W-2 W_p
W-2 W_p 0

is called the degree of W at ho. It is denoted by 6(W; o). Observe that 8(W; ho) does
not depend on the choice of p. For equivalent definitions and generalizations, see [15].
We also define the degree 8(W; o) of W at c to be the degree of W(h -1) at 0.

It is clear that 8(W; x) 0 if and only if W(h) is analytic at tz. Therefore it makes
sense to put

(w)= E (w;).
txC

Here C- C (.J {o}. The number 8(W) is called the McMillan degree of W.
Assume that W()- I. Then W(A) admits a realization of the form

(2.3) W(h I + C(AI -A)-IB.

The system 0 =(A, B, C; C, C") has W(A) as its transfer function. We call the
realization (2.3) minimal if 0 is a minimal system. In fact (2.3) is minimal if and only if 8
is equal to the McMillan degree 8(W) of W. If (2.3) is not minimal, then 8 > 8(W).
From (2.3) it is clear that each pole of W(A) is an eigenvalue of A. In general the
converse is not true, but if the realization is minimal, each eigenvalue of A is a pole of
W(A). So in that case the set of poles of W(h) coincides with the set of eigenvalues of A.
Similarly, if (2.3) is minimal, the set of poles of W(A)- coincides with the set of
eigenvalues of A A-BC. Poles of W(h)?-1 are usually called zeros of W(A).

2.3. Minimal [actorizations. Let W(A), Wl(/) and W2(A) be rational n n matrix
functions, and assume that

(2.4) W(h Wl(/ W2( ).

Then it is known (cf., e.g., [26]) that 8 (W) <_- 8 (W1) + 8 (W2). In fact this inequality holds
pointwise in the following sense:

(2.5) 8(W; tz)=< 8(W; )+8(W2; tz), tz C.

The factorization (2.4) is called minimal if 8(W)=8(W)+8(We). An equivalent
requirement is that in (2.5) we have equality for all/x C.

In dealing with minimal factorizations, we shall always suppose that det W(h) 0.
This implies the existence of a C such that W(a) is invertible. Put
W(a)-1W(A-+ a). Then clearly l/’(c)= I. There is a one-to-one correspondence
between the (minimal) factorizations of W(A and those of W(A ). So (from a theoretical
point of view) there is no loss of generality in assuming that W(oo) I,.

Suppose W(oe) I,. We are interested in the minimal factorizations of W(h). We
claim that it suffices to consider only those factorizations (2.4) of W(A) for which
WI(eo) W.(oe)= In. To make this claim more precise, assume that (2.4) is a minimal
factorization of W(h). Then 8(W;oe)+8(W;o)=8(W;eo)=O, because W is
analytic at oe. Hence 8(W1; oo)=8(W; oo) =0, or, in other words, WI and W are
analytic at oo. Moreover I, W(oo) Wl(OO) W(oo), and so W(oo) and W2(oo) are each
other’s inverse. Put U W(oo)-1. By multiplying WI(A) from the right with U and
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W2(A from the left with U-1, we obtain a minimal factorization of W(A whose factors
have the value

These considerations justify the fact that, from now on, withoutfurther mentioning,
we only deal with rational matrix functions that are analytic at oo with value the identity
matrix. In other words, the rational matrix functions considered below will be viewed as
transfer functions of systems.

PROPOSITION 2.1. Let W(A) Wa(A) W2(A) be a factorization of the rational
matrix function W(A ), let O be a minimal realization for W(A and let O be a minimal
realization for Wz(A ). Then the factorization is minimal ifand only if the product Ox O2 is a
minimal system.

Proof. Let 0 (A, B, C; C, Cn) be a realization for the rational matrix function
W(A ), i.e., formula (2.3) is satisfied. Then 0 is a minimal system if and only if 6 6(W).
From this and the definition of the product of two systems, the desired result is clear.

We now come to the main result of this chapter.
THEOREM 2.2. Let 0 be a minimal realization of the rational matrix function W(A).
(i) If II is a supporting projection for O, WI(A is the transfer function of prt-ri(0)

and W2(A) is the transfer function of prrI(0), then W(A)= WI(A)W2(A) is a minimal
factorization of W(A).

(ii) If W(A)= WI(A)Wz(A) is a minimal factorization, then there exists a unique
supporting profection II for the system 0 such that W(A) and W2(A) are the transfer
functions of prt_ri(0) and prri(0), respectively.

Proof. Statement (i) is an immediate consequence of Proposition 2.1. Therefore
we concentrate on (ii). Assume that W(A WI(A W2(A is a minimal factorization. For

1, 2, let 0i be a minimal realization of W/(A) with state space C’. Here 6i is the
McMillan degree 6(W) of W. By Proposition 2.1, the product 010z is a minimal
realization for W(A). Hence 0102 and 0 are similar, say with system similarity $: C
C2Ca, where 6 =81+82 8(W). Let II be the projection of Ca along $[Call onto
S[Ca2]. Then II is a supporting projection for 0. Moreover prt-ri(0) is similar to 01 and
prn(0) is similar to 02. It remains to prove the unicity of II.

Suppose P is another supporting projection of 0 such that pre(0) and pri-v(0) are
realizations of W2(A) and W(A) respectively. Then pry(0) and pri_e(0) are minimal
again. Hence prz-ri(0) and prt-e(0) are similar, say with system similarity U: Ker II
Ker P, and prn(0) and pre(0) are similar, say with system similarity V:Im II Im P.
Define T on Ca by

T=[ UO ]’KerII(ImIIKerPImP.
Then T is a system similarity between 0 and itself. Since 0 is minimal, it follows that T is
the identity operator on Ca. But then II P, and the proof is complete.

IIl. Stability of spectral divisors. The problem of computing numerically the
minimal factorizations of a given transfer function leads in a natural way to questions
concerning the stability of divisors of a system. These and related questions form the
main topic of this chapter.

3.1. Examples and first results. The property of having nontrivial minimal
factorizations may be ill-conditioned. To see this, consider the following example. Let

1 e
1+-

(3.) w(a)=
a

0 1+
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For each e this is the transfer function of the minimal system
where I 12 and

[0
To find a nontrivial minimal factorization of the function (3.1), we have to find
nontrivial supporting projections of the system 0 (cf. Theorem 2.2); i.e., we must look
for nontrivial subspaces M and M of Ca, invariant under A and A =A-/,
respectively, such that MMx= Ca. The operators A and A-I have the same
invariant subspaces, and for e # 0 there is only one such subspace of dimension one,
namely the first coordinate space. It follows that for e # 0, the rational matrix function
(3.1) has no nontrivial minimal factorizations. For e 0, we have

Wo(a)

1
+- 0 1 0

0 1 0 1+

and this factorization is minimal, because the McMillan degree of Wo(A) is equal to 2
and the McMillan degree of each factor is 1.

The next theorem shows that under certain conditions the existence of a minimal
factorization is a stable property.

THEOREM 3.1. Consider the rational matrix function
(3.2) Wo(h In + Co(hI Ao)-lBo.
Assume that the realization (3.2) is minimal and that Wo(A) admits a minimal
factorization Wo(A Wo( Wo:(A ),

(3.3) Woi(A In + Coi(AI, Aoi)-lBoi, 1, 2,

where 6 1 + (2 and the factors Wol(/ and Woa(h) have no common zeros and no
common poles. Then there existpositive constants co and e such that the following holds. If
A, B, and C are matrices (of the appropriate sizes) such that

(3.4) IIA Aoll + liB B011 + IIc Coil <
then the realization W(A I, + C(AI -A)-IB is minimal and W(A admits a minimal
factorization W(A WI(A W2(A ),

(3.5) W(A =/n + Ci(AIi -Ai)-IBi, 1, 2,

such that the factors WI(h and W2(h have no common zeros and no common poles, and

IIAi Aoll + [IB Boill -+- [[Ci Coill < (IIA Aoll + liB Boll
fori=l,2.

The above theorem deals with "spectral" minimal factorizations. The stability of
nonspectral minimal factorizations is investigated in [5]. The theorem is proved in 3.3.
The proof provides explicit estimates for co and 6,

3.2. Opening between subspaees and angular operators. Let M and N be
subspaces of the linear space X, and let [[. be a norm on X. The number

r/(M, N) inf {llx + ylllx eM, yeN, max {[[xl[, Ilyll} 1}

is called the minimal opening between M and N. Note that always 0---r/(M, N)_-< 1,
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except when bothM and N are trivial, in which case r/(M, N) oo. It is well known (see
14, Lemma 1]) that r/(M, N) > 0 if and only if M (q N (0). If II is a projection of the
space X, then

(3.6) max {IIHII, 11 - nil}
7 (Ker H, Im H)"

Sometimes it will be convenient to describe r/(M, N) in terms of the minimal angle min
between M and N. By definition this quantity is given by the following formulas:

sin CAin-- ’r/(M N).

(cf. 14]). Put

The number

p(M,N)= sup inf

gap (M, N) max {O (M, N), O (N, M)}

is called the gap or maximal opening betweenM and N. There is an extensive literature
on this concepta.

Now let us assume thatX Cn, endowed with the usual Euclidean norm. Let P and
O be the orthogonal projections of X onto M and N, respectively. It can be shown that
gap (M, N) liP- 011 (cf. [1]). Also

II/’ 1 (3.7) 1 ?(M, N)2 sup IlOxll2 sup
Ilxll IlYll2

provided both M and N are nontrivial.
LEMMA 3.2. Let IIo, H and Ha be pro]ections of the linear space X, and assume that

Ker Ho Ker II Ker Ha. Let R be the angular operator of Im H with respect to IIo and
let R be that of Im II1. The following assertions hold:

(i) r/(Ker IIo, Im 11o). O (Im II1, Im H) _-< liRa R II.
(ii) If p (Im Ha, Im H)< rt (Ker H, Im II), then

p (Im II, Im H). (1 + IIR II)
n (Ker H, im H)-O(Im II, Im H)"

In particular, if O (Im II1, Im Iio) < /(Ker IIo, Im IIo), then

p (Im H1, Im IIo)
7 (Ker I1o, Im Ho)-p (Im Ha, Im Ho)"

Results of this type seem to be well known. Therefore we omit the proof. We
proceed with a lemma which will be most useful in the next section.

LEMMA 3.3. Let P, px, O and O be projections of the linear space X, and put
a0 r/(Im P, Im px). (1 + lip I1 -. Assume X Im P@ImP and

P Oil + [[px Oxl[ < ao.

For details, see T. Kato: Perturbation Theory For Linear Operators, Springer, Berlin-Heidelberg-New
York, 1966, and the references given there.
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Then X Im O Im Ox and there exists an invertible operator S X Xsuch that
(i) Slim O] Im P, Slim O] Im PX,
(ii) max {lls III, s-1 I1[} --</3 (lIP Oil + lIP Ox II),

where/3 2[ao/(Im P, Im P)]-.
Proof. For simplicity we put d-IIP-Oll/llP-Oll and r/=r/(ImP, ImP).

Since gap(Im P, Im Q) _-< liP- Oil and gap(Im P, Im O) -<_ liP Ol[, condition (3.8)
implies that

2 gap(Im P, Im Q) + 2 gap(Im P, Im OX) < n.

But then we may apply Theorem 2 from [14] to show that X Im Q@Im Q.
Note that (3.8) also implies that liP- Qll < 1/4. Hence $1 I +P- Q is invertible and

we can write S-1= I + V with [IvIl<_-llP QII< . As I-e / Q is invertible too, we
have Sl[Im Q] Im P. By direct calculation, it can be shown that

and hence

p(Im SlOXS-( ImpX)<-[[SIQS- -PXll3d(1 +I[P[[) <
2

Let Ho(rI) be the projection of X along Im P(Im Q) onto Im P(Im QX), and put
I’I=SlrlS-a. Then I’I is a projection of X and Ker I’I=Ker Iio. Further, Im 1"I=
Im SIQXS-X, and so we have

r 1
O (Im I’I, Im Ho) < r/(Ker Ho, Im Ho).

Hence, if R denotes the angular operator of Im 1"I with respect to Ho, then because of
Lemma 3.2,

[JR _-< _2P (Im I’I, Im Ho).

Since p(Im I’I, Im Ho) _-< 3d(1 + lIP*I[), this implies that IIRIl_-<d,
Next, put S2=I-RHo, and take S =S:S1. Clearly, S: is invertible; in fact

S -I +RHo. It follows that S is invertible too. From the properties of the angular
operator one easily sees that with this choice of S statement (i) holds true. It remains to
prove (ii).

From S (I-RHo)(I+P-Q) and the fact that [[P-Q[[<-, one deduces that
I[S-I[[<-[IP-QI[+1/4[IR[[ IlHol]. Moreover [[Rll<-da-d, and from (3.6) we know that

-1[[Ho[[_-< r/ It follows that

5d
(3.9) IIs Ill-<- d+.4aor/
Recall that S-1 I + V with VII--< lIv- oil < &, This can be used to show that

(3.o) iIs_e_zll< 4d 4d
3 3aor/

Statement (ii) is now an easy consequence of (3.9), (3.10), and the fact that 6aor/-< 1.

3.3. Stability of spectral divisors. Let O=(A,B, C;X, Y) and 0o=
(Ao, Bo, Co; X, Y) be systems. The distance between 0 and 0o is defined to be the
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number

IIo Ooll IIA Aoll + lib oll + Ilc Coll.
We also put Iloll- IIAII + Ilull + IIcIl. If w(h and Wo(h) are the transfer functions of 0 and
0o, respectively, then

w()- Wo(a)ll--< IIo-Oo11. Ilol[. IlOo11

provided that Il> 2 max {IIAII, IIAoll}.
THEOREM 3.4. Let IIo be a supporting profection for the system 0o

(Ao, Bo, Co; X, Y), and assume that

Ker IIo Im P, Im IIo Im px,

where P and px are projections of X. Put

ao ,(Ker IIo, Im IIo). (1 + [IPXl[)-1.

Let 0 (A, B, C; X, Y) be another system, and let Q and Qx be proiections ofXsuch that

(3.11) A[Im O]c Im Q, A[Im Q*]c Im Q,

liP QI[ + n QX < ao.

ThenX Im O@Im 0*, there exists an invertible operator S" X Xsuch that S-11-IoS is
the profection H of X onto Im 0 along Im O, and the profection IIo is a supporting
profection for the system (SAS-1, SB, CS-1; X, Y), while for the corresponding
factors we have

max {I]prx-rIo(0O) prx_no()][, Ilprno(0O) prno(t)[[}

_<
9 [IiO-Oo11/- oXll)

r/(Im P, Im p)3 IIl--l(llP-Qll/llPo
Proof. From Lemma 3.3 we know that X Im Q Im QX. Take S as in Lemma

3.3. Then S-1IIoS is the projection H of X onto Im Q along Im Q. It is now clear from
formula (3.11) that S-1IIoS is a supporting projection for the system 0=
(A, B, C; X, Y). But then Ho is a supporting projection for ff
(SAS-1 SB, CS-I" X, Y)

Let 0ol and 1 be the left factors of 0o and associated with IIo, and let 002 and t2 be
the right factors. From the definition of the factors (see 1.1) it is clear that 11001 111 =<
III- Ilol[" II0o-11 and 11002-2[I <= IlIIoll" [10o-tll. Using (3.6), we obtain

(3.12) max IlOoi- gll <-- 1--[10o- tll, 1, 2,

where r/- r/(ImP, ImpX). As II0o-tll=<l]0o-0]]+l[0-ll, it remains to compute a
suitable upper bound for I10-

Put S=I + V and S-1= I + W. Note that
IIBII’IIVII/IICII’IIWII. By Lemma 3.3, we have max{llVII, Ilwll}_-<Zd(aort)-a, where
d -liP- OII / lIP o11, It follows that

(3.13) If0 tl[ -< 4__d 1 + II011.
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Since dce- < 1 and r/_-< 1, one can use formula (3.13) to show that

1[Oo 11-<--- Iio Ooll /--IlOoll

This, together with formula (3.12), gives the desired result.
THEOREM 3.5. Let o be a supporting projection for the system 0o

(Ao, Bo, Co; X, Y). Assume that

Ker Ho Im P(Ao; F), Im Ho Im P(A;; F),

where F and F are contours such that Ao and A; have no eigenvalues on F and F,
respectively. Then there existpositive constants a, 1 and such that the following holds.
If 0 (A, B, C; X, Y) is a system such that Iio Ooll < , then A has no eigenvalues on F,
A has no eigenvalues on F,

X Im P(A; F)Im P(A*; Fx),

the pro]ection H ofXalong Im P(A F) onto Im P(A* F*) is a supportingpro]ection for O,
and there exists a similarity transformation S such that

Is tIl lo Oo,
Ho SHS-, Ho is a supporting projection for the system (SAS-, SB, CS-I" Y)
and for the corresponding divisors we have

l]pr_no(0O) prz_no(ff)[[ fl[[O 0o[,

Ilpr.o(OO)- pr.o(&ll [Io
Furthermore, if Oo is minimal, then a can be chosen such that 0 is minimal whenever
IIO-o1<.

Proof. Let be the maximum of the lengths of the curves F and F*,

r max [ max II(aZ-Ao - ll max
heF heF J

and

Put

ao 7(Ker Ho, Im Ho)" (1 + IIP(A; r)ll)-.

(3.14)

1 aoTra (1+110o11)- min 1,
2/’

/31 =4(1 +[[Oo[[)y2,a[Traorl(Ker Ho, Im Ho)]-1,
9 [ 2tt0oll<l/32

7 (Ker Ho, Im 1-Io)3
1 +

"rrao

We shall prove that a,/31 and/32 have the properties mentioned in the first part of the
theorem. For convenience we write rt rt(Ker Ho, Im Ho), P=P(Ao; F) and px=
P(A F).

Suppose 0 (A, B, C; X, Y) is a system such that I[0 0oll < a. Then, in particular,
I[0 0oil < 1. Since IIa al] =< 110 -Ooll" (1 + IlOoll), it follows that

1
omax {IIA Aoll, IIA AI[} <
2V
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Using elementary spectral theory, we may conclude that A has no eigenvalues on F, A
has no eigenvalues on F, while further,

I1( I A)-I (AI Ao)-lll _-< 2  =110 0oil. (1 + II0o11), F,

[l(,I-AX)--(az-e;)-111<=23,al[O-Ooll. (1 + II0oll), x.
Hence for the corresponding Riesz projections O P(A; F) and O p(AX;FX), we
have

IIP-eXll+llQ O ll--< 2  el10 0oil. (1 / II0oll)<

The fact that a, 31, and/2 meet the requirements of the first part of the theorem is now
an easy consequence of Lemma 3.3 and Theorem 3.4.

Assume that 0o is minimal. We want to define the constant a in such a way that it
also has the property that 0 is minimal whenever II0 0oll < . Let n be the dimension of
X. Since 0o is minimal, the operator col (CoAo) ’_--o is left invertible, say with left inverse
L, and the operator row (AoBo) "-1

=o is right invertible, say with right inverse R. If
E" X--> Y is an operator satisfying

[’ A] n--1lie -col

then E is also left invertible. A similar remark can be made involving row (AoBo)’=.
Hence there exists a positive number w(0o) such that [10- 0o[1< o9(0o) implies that 0 is
minimal. The new a may now be defined as

(3.15)

This completes the proof of the theorem.
We now come to the proof of Theorem 3.1.
Proof of Theorem 3.1. The matrices appearing in Theorem 3.1, will be identified

with their canonical action as operators. Put 0o (Ao, Bo, Co; C, Cn) and

Ooi-" (Aoi, Boi, Coi; C8i, cn), i=1,2.

Since the factorization Wo(,)= Wol(/) Wo2(/) is minimal and t q-2 , the realiza-
tions (3.3) are minimal. Hence 0o is similar to the product 0o 0o 002, say with system
similarity T" C Ca Ca.

With respect to the direct sum Ca03 Ca=, the main operator fio and the associate
Xmain operator Ao of the system 0o 0o0o2 have the form

Ao BolCo2] A;
no2 J’ -B02Col A)2

The hypothesis of Theorem 3.1 concerning the poles and zeros of W01(h) and Wo2(/
just means that AoI and Ao= have no common eigenvalues and that AI and A2 have
no common eigenvalues. Let F be a contour that separates the eigenvalues of Aox from
those of Ao=. Similarly, let F be a contour that separates the eigenvalues of A)I from
those of A=. Then

Im V(o; F) Ca1 (0), Im P(fi,; Fx) (0)@C2.
It follows that we may apply Theorem 3.5 to the system 00.
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Let a and fl2be the positive numbers that according to Theorem 3.5 correspond to
the system 0o (cf. (3.14) and (3.15)), and put

0, [IITII" IIT-II + IITII + IIT-II3-,

Suppose (3.4) holds and write if= (TAT-, TB, CT-’, Cal(C2, C"). Then

Hence ff is minimal. This means that the realization W(A)=I, +C(AI-A)-B is
minimal. Moreover, there exists a similarity transformation S such that for the system

(STAT-IS-, STB, CT-S-’, CIC2, C"),

the projection Ho of C’)C2 along C(0) onto (0)C2 is a supporting projection.
This shows that W(A admits a minimal factorization W(A) W(A) W2(), with W1()
and W2(A) of the form (3.5). We also know that

Ilpr,-o(fro) prt-rio(if)l[ -</3211 if0 gll,

[IPrno(ffo) prno(ff)ll <---/3211ffo fill.
But this is the same as

--< I1 oll (IIA Aoll / i1 Boll / IIc Coil).
Let A be the main operator of 0, and let A be the main operator of the associate

system ff. As II- oll < a, we can apply Theorem 3.5 to show that has no eigenvalues
on F, A has no eigenvalues on F, and

Ca’@Ca’- Im P(fi.; F)@Im P(fi*; F).

Let II be the projection of Cal(R)Ca along ImP(e{; F) onto ImP(; F). Then

110 SIIS-. It follows that the eigenvalues of A are inside and those of A2 are outside
the contour F. Similarly the eigenvalues of A are inside and those of A7 are outside F.
Thus W(a) and W2(A) have no common zeros and no common poles. This completes
the proof.

3.4. Application to the R|ecati equation. In this section we show that the method
of 3.3 also can be used to prove stability theorems for solutions of the operator Riccati
equation. Here we restrict ourselves to "spectral" solutions (ef. Theorem 3.6 below).
The general ease has been investigated in [4], [8].

Throughout this section, X1 and X2 are linear spaces. We use the symbol (X,, X)
to indicate the space of all linear operators from X. into X.

THEOREM 3.6. Let Tii (X., Xi) i, j 1, 2, and letR (X2, XI) be a solution of
the Riccati equation

ZT21Z +ZT22- T11Z- Ta2 O.

Assume that TI1-RT21 and T22 + T21R haveno common eigenvalues, and let F be a
contour whose interior domain contains all eigenvalues of T22 + T2R and whoseexterior
domain contains all eigenvalues ofT-RT2x. Then there exist positive constantso) and
such that the following holds. If $ij (Xi, Xi) and

(3.16) ]]Sii- Tiill<o), i, f 1, 2,
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then the equation

(3.17) ZS21Z -Jr- ZS22- S11Z S12 0

has a solution O (X2, X1) such that all eigenvalues of S22 hi" Sz1Q are inside F, all
eigenvalues of $11 QS21 are outside F and

max IITii Si][[.(3.18) IIR -Oil E
i,]=1,2

Proof. Consider the operators

T= rz TaaJ’ S:
S21 S123’

on X XIX2. Assume that X is endowed with the norm I[(x a, x2)[[ [Ix all + l]xzl]. Then

(3.19) liT- S[[ 2 max [[Tii- sill.
i,/=1,2

From Proposition 1.5 we know thatN {(Rx, x)lx s Xz} is a spectral subspace for Z In
fact, if F is as in the statement of the theorem, then T has no eigenvalues on F and
N Im P(T; F).

Let be the length of F, and put e maxr 1(I-T)-I[I. Take llT-S[[< (27)-1.
By elementary spectral theory this implies that S has no eigenvalues on F and

[[(hi T)- (hi S)-[[ 2211S Tll, v,

ut then [le(; r-e(s; r[l -lrells- vii.
As X XNg, the number (X1, Ng) is positive. Put

,4T2(X1, ga)

and assume that (3.16) holds true. By (3.19) this implies that liT- sll <2 N (2T)-1, and
we can apply the result of the previous paragraph to show that

[IP(T; r)- P(S; r)ll< n(Xl, g).

In particular we see that

(3.20) gap (NR, Im P(S; F)) < 1/2r/(X1, NR).

By Theorem 2 in [14] this implies that

X X1@Im P(S; F).

It follows that there exists Q (X2, X1) such that

No {(Oz, z)[z e Xz} Im P(S; r).

By the results of 1.3, this operator Q is a solution of (3.17), the eigenvalues of
$22+$21Q are inside F, and the eigenvalues of $11-QS21 are outside F.

By (3.20), we have gap (NR, NQ)<1/2rI(X, NR). So we can apply Lemma 3.2 to
show that

2(1 + IIR(3.21) [IR Q[I <-- gap (NR, No).
r/(XI, NR
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But

(3.22) gap (NR, No)<-_IIP(T, r) P(S, r)[I <= y2eIIT SI1<2= liT. .11max
77" 71" i,i 1,2

Put
2

e 4(1 + IIR [[) 3’ g

rrr/(X1, NR)"

Then we see from (3.21) and (3.22) that (3.18) holds true. This completes the proof of
the theorem.

IV. Numerical and computational aspects. In this chapter we shall discuss some of
the practical numerical aspects of minimal factorization of rational matrix functions. In
contrast with the results obtained in earlier sections, the coordinate system becomes
here of crucial importance. Indeed, for computational problems, the matrices A, B, and
C determining the transfer function

(4.1) W(A I. + C(AI -A)-IB,
are known with a certain relative accuracy. Any coordinate transformation T, required
to construct a factorization, causes a loss of accuracy which is proportional to

cond (T)= [ITI["

(cf. [24]). The number cond (T) is called the condition number of T.
THEOREM 3.7. Let Ca= CIC2 be the (Euclidean) direct sum of C1 and C,

and let TI" C1 Ca and T2" C Ca be operators. If T1 and T2 are isometries, then

(4.2) IIT*ITeII-- COS min,
where (min is the minimal angle between Im TI and Im Te. Moreover, if

T T1T2]’ C1(C Ca

is invertible, then

1 -t- COS l)mi
cond (T) >_-

sin &min
equality occurring when T1 and T2 are isometries.

Proof. First assume that T1 and Te are isometries. Put Q TT*. Then Q is the
orthogonal projection of Ca onto M Im TI. It is not difficult to prove that

TT[I sup

where Ms Im Te. Hence, by formula (3.7),

IIT rll [1 -r(M, M2)2]1/e.

The equality (4.2) is now immediate from the definition of &rain.
Suppose that T is invertible and that T1 and Te are isometries. In order to

determine IITII and IIr- ll, we compute the spectrum of T*T. With respect to the
decomposition Ca= CI@C, we have

1)I -T*Te]AI T* T TT1 (A 1)IJ"
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For h # 1, one can write the right-hand side as a product of three operator matrices as
follows"

(4.3)

0 1
(, 1)2IJ"

-,k i TT1

In this way one sees that for h # 1, the operator hi-T*T is invertible if and only if
(, 1)21 T* T2TT1 is invertible. It follows that

TII:z 1 + T* r.ll, IIT-II-:-- 1- IITTTdl.
But lira* T=I[--cos 0min, and hence

cond (T)2=
1 + cos min (1 + COS min)2

1 cos (min sin2 min

This proves the theorem for the case when T1 and T2 are isometries.
Finally we consider the general case, where T and Tz are arbitrary operators such

that T IT1T2] is invertible. Using polar decomposition, we may write T1 U1R and

T2 U2Rz, where U and U2 are isometries and R1 and R2 are strictly positive
selfadjoint operators acting on C1 and C2, respectively. Put $ [U1 U2], and R
diag (R, R). Then R is invertible and T*T RS*SR.

Set a cos tmin. Then a IIu* udl, and there exists x C1 such that Ilxll-- 1 and
UUUUlX a2x. Put

Z, --! )i hi 1+(--1)’U’UIX a, i=1,2.

For h 1, we know that hi-S*S is equal to the product (4.3), provided the operators
T1 and T2 are replaced by U1 and U2, respectively. It follows that

S*Szi hizi, 1, 2.

Note that IlR-lzll- IIR-z=II>-IIRII- >0. So

cond (T)2 > IIT*TR-*z2II-IIRS*Sz.II
--IIT*TR-ZlI[- IIRS*Szlll

a=llRz.ll a. -1- COS tmin (1 "t- COS tmin)2

allRzll a 1 COS tmi sin min
and the proof is complete.

The preceding theorem sheds some light on the numerical problem of computing
minimal factorizations of rational matrix functions. Consider the realization (4.1). We
assume that the realization is minimal. From Theorem 2.2 we know that there is a
one-to-one correspondence between the minimal factorizations of W(,) and the
supporting projections of the (minimal) system 0 (A, B, C; Ca, Cn). In turn these
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supporting projections are completely determined by pairs of subspaces M, M satis-
fying

(4.4) AM M, AXM CMx, C M M.
Here, as usual, A A-BC.

For the computation of invariant subspaces of a matrix, reliable algorithms are
available in the literature [25]. A common way to proceed is to construct a unitary
matrix Q1 such that

(4.5) As O*AO1

0 0

is in upper Schur form. The diagonal elements a 1, O8 of As are the poles of W(A).
Similarly, one can construct a unitary matrix O2 which transforms A to lower Schur
form:

(4.6) O’AxO2 As=

Here/31, fl8 are the zeros of W(A). Algorithms that perform these decompositions
are known as the OR and OL algorithms [25].

Given natural numbers 81 and 62 for which 6 61 + 82, we partition O1 and 02 as
follows,

Ol=[Vl Wl], 02=[V2 W2].

1 2 1 2
From (4.5) and (4.6) it is clear that the columns of VI and W form orthonormal bases
for invariant subspacesM andM of A and A*, respectively. Now C M@M if and
only if the minimal angle min between M and M is nonzero. Thus M and M satisfy
(4.4) if and only if min > 0. By Theorem 3.7 we have cos min [[V W2[[. Therefore,
defining the matrix O by O OO and partitioning it as follows

O O}Oj.

one can measure min from the block Ox VW. Indeed, whenever the norm of 01
is smaller than one, the spacesM andM yield a supporting projection of the system ,
and, consequently, a minimal factorization W(h WI(h W(h of W(A ). Observe that
61 and 6 are the McMillan degrees of W1 and W, respectively.

In order to determine the factors W, and Wwe put T V, W]. If C M Mx,
the matrix T is invertible. But then the system (T-AT, T-’B, CT; C, C) is similar to
the system and has W(A) as its transfer function. One easily verifies that the matrices
T-1AT, T-XB, and CT admit a partitioning of the following type

rAl: ,Cq) , [ 1 ]}1 CT [C1 C2]"
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Put 01 (A1, B1, C1; C1, Ct/) and 02 (A2, B2, C2; C2, C"). Then 0 0102. The
factors W1 and W2 are now the transfer functions of 01 and 02, respectively. The poles of
W1 are the first 81 diagonal entries in As; the zeros of W1 are the first 81 diagonal entries
in A s. A similar remark can be made about W2

The smaller cond (T) is, the more accurate the constructed factors W1 and W2 will
be. This shows the significance of Theorem 3.7. Indeed, the similarity transformation T
constructed above maps Clq(0) onto M and (0)qC2 onto Mx. By Theorem 3.7, a
lower bound for the condition number of a transformation having this property is given
by the number

1 + cos min
sin min

In the present situation cond (T) is actually equal to this bound, for V1 and W2 are
isometries. So in this respect T is optimal. On the other hand, for a very small angle
brin, the condition number of T will be very large. In that case one can expect a very bad
relative accuracy that may even exceed 1. This will occur whenever bmin is smaller than
a certain threshold b0 which depends on the accuracy of the data. Therefore the spaces
M and M cannot be used when their minimal angle is too small. If that happens, one
can try different choices of 81 and 82, while using the same matrices Q1 and Q2. Also one
can try other Schur decompositions of A and A*.

For the amount of computations involved in the construction of a factorization of
the transfer function (4.1), we can give the following rough estimates, where 1 operation
stands for 1 multiplication plus 1 addition"

82n
2083

282(n+8)

operations for constructing A*,

operations for each Schur decomposition,

operations for the product Q Q*Q2,

operations (if 81 < 82) for calculating cos bmin,

operations for computing A 1, B1, C1, A2, B2 and C2 if min > 0.
In general, the Schur decompositions constitute the most time-consuming step, but for
8 100, e.g., experiments have yielded run times that are still within the orders of
seconds [9].

As we have seen, the determination of minimal factorizations is closely related to
that of pairs of "matching" invariant subspaces. The number of invariant subspaces
involved may be very large or even infinite. In practice this may lead to very cumber-
some combinatorial problems. For more details, the reader is referred to [21].
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ON THE OPTIMAL STOPPING TIME PROBLEM FOR
DEGENERATE DIFFUSIONS*

J. L. MENALDI?

Abstract. In this paper we give a characterization of the optimal cost of a stopping time problem as the
maximum solution of a variational inequality without coercivity. Some properties of continuity for the
optimal cost are also given.

Introduction. Summary of main results. This article develops the proofs of results
obtained in Note [12].

A. Bensoussan and J. L. Lions [3] have introduced the variational inequality
approach in order to solve the optimal stopping time problem in the case of non-
degenerate diffusions. A. Friedman [8] treated the same case, M. Robin 1-18] the
optimal stopping time problem for Feller processes, and J. M. Bismut [4] the same
problem for a class of more general processes. C. Bardos[1] studied partial differential
equations of first order, M. I. Freidlin [7] degenerate elliptic equations, and N. V.
Krylov [9] nonlinear degenerate elliptic equations.

In [14] and [17] the variational inequality associated with the deterministic optimal
stopping time problem is considered, and in [11 the degenerate nonlinear variational
equalities are also studied.

In this paper, the case of degenerate variational inequality associated with the
optimal stopping time problem for diffusion processes is developed combining analytic
and probabilistic methods.

Let (f, , P) be a probability space and {t}t_0 be a nondecreasing right-
continuous family of completed sub-g-fields of -.

Now let y(t) yx(t, co), =>0, co f be the diffusion on RN with Lipschitz continu-
ous coefficients g(. and r(. ), starting at x.

Suppose that is an open subset of R, and that z zx (co) is the first exit time of
process y (t) from ft.

Next, let f(. ), 4(" be real bounded measurable functions on if, and 0 be any
stopping time. The cost functional Jx (0) is given by

(0.1) J(O) E [ (y (t)) e -t dt + 10<,0(y(0)) e

where c is a positive constant.
Our purpose is to characterize the optimal cost

(0.2) (x) inf {J(O)/O stopping time},

and to obtain an optimal stopping time.
We denote by A0 the second order differential operator associated with the Ito

equation
2

(0.3) A0 tr gg g,
and A Ao+ a.

* Received by the editors June 15, 1979, and in final revised form March 3, 1980.

" Universit6 de Paris IX (Dauphine), Paris, France.
If B is a matrix, then B* denotes the transpose of B and tr (B) the trace of B.
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We define Fo as the set of regular points

(0.4) Fo {x O/P( > 0) 0},

and we give the following integral formulation of the operator A, inspired by D. W.
Stroock and S. R. S. Varadhan [19], for any real bounded measurable function on if, u
and v.

Au <- v in ’\Fo if the process

(0.5)2
tAT

Xt Io v(y(s)) e ds + u(y(t ^ r)) e

is a strong submartingale for each x ff\Fo.

Finally, we introduce the problem" To find a real bounded measurable function on
0, u (x) such that

u 0 on F0,

(0.6) u <-4’ in ff\Fo,

Au <- f inff\Fo.

We obtain the following characterization.
THEOREM 0.1. Assume that g, cr are Lipschitz continuous and that f, g are Borel

measurable and bounded. Suppose also

(0.7) O(x)->-O Vx Fo, upper semicontinuous.

Then, the problem (0.6) has a maximum solution given explicitly by (0.2). Moreover, if
is continuous, the stopping time O defined by

(0.8) tJ= inf {t [0, r]/a(y(t)) 4,(y (t))}

is optimal.
We have also the following regularity result.
THEOREM 0.2. Let the assumptions be as in Theorem O. 1. Suppose that

(0.9) Fo is a closed set.

Then if thefunctionsland 4’ are upper semicontinuous (or continuous) the optimal cost is
also upper semicontinuous (or continuous).

Now in order to use the variational inequality approach, we assume that the open
set is bounded, with smooth boundary F verifying

F= {x r/lr(x)n(x)l>O}U{x r/2g(x)n(x)<-tr [rcr*(x)]},

where n (x) denotes the inner normal. We remark that (0.10) implies Fo F (cf. D. W.
Stroock and S. R. S. Varadhan [19]).

Denote by (., the duality between H-1(0) andH (0), and by A the differential
operator (0.3).

Let us consider the following degenerate variational inequality associated with the
stopping time problem

u Ho(U), u <=
(0.11)

(au, v-u)>-(f, v-u) VvHo(), v>=4’.

denotes the minimum between and r.
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We have
THEOREM 0.3. Let the assumptions be as in Theorem 0.1. Suppose that f, 4’ are

Lipschitz continuous, and that conditions (0.10),

(0.12) Ab L(),

are satisfied. 3 Then, there exists one and only one solution u of the variational inequality
(0.11) which is given as the optimal cost (0.2). Moreover, the solution u is Lipschitz
continuous and verifies (0.12).

Remark 0.1. A weak formulation of the variational inequality (0.11) is also
considered, and the case of an unbounded domain 6 is studied.

This work is divided into four sections. The first section gives some useful lemmas.
In 2 we study the penalized problem, and in 3 we solve the initial problem. Finally,
in the last section, we treat the variational inequality.

1. Preliminary lemmas. Let (fl, , P) be a probability space, {"t}t>0 be a non-
decreasing right continuous family of completed sub-o--fields of o, and w(t) be a
Brownian motion in with respect to -t.

Suppose we are given two Lipschitz continuous functions g(x) and or(x) on ,
taking values in NN and Nu (R) Nu respectively, g (gi), O" (O’i]),

(1.1)4 Ogi Oo’i] e B(N), i, j, k 1,. , N.
OXk’ OXk

We consider the diffusion y(t) y(t, co), >= O, co 12, and x e u described by the Ito
equation

dy(t) g(y (t)) dt + o-(y (t)) dw(t), >-O,
(1.2)

y(0)=x.

We have
LEMMA 1.1. Suppose (1.1), and let 0 be any stopping time with respect to t. Then

there exists a constant y depending only on the Lipschitz constants of g and tr such that

(1.3) E{lyx(O)-yx,(O)12e-’}<-lx-x’l2 Vx, x’e.
Proof. We set

y =sup {tr [(o’(x)-o’(x’))(o’(x)-o’(x’))*c:__, ]
(1.4)

2(x x’)(g(x)- g(x’))
+

Ix-x’l /

Then Ito’s formula applied to the function Ix[2 e -vt and the process yx(t)-yx,(t)
gives

]yx (t)- yx,(t)]2 e -vt <= Ix X’[2 -[- 2 _[, (y (S)- y’(S))

(1.5)
[o’(y (s)) o’(y,(S))] e -vs dw(s).

Hence (1.3) follows.

We also assume a large enough, ff bounded, and F smooth.
4 B(N) denotes the set of all Borel measurable and bounded functions on
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Remark 1.1. Using the martingale inequality

(1.6) E{ st0P IIotrb(s)dw(s)[} <-3E{ /iotCk(s)ds},
and the same technique as in Lemma 1.1, we can obtain

(1.7) E{sup [y (t)- yx, (t)l g e -’t} C]x x’[ Vx, x’ [N,
t0

where the constants , and C depend only on k > 0 and on the Lipschitz constants of
g(x) and r(x).

Now let r z,(o)) and z’ z’(o) be the first exit time of the process y(t) from the
closed set 0 and the open set ff respectively,

(1.8)5
r inf {t _-> 0/y (t) },

and a similar definition for r’ with 0 instead of 0.
We have
LMMA 1.2. Suppose (1.1). Then, for any constant T > 0 and x , we have

(1.9)6 lim E{(T ^ r’ T ^ r’)+} 0,

(1.10) lim E{(T ^ r- T ^ r,)+} 0.

Proof. Let z be a sequence, z --> x, and let us consider the diffusions y(t), y(t)
starting respectively at z, x. Using Lemma 1.1, we can assume that

lim sup ]y(t)- y(t)l 0 a.s.
O_ t_ T

In order to obtain (1.9), we will prove

(1.11) lim r’ > r’n--" a.S.

We assume o f fixed. Then, if r’= 0, (1.11) is clearly verified, and so we can
suppose 0 < < r’ and define the set K, {y (t)/t [0, 8]} which is a compact subset of
ft. Hence for n large enough, n >_-No,

{yn(t)/t e [O, ]}c ff.

Thus rn _-> 8 and taking the limit,
lim

since 8 is arbitrary, we deduce (1.11).
Now we are going to prove

(1.12) lim - r a.s.,

so that (1.10) holds.
We assume o e f fixed. Then, if r oe, (1.12) is clearly verified, so we can assume

8 > -. Hence, there exists s < 8 such that y(s) ft. Thus for n large enough, y(s) if, so
r <-s < 8, and taking the limit

lim

since 8 is arbitrary, we deduce (1.12).

r +oo if y(t) e ’ Vt _-> 0.
6 If a N we denote by a the maximum between a and zero.
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Remark 1.2. From E. B. Dynkin [6, Theorem 10.2, p. 302] it follows that either the
process yx(t) stopped at the exit of 7, or (7 is a strong Markov process. Also observe that- and r’ are stopping times with respect to the family ot.

D. W. Stroock and S. R. S. Varadhan [19] proved Lemma 1.2 in a different way.
Remark 1.3. We recall the following martingale property" Let a(t) and b(t) be

measurable adapted and bounded processes, such that

Mt a(t) + Jo b(s) ds is a martingale.

Then, for any arbitrary measurable adapted and bounded process c(t), the process

a(t) exp (-Io c(s) ds) + Io (b(s)+c(s)a(s)) exp (-I0 c(r) dr) ds

is the martingale

Mo + Iot eXp (- I c (r) dr)dMs.
Now, we define the set Fo of regular points (cf. D. W. Stroock and S. R. S. Varadhan

[19]), r 0if,

(1.13) Fo {x e F/P(rx > 0) 0}.

We have
LEMMA 1.3. Assume (1.1) and that

(1.14) F0 is a closed set.

Then ]:or any constant T > O, and x , we have

(1.15) lim E{IT ^ rz T ^ r,l} O, z .
Proof. Let ? ?, (o) be the first exit time from \Fo of the process y(t). From the

strong Markov property of the process y(t) stopped at the exit of , we easily deduce

(1.16) P(z #,) O.

Later on, we will show

(1.17) lim E{(T ^- T ^ ?z)+} 0,

Indeed, we assume o e 12 fixed and the notations of Lemma 1.2 with ? instead of z’.
Then, without loss of generality, we suppose 0 < 8 < ?, and we define the set Ko
{y(t)/t [0, ]}, which is a compact subset of 7 such that Ko Fo . Because of
(1.14), for n sufficiently large, n _>-N,,, we have

{y(t)/t [0, 8]} 7\Fo.

Thus ?n ->-8, and taking the limit we obtain

lim ?n => 4 a.s.

So, (1.17) follows.
Finally, by combining (1.16), (1.17) and (1.10) the lemma is proved.
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Remark 1.4. In D. W. Stroock and S. R. S. Varadhan [19] it is proved that,
assuming (1.14), we have rx r’x a.s. for each x LJ Fo. Then we deduce Lemma 1.3
for the particular case x 0LJ Fo. Notice that Lemma 1.3 implies that the process
y(t ^ r) is Feller continuous on the whole domain .

Let us consider the differential operator A given by (0.3) where c is a constant
large enough, 2a _-> y, defined in Lemma 1.1.

LEMMA 1.4. Suppose (1.1). Letf(x), $(x), and a(x) be continuous realfunction on
such that

u c(), 0a L,(,),
cOxi

(1.18) <= $ in , 6(x) /x Fo,

At7 -<_-Il in ’().

i=1,...,N,

Then for any nonnegative, bounded and adaptedprocess 6(t) 6(t, co), the [ollowing
estimate holds

(1.19)

where II0a/oxll denotes the smallest Lipschitz continuous constant of the ]’unction a.
Proof. First suppose t7 C2(6). Ito’s formula applied to the function ti(x) and the

process yx (t) gives

E ti(y,(rx)) exp (a + 8(t)) d a(y,(r, r,,))

( I’’ t)}(1.20) .exp (a +(t)) d

-E [(Aa)(y(t)) + 6(t)(y(t))] exp (a + 6(s)) d dr
xAx

Using

tT(y,(rx)) 0 tT(yx,(rx ^ rx,)) a.s. in [r,, <- ’x < c],

from (1.20)we have

Next, choosing 0 ’x ^ ’ in Lemma 1.1, we deduce from (1.21) the estimate (1.19).
Finally, if fit CZ(6), by approximating f by regular functions the lemma is

proved.
Remark 1.5. Clearly, Lemma 1.4 implies

(1.22) E{le-x-e-*x’l}<-2all-x -x’], x, ee,
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if 2a >_-y and Uo is a Lipschitz continuous function on , vanishing on Fo, such that
Auo<--1 in ,().

Remark 1.6. For instance, suppose is a bounded domain given by

(1.23)
={x,/(x)<O},
r={x,a/4(x)=O}, Vx e 1-’,

and assume

(1.24) Ao <_--1 on F.

Then for any continuous functions f and 4’ on -, e C2(ff), , >_-0 on F; we can take
t/=, which verifies (1.18) for a and large enough. Clearly, applying Ito’s formula
to the function t/and process y(t) between z’ and % we deduce Fo F.

Now, some sufficient conditions for the existence of a Lipschitz continuous
subsolution are given using barrier functions as in 11 ].

LEMMA 1.5. Assume (1.1). Suppose also that is bounded, has the uniform exterior
7sphere property

There exist p > 0 such that for each point F there is a ball B B (s*, p) of(1.25)
radius p and center * verifying f3 B {},

and
F={x e F/lr(x)n(x)[ > O} U {x F/2g(x)n(x) < -tr [ro’*(x)]},(1.26)
n (x) is the inner normal of modulus p.

Then Fo F, and there exists a Lipschitz continuous subsolution Uo(X)

uo C(), uo L(), 1,..., N,
c3x

(1.27)
Auo <- -l in @’(), Uo=0 on F.

Proof. It is necessary to prove only (1.27).
Introducing the barrier functions k > 0, : e F, x e 6,

v(x, :)= exp (-k[x- :*[a)- exp (-kpa),
we have from (1.26) Aov(x, :) _-< -2/3 < 0, ifx : and k is sufficiently large independent
of :. Hence, by continuity, we have for some 6 > 0,

(1.28) Aov(x, <- < 0 Vx e {x e 6/Ix- < 8};

now using the fact that v (x, ) <- -3’ < 0 Vx ’\U, er deduce, for a large enough,

(1.29) Av(x, ) <-- < 0 Vx .
Finally, remarking that v(x, ) are equi-Lipschitz continuous in x s 6, we set

1
(1.30) Uo(X) sup {v(x, )/ F}.

Hence, Auo_-<- 1 in the martingale sense (0.5) and in the distribution sense. []
Remark 1.7. Suppose u0 given as in Lemma 1.5. Then for any f, 6 e C() such that

(1.31) O->0onF and A4, eL((Y),
and taking t7 hUo, where h _>-Ilfll+llJ011, we deduce (1.18).

The constant a is supposed large enough.

I1" denotes the L-norm in
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Remark 1.8. Clearly, using other barrier functions, different sufficient conditions
for the existence of a Lipschitz continuous subsolutions may be obtained.

2. Penalized problem. Before studying the stopping time problem we will start
with an intermediate stochastic control problem.

We call an admissible control u a scalar measurable adapted process such that
O<-v(t;w)<=l,t>-O.

Let f(x), (x) be functions such that

(2.1) f, , B(F),

and let a be a positive constant. We define the functional J, s > 0,

{[ 1 ] ( fo( 1 ) S) }(2.2) J(u) =E f(y(t))+-u(t)b(y(t)) exp +-(s) d dt

and we wish to characterize the optimal penalized cost,

(2.3) u (x) inf {J (u)/u any admissible control}.

The integral formulation of operator A (cf. D. W. Stroock and S. R. S. Varadhan
[19]) is given for u, v B() by

Au v in \Fo if the process
tAT

(2.4) X I0 v(y(s)) e ds + u(y(t ^ "r)) e-(t^

is a martingale for each x \Fo.

We remark that if Au v in the sense of (2.4), then we also have Au v in the
distribution in for cr smooth.

Next, the following problem is considered" To find a function u (x) such that

(2.5) u B(), u(x)=0 Vx F0,

(2.6 Au f-l(u- )/ in ff\Fo [in the martingale sense].

Remark 2.1. Let (t) be the semigroup in B(ff) given by

(2.7) (t)h E{h(y(t ^ )) e-(t^)},
and f be the characteristic function of the set F\F0.

Then, using the strong Markov property of process y(t) stopped at the exit of , we
show that (2.5) and (2.6) and the condition u e B(),

(2.8) u, (s) fW--(u 4)+ ds + (t)(uT) Vt >- O,
e

are equivalent. Moreover, the condition

is also equivalent to (2.8).
Remark 2.2. The semigroup formulation (2.8) is used by A. Bensoussan [2] for the

nondegenerate case. Here, if we assume that the set of regular points Fo is closed, the
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stopping process is Feller continuous (because of Lemma 1.3). Then, a semigroup
formulation can also be studied as in M. Robin [18].

This section is divided in three parts. First we solve problem (2.5), (2.6). Next, we
consider the case where the set of regular points F0 is closed. Finally, we give some
complementary results.

2.1. Existence and semicontinuity results. We have
THEOREM 2.1. Assume (1.1) and (2.1). Then problem (2.5), (2.6) has one and only

one solution u which is given by (2.3).
Proof. First we prove that problem (2.5), (2.6) has one and only one solution w(x).

Indeed, from the equality

1
(w )+ 1 1

w+-(w^6),

and applying Remark 1.3 for

a(t) w (y(- ^ r)) e -’(t^’) c(t)
1

f(y(t)) e -st if t-<r,
b(t)

0 otherwise,

we deduce that the conditions (2.5), (2.6) are equivalent to (2.5),

1
(2.10)9 A+ w =f+-(w, ^ O).

So, using the strong Markov property, we only need to find a unique solution of the
equation,

(2.11) w E f(y(t))+- (w ^ 0)(y(t)) exp -ct-- dt

Thus, we define the operator T in B(ff) by

(2.12) Tw E f(y(t))+-(w ^ O)(y(t)) exp -at-- dt

and we have1

Tv-Tw <
l+cs

Hence, T is a contraction in B(’) and so the equation (2.11) has one and only one
solution.

Next, we are going to show that the solution of problem (2.5), (2.6) is given by (2.3).
Indeed, let w be the solution for (2.5), (2.6). Then using Remark 1.3 with 8(t)=
(1/e)u(t), u(t) any admissible control, we obtain

w E f
l
(w 4)+ + ,(t)w (y(t))exp a+ u(s) ds dt

9 w instead of u.
0 I1" denotes the supremum norm in .
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Since

we have

(2.3)

and for

-(w O)+ + uw -<_ t,O if 0 , -<_ 1,

w(x)<=J(,), , any admissible control,

1
(t)= o

if w, (y(t)) > 0(y(t)),
if w,(y(t))<-O(y(t)),

(2.14) w(x)=J(P).

Thus, (2.13) and (2.14) give w u. 71
Remark 2.3. If u and t denote the functions given by (2.3) with [, 0 and f,

respectively, the following estimate is true,

(2.15) [[u li <-- lif-il + I1 11’,

wUr I1" ot tU norm o upmum over .
It is possible to consider the case with ’ instead of and to obtain analogous

results.
Now we study properties of continuity on u. We have
THEOREM 2.2. Let the conditions (1.1), (2.1) hold. Then iff and are nonnegative

upper semicontinuous on , so is u defined by (2.3).
Proof. Letting T be a positive constant, we define

[ ](2.16) J:(u, T) =E f(y)(t))+-u(t)0(y(t)) exp a +-(s) ds dt
E E

and

(2.17) u(x) =inf {J (u, T)/u any admissible control}.

We have the estimate

(2.18) Ilur- ull< ([lf[,+l[Ol[) e -aT

So it is sufficient to consider u r instead of u.
Then, we start with

Tu(z)-u (x)Nsup {[J: (u, T)-Jx(u, T)]/u any admissible control}.

Next it follows that

uY(z)- u (x) Ilfll+ Iloll E{(T Zz T Zx)+}

(2.19) +E [f(y (t))-f(y (t))]+ e -t dt

+E [0(yz(t))- 0(y(t))]+ e dt

Thus taking the limit in (2.19) and using (1.3), (1.10), the theorem is proved.
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Remark 2.4. Let u (x) be the optimal cost in the open set ; that is, u is defined by
(2.3) with r’ instead of -. Then a similar theorem of regularity is proved: If f and 4’ are
nonnegative lower semicontinuous on ?, so is u’. Notice that the function u’ is the
solution of (2.5), (2.6) with F, r’ instead of F0, r.

2.2. Regular case. In this part we assume that

(2.20) F0 given by (1.13) is a closed set,

so we have
THEOREM 2.3. Suppose (1.1), (2.1), and (2.20) hold. Then if f and d/ are upper

(lower) semicontinuous on , so is u given by (2.3).
Proof. The proof is similar to Theorem 2.2 from

u (z)-u(x)<- Ilfll/- ll ll E{IT

+-E [0(y(t))- 0(y (t))]+ e-’ dt

using (1.3) and (1.15) gives the result.
Remark 2.5. Let be smooth and n (x) be the inner normal of boundary F Off.

Suppose that

(x) 0 Vx
(2.2)

g(x)n(x)O

then Fo , so (2.20) is true. Clearly, if 6 (2.20) can be removed.
Now we are going to obtain some a priori estimates.
THEOREM 2.4. Assume (1.1), (2.1), and

L(), 1,. , N.(2.22)
Oxi’ Oxi

Then u is Lipschitz continuous and verifies

(2.23) Ou +
a -o

Proof. Let T be the operator defined by (2.12). From Theorem 2.1, u is the fixed
point of the contraction T. Suppose w is a Lipschitz continuous function on and
denote ao=a- >0; then from (1.3) it follows that

(2.24)a= ,oT.wll ii0 [i + V
Ox 1 + eo 1

Thus, (2.24) implies

ow < 2 +o)-e +
Ox i= ’1 + eao

11
3’ is given by (1.4), and II0f/0xll denotes the smallest Lipschitz of f.

12 If a, b s R, then a v b denotes the maximum between a and b.
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Hence

(2.25)

and taking w 0 and letting k in (2.25) we prove (2.23). 71
THEOREM 2.5. Let the assumptions (1.1) and (2.1) hold. Suppose that there exists a

Lipschitz continuous subsolution, i.e.,

c(6), eL(), 1, N,
c3xi

(2.26) ti -<_ 0 in 6, ti(x) 0 Vx e Fo,

and

(2.27) Of Od/, eL(), i=I,...,N.
OXi OXi

Then u is Lipschitz continuous on , and verifies

(2.28)
Ou <_ +

Proof. Starting at

and taking

u (x) u (x’) sup inf [J (u)- J;, (,)],

,’(t) if e [0, rx ^ rx,],
,(t)

0 otherwise,

we have

u(x)-u(x’)<--E lf(y (t))-f(y,(t))l e- dt

+sup

exp (-I](+u’(s))e ds) dt

+ f-(y,(t))

+ f+(y(t))exp a+-p’(s) d dt
x rx E

Next, using Lemmas 1.1 and 1.4 we obtain

(2.29) u(x)- u(x’) <-
ce -3’0

Clearly, from (2.29) the theorem is proved.
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Remark 2.6. Notice that condition (2.26) implies (2.20). Indeed, from Remark 1.5,
the function x--> E{exp (-crx)} is continuous on 6. Then, using the fact that Fo
{x 6/E{exp (-a-x)} 1}, we reach our conclusions.

2.3. Complementary results. Now, we consider u as a distribution in ’.
Let A be the differential operator

(2.30) A tr * g
3x

Assume

(2.31)
Ox 2

So we can define Au for u B(ff), as a distribution in if, by

(2.32) (Au, ok)= Ie uA* dx VO @(),

where A* is the operator

(fo-o-*&)(2.33) a*& =-1/2tr +g +a&.ox -x
Then we have
THEOREM 2.6. Let the conditions (1.1), (2.1), and (2.3)hold. Suppose that the

boundary F is smooth. Then the optimal cost u given by (2.3) satisfies
1

(2.34) au +-(u b)+ f in ’().

Moreover, if

(2.35) 13

(2.36)

there exists w B() such that AO w in ’\Fo,

0(x)--> 0 Vx F0,

the following estimate is true.

(2.37)

Proof. Equation (2.34) is obtained by regularization, or as in D. W. Stroock and
S. R. S. Varadhan [19] using an argument of monotone class. In order to get (2.37) we
will show that

(2.38) II(u )/11 II(f- A)/II,

Indeed, from (2.35) and Remark 1.3 we have

] }$=E{ AO(y(t))+-O(y(t)) exp (-cet--t) dt

+ E{ 1<,(y (-))

13 In the martingale sense of (2.4).
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Since

u-p =E [f(y(t))-Ab(y(t))] exp -at-- dt

--E [(y(t))-u(y(t))]+ exp -at--

-E{ l<O(y(z))

it)
(exp -az--

and because y(z) Fo a.s. if z < c, we obtain

{If ( It)}u-O<-ll(f-A6)+llE exp-at-- dt.

Hence, (2.38) follows. [3
Remark 2.7. Notice that (2.38) remains true even if F is not smooth. Also, if, for

instance, O C(F0) andA L(), then from D. W. Stroock and S. R. S. Varadhan
[19] the assumption (2.35) is satisfied.

Remark 2.8. A result analogous to Theorem 2.6 can be proved for the optimal cost
u’ in the open set .

We also have monotonicity in e.
THEOREM 2.7. Assume (1.1) and (2.1). Then if 0 < e <- e’ we obtain

(2.39) u <_- u,.

Proof. Let T be the operator introduced in Theorem 2.1 by (2.12). First, we are
going to prove that

(2.40) Tu, <= u, if 0 < e -< e’.

Indeed, as in Theorem 2.6, we obtain for any u B() which satisfies (2.35) 14 and
vanishes on Fo,

(2.41) Tu- u E -Au--(u- O)+ (y(t)) exp -at-- dt

So using the equality

f-Au,--el (u" 4’)+ (e1-, -(u,l) 4)+,

and taking u u in (2.41), we deduce (2.40).
Further, knowing that T has the monotone property (if u _-< u’ then Tu <-Tu’),

from (2.40) we obtain

(2.42) Tu, =< u,.
Hence, taking the limit in (2.42) as k -, we prove (2.39).

Remark 2.8. As for Theorem 2.7, an analogous property is obtained for the
optimal cost u’ in the open case.

Remark 2.9. Approximating u by regular functions (el. D. W. Stroock and S. R. S.
Varadhan [19, Coroll. 8.1], we have

(2.43) t- u(y(t ^ z)) is a.s. continuous.

The same argument holds for functions satisfying (2.35).
14 Clearly, with u instead of
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Also, using the semigroup associated with the process y(t) stopped at the exit from
the open set if, we prove

(2.44) --> u’(y(t ^ r’)) is a.s. right continuous,

where u’ denote the optimal cost in the open case.

3. Integral formulation. Recall that Fo denotes the set of regular points given by
(0.4) and that if u, v B (if) we set

Au <- v in ff\Fo if the process

(3.1) Xt v(y(s)) e ds + u(y(r ^ 7-)) e -’(’^)

is a strong submartingale15 for each x \Fo.
The following problem is considered: Find u(x) such that

(3.2) u B(), u(x) 0 Vx F0,

(3.3) Au <-1 in 6\Fo [in the martingale sense (3.1)],

(3.4) u -< O in \F0.

In order to find solutions of problem (3.2), (3.3), (3.4) which have some continuity
property, it is necessary to assume that

(3.5) 4,(x) >--0 Vx F0.

This section is divided into three parts. First, we consider the case where 0 is
regular. Next, we extend the results for b continuous or upper semicontinuous. Finally,
we give some complementary results.

3.1. Regular case. We have
THEOREM 3.1. Let the conditions (1.1), (2.1), (3.5) hold. We also assume that

(3.6) there exists w B() such that Ab w in ff\Fo [martingale sense].

Then the problem (3.2), (3.3), (3.4) admits a maximum solution u which is given by the
decreasing limit

(3.7) u(x) li u(x) Vx ,
where u is the solution of problem (2.5), (2.6).

Proof. Using Theorem 2.7 we can define a function u(x) by the limit (3.7).
First we are going to prove that u, given by (3.7), is a solution or problem (3.2),

(3.3), (3.4). Indeed, assertion (3.2) is trival from (2.5) and Remark 2.1. Condition (3.3)
is obtained taking the limit in the martingale expression of (2.6), and (3.4) follows from
the estimate (2.38).

Next, in order to show that u is the maximum solution, it is only necessary to prove
that each solution v of problem (3.2), (3.3), (3.4)satisfies

(3.8) v_-<u in /e>0.

But, as in Theorem 2.7, (3.8) follows from

(3.9) v <- Tv in ’.

5 That is, Xt satisfies the Doob optional sampling theorem.
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Thus, using Remark 1.3 as in Theorem 2.7, we obtain (3.9), and so the theorem is
proved.

Now, the optimal stopping time problem is considered.
THFORFM 3.2. Under assumptions (1.1), (2.1), (3.5), and (3.6) the maximum

solution ( of problem (3.2), (3.3), (3.4) is also given as the optimal cost (0.2), and the
estimate

(3.10) {[u,-{{e{[(f-A)+{{ Ve >0,

holds. Moreover, the stopping time defined by

(3.11)6 =inf {t [0, ’]/(y(t))= (y(t))}

is optimal; i.e.,

(3.12) (x) Jx().

Proof. Denote by t the optimal cost (0.2), and by u the solution of the penalized
problem (2.5), (2.6).

First we are going to show that

(3.13)

(3.14) 16

u_-> Ve>0,

inf {t [0, ’]/u(y(t)) >- 4,(y (t))}

satisfies

(3.15)17
l^,<oo u(y(d ^ r))= la<,O(y()),
u(y(t))<O(y(t)) if t[0,

Note that (2.6) implies

(3.16) u=E f--(u-O)+ (y(t))e-tdt+lo^,<oou(y(O ^ r))e-(^’)

for any stopping time 0. Thus, taking 0 in (3.16) and regarding (3.15), we deduce

(3.17) u(x)=Jx(),

and so (3.13) follows.
Next we are going to prove

(3.18),

Indeed, starting at

(3.19) u(x)- a(x)= SUoP inf [J; (u)-Jx (0)],

and setting

1 if s > 0,
uo(S)=

0 if s<-0,

16 With - or if the corresponding set is empty.
17 la<b denotes the function 1 if a < b and =0 otherwise.
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we deduce, as in Theorem 2.6,

J2 (vo)-Jx(O) -E l,<oolo<,O(y(r)) exp -cr
8

(3.20)
+E (j-A0)(y(t)) exp -t- dt

Hence, using (3.5) from (3.20) and (3.19), we have (3.18).
Clearly, (3.18) and (3.13) imply (3.10). So we obtain from (2.43),

(3.21) a(y(t r)) is a.s. continuous.

Further, from Theorem 2.7, (3.21), and estimate (3.10), we have

(3.22) lim a.s.,

where the limit is increasing.
Finally, choosing 0 0,, e’> e >0 in (3.16), and letting e 0 and then e’ 0, and

using the convergence (3.10), (3.22) we establish (3.12).

3.. Nreglr ese. Now, we relax the regularity assumptions on 0. Without

assuming (3.6), 0 will be only continuous or upper semicontinuous. We have

TOM 3.3. Under assumptions (1.1), (2.1), (3.5), and

(3.23) 0 is uniformly continuous on

the problem (3.2), (3.3), and (3.4) admits a maximum solution which is given as the

optimal cost (0.2). Moreover,

(3.24) lim Iu all 0,
e$0

and the relation (3.12) is true.

Proof. First we remark that if u denotes the optimal cost (0.2) corresponding to

fi, for 1, 2, we immediately obtain the estimate,

(3.25) Ilal-a NLlf-fl + -Next, notice that in Theorem 3.1 the assumption (3.6) was used only in order to

prove (3.4). Also, the same arguments as in Theorem 3.2 show that provided (3.25) and
(3.24) hold, we can deduce (3.12). So, using the fact that defined by (0.2) satisfies
(3.4), we just need to prove the convergence (3.24). Then, approximating by a

sequence of smooth functions and using the estimates (3.25) and (2.15) the convergence
(3.24) is established.

Remark 3.1. If the obstacle is only continuous, the assertions of Theorem 3.3
remain true but the convergence (3.24) holds only on compact sets of

THZOZM 3.4. Let the conditions (1.1), (2.1), (3.5), and

(3.26) upper semicontinuous on ff

hold. The problem (3.2), (3.3), (3.4) admits a maximum solution a which is given as the
optimal cost (0.2). Moreover, given any constant e > 0 there exists a function d" d (x)
such that

g’" x fl [0, ] is measurable,
(3.27) x , (x) is a stopping time,
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and

(3.28) gt(x)+ e >=J(O(x) Vx (.

Pro@ Since O is bounded and upper semicontinuous on , there exists a sequence
{0}= of bounded and continuous functions on ff decreasing to O (el. Bourbaki
[5, p. 30]). Let fi and fi be the optimal costs according to 4 and 4 respectively; then
clearly, t is decreasing to a.

Next, from Theorem 3.4 and Remark 3.1, the functions verify (3.2), (3.3), and

(3.29) t _<- .
So, if we let k oe, the function t satisfies (3.4). Moreover, from monotonicity, t is the
maximum solution of (3.2), (3.3), (3.4).

Finally, we set

(3.30) k(x)=inf{k>-l/Fk(X)<-(x)+e},

and

(3.31) d inf {t [0, r]/(y(t))=6(y(t))}.

It is easy to check that 0 satisfies (3.27), (3.28), and the proof is completed.
Now, using Theorem 3.4, Theorem 2.7 and Theorem 2.2, we obtain
COROLLARY 3.1. Let the conditions (1.1), (2.1), and (3.5) hold. Then iff and are

nonnegative upper semicontinuous on , so is the optimal cost d defined by (0.2).
Next, using Remark 3.1, Theorem 3.4, and Theorem 2.3, we obtain
COROLLARY 3.2. Assume (1.1), (2.1), (2.20), and (3.5). Then iff and are upper

semicontinuous or (continuous) on , so is the optimal cost defined by (0.2).
Remark 3.2. With suitable modification in the proofs, results similar to Theorem

3.1, Theorem 3.2, Theorem 3.3 and Corollary 3.1 are obtained for the optimal cost u’ in
the case of the open set ft.

3.3. Complementary results. A relation between the two problems, in the closed
set ff and in the open set if, is given by

THeOReM 3.5. Let the conditions (1.1) and (2.1) hold. Then the following estimates
hold,

(3.32) II(a’- )/11--< -IIf-ll / Ile,-II,

(3.33) ]l(a’- a)-]]-<_ 111r\o4,
where ’ and (t denote the optimal cost corresponding to the problem in the open subset
and closed set respectively.

Proof. Recall that r’ denotes the first exit time of process y(t) from the open subset
’, and J’ (0) the functional cost given by (0.1) with r’ instead of -.

Starting at

(3.34) a(x)- a(x) su0P i0n,f [J’ (O’)-J(O)],

and choosing for the infimum 0’= 0 in (3.34), we deduce

(3.35 ’(x)- (x)-<E f-(y(t) e-dt +su0P E.{1,,=o<,4,-(y(O)) e-},

and (3.32) follows.
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Further, taking from the supremum 0 0’ ^ r’ in (3.34), we have

(3.36) a’(x)- a(x) >_- -E{1,,<,O+(y (r’)) e-"}.
Hence (3.33) is proved. ]

Next, combining Theorem 3.5, Corollary 3.1 and Remark 3.2, we obtain
COROLLARY 3.3. Assume (1.1), (2.1), (3.5), and

(3.37) 0(x) 0 Vx r\F0.

Then ill’and g are nonnegative continuous on , the two optimal costs ’ and coincide. It
follows from Theorem 2.2 and Remark 2.4 that the optimal cost ( given by (0.2) is
continuous on .

Now, t is regarded as a distribution in . Recalling that A represents the
differential operator given by (2.30), we have

THEOREM 3.6. Suppose that the boundary F is smooth and the conditions (1.1),
(2.1), (2.31), (3.5), and

(3.38) 0 continuous on

hold. Then the optimal cost (t satisfies
(3.39) Aa-f
(3.40)18 A =f

in @’(ff),

in @’([a < ]).

Furthermore, if O verifies (3.6), the following estimate is true

(3.41)

SoA L().
Proof. First we recall that the condition (3.40) has meaning if the subset [t < 4] is

open. Using Corollary 3.1 and Corollary 3.2 this fact can be deduced.
Next the conditions (3.39) and (3.41) are immediate from Theorems 3.4 and 2.6.
Finally, if b @([t 4]), using the uniform convergence (3.24) we obtain

(3.42) (a 0)/$ 0 if e is small enough.

Therefore, from (3.42) and (2.34) the equality (3.40) is proved. [-1

Remark 3.3. Let U be the subset of 6 where r(x) is nondegenerate. Suppose that t
is continuous (see Corollary 3.2). Then, from (3.41), t can be regarded as the unique
solution of a Dirichlet problem on U. This fact leads to a W12g (U), 1 < p < c, regularity
for the optimal cost a given by (0.2).

Remark 3.4. All these results can be extended for f and 4 with polynomial growth.
Remark 3.5. It is possible to consider a more general case of a cost functional Jx (0),

exchanging the term exp (-at) with

and adding a final cost

exp (- c(y(s)) d

(1,<10_>_,h (y (z)) exp \- c(y(t))

provided c (y) -> ao > 0.

18 [ < 4’] denotes the subset of points x such that (x)< 4’(x).
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Remark 3.6. A result analogous to Theorem 3.6 is given for the problem in the
open set .

Remark 3.7. All these results can be extended to the parabolic case.

that
4. Variational inequality. Let aij(x), ai(x) be functions for i, j 1,..., N, such

(aq)q is a nonnegative symmetric matrix and

(4.1) aii CI(N), 02aii oo(NsL Vi, f,k,l=l,. .,N,
OXk Ox

(4.2) ai L(N) Vi, k 1, , N.
OXk

Define the following differential operator A,

(4.3) A=- E aii-+ E ai +a,
i,i

where a is a positive constant.
We always identify g and given by (1.1) as

(a,),
(4.4)

N 3aq
ai= --g.

OXi
Let B0(x) and fix(x) be the weight functions (1 +[x[)-x+a/2 and (1

A > N/2, respectively. Introduce the following Hilbert spaces:

(4.5)

with the inner product

(4.6)

and the norm[.

(4.7)

H={v/ovL2()},

(u, v)= Iv (oU)(floV) dx

OV L2 N}(),Vk 1,. ,V v H/
Ox

with the norm

(4.8) II ll= Ivl=+ E dx
k=l 3Xk

V’ denotes the dual space of V, and (.,.) the duality between V’ and V.

V H V’; L((?) H;
(4.9)

Let a (.,.) be the bilinear form associated to the operator A,

(4.10) a(u, V)= dii BI B dx + di B1 (OD) dx +a(u, v),
i,i= i=

We have
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where

ai/.(x) (1 + Ix [a)-la0.(x),
(4.11)

N

di(x) (1 +lxJa)-l/aai(x)-2(A + 1)(1
/’=1

Notice that a/., a are not supposed to be bounded, but a. is at most of quadratic growth,
and ai of linear growth. Then di/., di in (4.11) are bounded.

This section is divided into three parts. First, we consider the case where ff RN.
Next, we give a weak formulation. Finally, we study the general case.

4.1. Case N. Assume ff NN. After some computation we deduce

(4.12) a(u, v) (Au, v) Vu, v V, Au c H,

(4.13) a9 la(u, v)l <- C[lull Ilvl[ Vu, v V,

and if a is large enough there exists ao > 0 such that

(4.14) a(u, u)>_-ao(U, u) Vu e V.

Next, from (4.12) and (4.13) it follows that

(4.15) a(u, v)= (Au, v), u, v e V.

Now, let K be the following closed cone in V"

(4.16) g {v e V/v(x) <- O(x) a.e. in

and let us consider the variational inequality

(4.17) Findu6Ksuchthata(u,v-u)>-_(f,v-u) VvK.

Recalling the cost functional

(4.18) Jx(O) E /(y(t)) e -t dt + lo<0(y(0)) e-
we have

THEOREM 4.1. Let the assumptions (4.1), (4.2), anda

Of Og/ L(ItN), k 1,..., N,(4.19) OXk’ OXk

hold. Then there exists one and only one solution u of the variational inequality (4.17).
This solution u is given as the optimal cost,

(4.20) u(x) inf {Jx(O)/O is a stopping time}.

Moreover, the following estimate is true:

(4.21)
Ou

<_ +
Lo O 0 L

where [lOu/Ox]l denotes the smallest Lipschitz constant of the function u. ax

9 C denotes a constant.
a is assumed large enough, and f, are not necessarily bounded.

There exists also an optimal stopping time (Theorem 3.2).
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Proof. Without loss of generality, we may assume that f, are bounded (Remark
3.4). From (4.14) the uniqueness of the variational inequality (4.17) is obtained by
classic methods (cf. A. Bensoussan and J. L. Lions [3]).

Using Theorem 2.6, we have for the optimal penalized cost u given by (2.2),

1
)/ @,(4.22) Au +-(u 4, f in (N).

Thus, from the convergence (3.24) and the estimate (2.23), we can take limits when
s --> 0 in (4.22) for the weak convergence in V, and using the monotonicity of operator
A, we obtain (4.17); so the theorem is proved. [:]

4.2. Weak formulation. In order to give a weak formulation of the variational
inequality (4.17) we introduce the Hilbert space DA which is the closure of the set

(4.23)aa {v V/Av H},

with the graph norm

(4.24) IIv I1, (Ivl / IAvI)/2.
Using density arguments we also have

(4.25) (Au, U) >= ao(U, U) VU DA.
The following problem is considered,

Find u Oa such that u <-_ a.e., and
(4.26)

(Au, 9 U) > (f, V U) [9 DA, t) <= d/ a.e.

THEOREM 4.2. Assume (4.1), (4.2) and2

(4.27) f, e C(Rr) L(Rr),
(4.28) AS 6 L(r).
Then problem (4.26) has one and only one solution u which is given as the optimal cost
(4.20). Moreover, the function u is bounded and continuous, and the following estimate
holds:

(4.29) [IAu IIc --< Ilfll + I](f- A4,)+I[.
Proof. Notice that (4.27) and (4.28) imply (Remark 2.7) that

(4.3"0)24 There exists w e B(r) such that A$ w in the martingale sense.

So, using Theorem 2.6, we have

IlmullLoo <_ I111 / I1(1- A$)+IIL,

(4.32) Ilu [1 < lllfll + 11.

Then we take limits when e-->0 in (4.22) as in Theorem 4.1, and the proof is
complete.

22 A denotes the differential operator (4.3).
23

ce is assumed large enough in order to have (4.25).
24 In the sense of (2.4),

(4.31)

and also (Remark 2.3)



OPTIMAL STOPPING TIME PROBLEM 719

Remark 4.1. Under assumption (4.30), Theorem 4.2 remains true for f and O
upper semicontinuous and bounded instead of (4.27).

Remark 4.2. The problem (4.26) can be interpreted as

U DA, U <-0 a.e.,

(4.33) Au <= a.e.,

(Au -f)(u ) 0 a.e.,

using standard methods. Clearly, under assumptions (4.28), (4.19), the weak formula-
tion (4.26) implies the strong formulation (4.17).

4.3. General case. We come back to the general case. Now, ff is an open subset of
RN with boundary F smooth enough. Recalling that the subset of regular point Fo is
given by (0.4), we have (cf. D. Stroock and S. R. S. Varadhan [19, p. 686]).

N

(4.34) ai(x)ni(x)<-_O Vx eF\Fo,
i=1

where n (x)= (hi(X)) is the inner normal of .
Next, define the closed subspace of V,

(4.35) Vo {v V/v 0 on Fo}.

Then, as in the case ff RN, if a is large enough, using (4.34) it is possible to find a
Constant ao > 0 such that

(4.36) a(u, u)>-ao(U, u) Vu Vo.

Furthermore, assuming

N

(4.37) Z aq(x)ni(x) 0
i=1

we deduce

Vx F\Fo, i=l, .,N,

(4.38) a(u, v)= (Au, v) Vu, v Vo.

Remark 4.3. If we assume

(4.39) a,(x)ni(x)n(x) + 2 ai(x)n(x) >0
,/=1 i=1

the condition (4.37) is true and F Fo.
Setting Ko the closed cone in Vo,

x 6 F,

(4.40) Ko {v Vo/v(x) <- 6(x) a.e. in if},

we consider the variational inequality

(4.41) Find u K0 such that a (u, v u) >- (f, v u) Vv 6 Ko.

THEOREM 4.3. Under assumptions (4.1), (4.2), (2.26), and (2.27)25 the variational
inequality (4.41) has exactly one solution u which is given as the optimal cost (0.2).

25
a is assumed large enough.
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Moreover, the function u is Lipschitz continuous and verifies

< + +
L Ol ’0 L L L

where II(ou/ox)llL denotes the smallest Lipschitz constant of u.

Proof. We just need to use the estimate (2.28) and the technique of Theorem
4.1.

Remark 4.4. Clearly, combining Lemma 1.5 and Remark 1.7, we obtain a
sufficient condition in order to have a Lipschitz continuous subsolution u, i.e., assump-
tion (2.26).

Remark 4.5. Provided (4.37) holds, a weak formulation of the variational inequal-
ity (4.41) as (4.26) also can be considered.

Remark 4.6. All these results can be extended for f and O with polynomial growth,
and we can also consider a function ao(x) instead of the constant a for the definition of
operator A. Using the same technique, we can treat the parabolic case.

Remark 4.7. An application to the optimal stopping time problem with partial
information is given in [16].

Remark 4.8. In the particular case, where the operator A=AI(Xl)+A2(x2),
x (x 1, x2) with A coercive and A2 of first order, a weak formulation (4.41) is obtained
using only analytic methods (cf. M. Langlais [10]).

Final Remark. In a separate article in this issue [15], a degenerate quasi-variational
inequality corresponding to the impulse control problem is studied (cf. [13]).
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ON THE OPTIMAL IMPULSE CONTROL PROBLEM
FOR DEGENERATE DIFFUSIONS*

J. L. MENALDI-

Abstract. In this paper, we give a characterization of the optimal cost of an impulse control problem as
the maximum solution of a quasi-variational inequality without assuming nondegeneracy. An estimate of the
velocity of uniform convergence of the sequence of stopping time problems associated with the impulse
control problem is given.

Introduction. Summary of main results. In this article, we develop the proofs of
results announced in Note [5].

The impulse control problem has been studied by several authors. A. Bensoussan
and J. L. Lions [2] treated nondegenerate diffusions, M. Robin [11 developed the case
of Feller processes, and J. P. Lepeltier and B. Marchal [4] investigated a similar problem
for a more general kind of Markov processes. In a purely analytical framework, L.
Tartar [13] considered an abstract coercive quasi-variational inequality and F. Mignot
and J. P. Puel [10] a first order quasi-variational inequality.

We study here the case of degenerate diffusions which lead to a second order
noncoercive quasi-variational inequality. The deterministic case leading to a first order
quasi-variational inequality is treated in [6].

Let (f, , P) be a probability space and {t}t>_0 be a nondecreasing right-
continuous family of completed sub-o,-fields of .

Let be any admissible impulse control and y(t) yx(t, z,, o), =>0, o l be the
diffusion with jumps on RN starting at x, with Lipschitz continuous coefficients g(. and

Suppose is an open subset of R, and r rx (z,, o) the first exit time of process y(t)
from .

Next, let ](x) be a bounded upper semicontinuous nonnegative real function on ,
and k(:) be a continuous real function on + such that

k(:)_-> ko> 0 Vsc_-> O, and

Given x 7 and an admissible impulse control v ={01, :1;""" Of, i;’" ", the
functional cost is defined by

(0.2) J,(,)=E [(y(t))e-’dt+ k(i)lo,<ooe-,
i=1

where a is a positive constant.
Our purpose is to characterize the optimal cost

(0.3) t(x) =inf {J,(v)/, an admissible impulse control},

and to obtain an optimal admissible impulse control.

* Received by the editors July 10, 1979, and in final revised form March 3, 1980.

" Universit6 de Paris IX (Dauphine), Paris, France.
See Def. (1.7).
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We denote by Ao the second order differential operator associated with the Ito
equationz

02 ) O
(0.4) Ao -1/2 tr o’er* gx
and A Ao + c.

Let Fo c 0’ be the set of regular points, and let us use the integral formulation of
A3"

We define by M the operator

(0.5) [M,;b ](x) inf {k(C)+ (x + )/--> 0, x + e }.

Assume that ff is sufficiently smooth such thatM maps continuous functions b into
continuous functions Mb. We will give conditions below (Lemma 1.3), so that M has
the proposed regularity.

Finally, we introduce the problem" To find a real bounded measurable function on
’, u (x) such that

u 0 on Fo,

(0.6) u <= Mu

Au<=f

in 6\F0,

in the martingale sense on 6\Fo.

Now, we consider the following sequence of variational inequalities corresponding
to optimal stopping time problems (cf. [7]).

Let (x) be the bounded upper semicontinuous nonnegative real function on
such that

(0.7)
t 0 on Fo,

Aa=f in the martingale sense on \Fo,

and given tn-l(x), let t (x) be the bounded upper semicontinuous nonnegative real
function on (7 which is the maximum solution of

u" 0 on F0,

(0.8) u <-- Mtn-1 in \Fo,

Au" <-f in the martingale sense on \Fo.

We have the following characterization.

THEOREM 0.l. Assume that g, r are Lipschitz continuous, (0.1), and that f is
bounded upper semicontinuous and nonnegative. Then problem (0.6) admits a maximum
solution which is upper semicontinuous and given as the optimal cost (0.3). Moreover,
the following assertions are true.

(0.9)4 IIt II--<--
(0.10) a"(x) (x)(n oo) uniformly in

If B is a matrix, then B* denotes the transpose of B and tr (B) the trace of B.
See Def. (1.13).
I1" denotes the supremum norm on .



724 JOSI-LUIS MENALDI

Furthermore, if F0 is closed and f continuous, the function is also continuous on and
there exists an optimal admissible impulse control.

Regarding t as a distribution in 6, we have
THEOREM 0.2. Let the assumptions be the same as in Theorem 0.1. Suppose

02

Then the optimal cost verifies

(0.12)

Moreover, if F0 is closed and f continuous, the following equation

(0.13) Aa f in ’([t <Ma])

is also true.
Now, a quasi-variational formulation is given.
Let/30(x), fix(x) be the weight functions (1 +lx12) -x+1/2, (1 + [xl)-x/z, A > N/2

respectively. Introduce the following Hilbert spaces, H {V/oV L2(6)} with scalar
product (. ,. ), and V {v e H/fll(Ot)/Oxi) L2(’), /i 1,’ , N and v 0 on F}. The
space V’ is the dual of V, and (.,.) denotes the duality between V’ and V.

Consider the following quasi-variational inequality:

u V, u<-Mu,
(0.14)

(au, v u) >= (f, v u) qv e V, v <-_Mu.

Assume

02
(0.15) Ox’--’crr* L(6),

and that there exists a Lipschitz continuous subsolution , i.e.,

(0.16)5 Wo’ ((7) and A =<-f in ’(’),

where the constant a is assumed large enough.
For instance, if 6 N or trtr* is coercive on F, then the assumption (0.16) is

satisfied.
THEOREM 0.3. Let the conditions of Theorem 0.1, (0.15), and (0.16) hold. Suppose

that f is Lipschitz continuous; then the quasi-variational inequality (0.14) has a maxi-
mum solution which is Lipschitz continuous and explicitly given as the optimal cost
(0.2).

This work is divided into three sections. The first section establishes several useful
lemmas. In 2, the integral formulation of the impulse control problem is studied, and
in the last section, the associated quasi-variational inequality is treated.

In this paper, we will use extensively the results of [7].

1. Preliminary results. Let (fl, , P) be a probability space, {t}t__>0 a nondecreas-
ing right-continuous family of completed sub-or-fields of , and w(t) a standard
Brownian motion in N with respect to t.

Also in the martingale sense.
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Suppose we are given two Lipschitz continuous functions g(x) and r(x) on RN,
taking values in RN and N (R)IN, respectively, g (gi), r (o’ij),

(1.1)6
19gi )O’i]---, B(N), i,/, k 1,. ., N.
OXk

We consider the diffusion y(t) y0x (t, o9), > O, o) and x N, described by the Ito
equation

dy(t) g(y(t)) dt + cr(y(t)) dw(t), >-_ O,
(1.2)

y(0) =x.

Let A be a closed subset of RN, convex with respect to zero7. An impulse control v is
a set {0x, x;" 0, ;. .} where {0};x is an increasing sequence of stopping times
with respect to -t convergent to infinity (0i-<-0i/x, 0i) and {5i}1 is a sequence of
random variables taking values on A, adapted with respect to {Oi}i (ji’ A,
measurable).

Now, we define the sequence of diffusions with jumps {yn(t)}=x, yn(t)=
y 7 (t, v, o), -> 0, o 12, x N, and v any impulse control, by the Ito equation

(1.3)
dy(t)=g(yn(t))dt+(Y(t))dw(t)’ t>=O"’
y(t)=yn-X(t)+lo,=tn, t<=O.

We have

(1.4) y(t)= y’(t) on [O, O.] V, >=n.

So, if we define

(1.5) y(t, v)= lim y"(t),

the process y(t) yx(t, v, o), which is right-continuous8, satisfies the stochastic equa-
tion,

(1.6) dy(t) g(y(t)) dt + o-(y(t)) dw(t) + Y’. j8(t- 0,) dt, >= O,
i=1

y(0)=x,

where 6(t) is the Dirac measure.
Suppose 6 an open subset of N, and r r,(v, w), r

o
r, (w) the first exit time of

processes y(t), y(t) respectively, from .
We call v {0x, x;’" 0, i;...} an admissible impulse control if it satisfies

(1.7) y (r) e ( a.s. on [" < oo];

that is, no jump of the process y(t) is outside of ’ before r.

Denote by Fo the set of regular points (cf. D. W. Stroock and S. R. S. Varadhan
[12]),

(1.8) oFo {x e F O0/P(rx > O) 0}.

6 B([N) denotes the set of all Borel measurable and bounded functions on N taking values in .
7..e., ZA, [0, 1], ’qs A. Generally, we take A=0+.
y(t) has also left limits.
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LEMMA 1.1. Assume (1.1). Let , be any admissible impulse control, and 0 be any
stopping time; then the following assertions are true.

(1.9) P(y (r, u) Fo, r < oe) =0,

(1.10) E{[yx(O)- yx,(0)[

where the positive constant depends on the Lipschitz constant offunctions g and r.

Proof. Setting

,=sup { [ (r(x) r(x’))(r(x)

(1.11)
2(x x’)(g(x)- g(x’))/ }

and recalling that the process y(t)-y,(t) is a diffusion (from Ito’s formula) to the
function Ix 12 e -v’, we obtain (1.10) as Lemma 1.1 in [7].

Finally, using (1.7) from Markov’s property we get

(1.12) P(y"(r") Fo, r" < oo) 0,

where r" is the first exit time of process y"(t) from . So regarding (1.4), we deduce
(1.9).

Let u, v be real bounded9 upper semicontinuous functions on . Then the integral
formulation of operation A (cf. [7]) is given by

Au <- v in \Fo if the process

AO

(1.13)x Xt v(y(s)) e

is a submartingale for each x e 6Fo.

LEMMA 1.2. Assume (1.1) and smooth 11. Let f(x) be a real bounded continuous

function on . Suppose that there exists such that

# C(e), &,eB(e), 1,..., N,
(.4)

A& N-[ in ’(), &(x) O Vx F.

Then, for any admissible xz impulse control u {0, 1; 0, ; .} such that

(1.15)a Og [r ^ r,, rx Vi= l, 2,

the following estimation is true"

(1.16)
E f(yx(t)) e -st dt <= Ix-x Vx, x’ ,

where Iloa,loxll denotes the smallest Lipschitz continuous constant of .
9
U and v may have polynomial growth if is not bounded.

10 We say Au <- v in the martingale sense.
11 We also assume a large enough.
12 Clearly, admissible for x.
13 rx ^ r, denotes the minimum between rx and r,.
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Proof. First, assume C2(RN); , Ol2/OXi B(RN), 1,’’’, N. Ito’s formula
applied to function (x) and process y,(t) gives

E{(y. (r.)) e -7.x (y.(r. ^ rx,)) e -(7.x ^7.’)}
(1.17)

Since

=-E A&(y.(t))e-’tdt
7.x 7.x’

(yx(x)) 0 (yx,(x ^ x,))

from (1.17), we deduce

(1.18)

Next, defining

a.s. in (rx, <= r, < o],

E f(y (t)) e -st dt

Yo sup tr Ix x
(1.19)

(x x’)(g(x g(x’))
X,X [N+ Ix --X

and assuming a_->yo, from Lemma 1.1 and (1.18) we obtain (1.16). Finally, if
C2(’), by approximating by regular functions the lemma is proved. [3
Remark 1.1. Assume Wa’(ff),f C(ff) B(ff). Approximating by regular

functions, we deduce that [A -<f in ’(ff)] is equivalent to [A _-<f in the martingale
sense of (1.13)]. This fact will be used several times.

Suppose we are given a continuous real function k(:) on A, such that

(1.20)
k(sC) >= ko> 0 VsCA,

k(:)oo if [:[-oo with :A.

We define the operator M"B()B() by

(1.21) [M4,](x) inf {k(sc) + b(x + sc)/sc A, x +

We always assume ff and A smooth enough, such that

There exists P: (7AA measurable and uniformly continuous in x ff
verifying

(1.22) x+P(x,) VxG VA,

P(x,)=sc ifx+:6.
For instance, if A +u and 6 convex with regular boundary, we can take P(x, ) as the
projection of : on Af’I (6-x).

LEMMA 1.3. Assume (1.20) and (1.22). Then if c is upper semicontinuous (or
continuous) on 6, so is M4.

Proof. Starting at

[Mb](x) [Mb](x’) sup inf [(k (:) k (’) + (b (x + ) b (x’ + so’))],
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and choosing : P(x, ’), we get

[Mb](x) [Mb](x’) _-< sup [k (P(x, ’)) k (P(x’,
(1.23)

+sup [b(x + P(x, ’))-49(x’ + P(x’,

So, from (1.23) and the uniform continuity of function P(x,), the lemma is
proved.

LZMM 1.4. Suppose (1.20), (1.22) and

(1.24) b bounded and upper semicontinuous on

Then, for each > 0 there exists a function (x) such that

(1.25) " . A bounded_ and_ Borel measurable,

x+,(x) Vx,

(1.26) [Mb](x)+e >-[k(-(x))+qb(x +(x))] Vx

Moreover, if cb is continuous, there exists (x) verifying (1.25) and (1.26) with e O.
Proof. First, if b is continuous, the classical theorems of selection imply the result.
Next, if 4 is only upper semicontinuous, there exists a decreasing sequence

of continuous functions convergent to b. So, we also have Mb, decreasing to M&.
Let n (x) be a function which satisfies (1.25) and

[Mqb,](x)=[k(-"(x))+qb,(x +?"(x))] Vx m,
and let n (x) be the function

n (x) min {n ->_ 1/[Mcn](x) -< [Mb](x) + e }.

(1.27) (x) sc" (x) if n n (x),

the lemma is proved. [-1

2. Integral formulation. Let F0 be the set of regular points (1.8) and A be the
operator given by (1.13). Assume f(x) an upper semicontinuous function on such that

(2.1) feB(6), f>-_O.

Consider the following problem" To find u (x) such that

(2.2) u B(6), u(x) 0 x Fo,

(2.3) Au <-f in 6\Fo [martingale sense (1.13)],

(2.4) u <- Mu on 6\Fo.

Let us define the sequence {t"},-1 of solutions to variational inequalities corresponding
to optimal stopping time problems (cf. [7]). Starting with (x) verifying (2.2) and

(2.5) At=f in \Fo [martingale sense (1.13)],

we set tn(x) as the maximum solution of problem (2.2), (2.3) and

(2.6) u _-< Mt-1 on \F0,

Then, if we set
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This section is divided into two parts. First we solve problem (2.2), (2.3), (2.4) and
consider the case where the set of regular points F0 is closed. Next we studythe general
case and give some complementary results

2.1. Regular ease.
THEOREM 2.1. Let the assumptions (1.1), (1.20), (1.22) and (2.1) hold. Then the

problem (2.2), (2.3), (2.4) admits a maximum solution which is given by the decreasing
limit

(2.7) r/(x) lim t/"(x) Vx ft.

Moreover, the function (x is upper semicontinuous and the following estimate is true"

(2.8)

where I1" denotes the supremum norm on .
Proof. Using the monotone property of operator M,

(2.9) --< 4’ implies Me <-M4,

and knowing that 0 < t < t0,we deduce

(2.10) 0 < /n+l < n < 0 n=l,2,....

Then, for any solution u of problem (2.2), (2.3), the trivial maximum principle in the
martingale formulation implies u 6 0. Because of (2.4) and (2.9), we obtain

(2.11) ua" n=l,2,...

So, the function a defined by (2.7) is the maximum solution of problem (2.2), (2.3), and
(2.4). Since a" is upper semicontinuous (cf. [7]), we conclude the theorem.

Remark 2.1. If we set Ma, the maximum solution a can also be considered as
an optimal stopping time cost, i.e., the maximum solution of problem (2.2), (2.3) and
u .

We can also define the sequence {"}=a as the optimal costs

and given - we obtain n by

(2.13) (x) =ifE [(y(t))e-dt+Ma-(y(O))lo<,oe

where 0 is any stopping time of t.
TOM 2.2. Let the conditions (1.1), (1.20), (1.22), (2.1), and

(2.14) fe C(e),

(2.15) Fo closed,

hold. Then the maximum solution ofproblem (2.2), (2.3), (2.4) is continuous. Moreover,
is given as the optimal cost (0.3), and the following estimate is true"

(2.16) II"-Nko(n+l), n=O, 1,2,. ..
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Proof. Recalling that, from [7] and Lemma 1.3, fin is continuous, we need only to
show the estimate (2.16). Since F0 is closed, we are in the case of Feller processes (cf. A.
Bensoussan [1] and M. Robin [11]).

First, we are going to prove that

(2.17)14 ’(x)=inf{J(v)/v admissible impulse control such that Oi--c) ti>-n +1},

where the functional cost Jx(v) is given by (0.2).
Indeed, from Lemma 1.4, there exist functions i(x), 1, , n verifying (1.25)

and

(2.18) [Mu"-i](x) k(’(x)) + tn-(x + ’(x))
Thus, we define 3" {i, ffi}7=1 as follows.

(2.19)

(2.20)

(2.21) 15

(2.22) 16

(2.23)17

(2.24)

and next

(2.25)

(2.26)

We have

(2.27)

O { Oi if -<_ n and i < T,

co otherwise,
i- 1, 2,...,

i=0 ifi>=n+l.

y(t, ") )"(t), t>_-O,

i=0, 1,... ,n-l;

and from Markov’s property

(2.28) t" (x) Jx (P"),
(2.29) a"(x) =<J(,) if , has at most n impulses.

Then, (2.28) and (2.29) imply (2.17).
Now we are going to show the estimate (2.16).
Let ,={0i,:i}1 be any admissible impulse control; setting ,"={01,$1;

0,, so,; co, ,+1;"" "} we have

y(t, ,)= y(t, ,n)= yn(t if < 0, ^ r".

14 i.e., u has at the most n impulses.
15 We set ?i=c if i(t)Vt>=O.
16 We set i+1 ,i if the subset is empty.
17 If i+1= we set i+1 =0.
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Hence, if is given by (0.3), we obtain

(2.30) 0 =< " t -< sup El.
On ^.n

Since

f(y" (t)) e -’’ dt}.

e-" <--- Y’. k(i)lo,<oo e-’ko(n + 1),.=

and since it is possible to take the supremum only over all admissible impulse controls
such that

--cOiE k (:,) 1 o,< e [[f][,
i=1

the estimate (2.16) follows from (2.30).
Remark 2.2. The estimate (2.16) can be improved using a probabilistic version of

results in B. Hanouzet and J. L. Joly [3]. We have

(2.31) Ilan- all-<_ Cq n=0,1,2,...,

where constants C > 0 and q [0, 1[ depend only on Ilfll, , and ko. Indeed, we define
the operator S: C(ff) C() by

OA

(2.32) Sv=ifE f(y(t))e-tdt+Mv(y(O))lo<,oe

where 0 is any stopping time of
Let o be the function given by (2.12), so using estimate (2.8) and the fact that

ko N M(0), we deduce

ako
(2.33) is AaNS(0) if 0

Ilfll"
Clearly, the operator S is increasing and concave, hence it is easy to prove from

(2.33) the following property:

Vu, v C(), 0 N u, v N a and satisfying

(2.34)
-rv <- u v <- pu, r, pe[O,

we have

-(1 A)rSv <= Su Sv <= (1 A)pSu.

Next, we obtain from (2.34)

(2.35) IISnt Sall _-< (a A)’-" Ilall, m > n,

and recalling that a" =S"a, we have the estimate (2.31) with C =-11711 and q
1-A. I-1

COROLLARY 2.1. Let the assumptions be as in Theorem 2.2. Then there exists an
optimal admissible impulse control x,
(2.36) a(x)=Jx(),

where is given by (0.3).

18 We assume that A _-< 1.
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Proof. From Theorem 2.2, the function t(x) is continuous. Then, from Lemma
1.4, there exists a function :(x) verifying (1.25) and

(2.37) [Ma](x) k(-(x))+ a(x + (x)) Vx 6.

Then, we define {i, i}i=l by

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

if=0;
dg(t) g((t)) dt + r((t)) dw(t),

(0) =x;

r inf {t >= o/i (t)

_
6}, i=0, 1,2,...

ffi+l inf {t [i, .i]/a(i(t)) [M](i (t))},

i+a (i(i+x)), 0, 1, 2,...

d (t) g(i (t)) at + cr( (t)) dw(t),

’(’) ,-(,) + ,,
i(t) ;i-a(t), < i,

Ai-1if i<r
i=1,2,’...

otherwise,

and later on,

(2.44) 0i

i=0,1,2,...,

We have

(2.45) y(t, ) "(t) if 0_ < ,,,
and from Markov’s property

(2.46) (x)=E f((t))e-dt + 2 k(i)l,<oe
i=1

+ E{I.<--,a (f" (t, 11 e-S0"}.
Hence, letting n --> oo in (2.46) and, using (2.45) and (1.9), we obtain (2.36).

2.2. Complementary results. Now we omit assumptions (2.14) and (2.15).
THeOrEM 2.3. Let the conditions (1.1), (1.20), (1.22), and (2.1) hold. Then the

maximum solution ofproblem (2.2), (2.3), (2.4) is given as the optimal cost (0.3), and
the estimate (2.16) is true.

Proof. As in Theorem 2.2, we just need to prove (2.17). Moreover, we will only
show that

’de > 0 there exists P, an admissible impulse control
(2.47)" which has at most n impulses, such that

a"(x)+>-Jx().

Indeed, given e > 0, from Theorem 3.4 in [7], we can choose a stopping time which is
e-optimal and depends measurably on the initial point, so there exist functions t (x),

1, 2,. , n, such that

" t 12 --> [0, oo] is Borel measurable,
(2.48)

’x , (x) is a stopping time;
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u + e _-> E /(y(t)) e dt + 1

(2.49)
(yO(Oi))exp

Also from Lemma 1.4, there exist functions i (x), 1, 2, , n, verifying (1.25), and

(2.50) 2-n-1 "i[Mt "-i](x) + e >- k (( (x)) + ,-i (x + j; (x)) Vx

Thus, defining the admissible impulse control 3 {i, 5i}i=1 by (2.19), (2.20) and
,i(2.51) z =inf{t>-0/i(t)e!}, i=0, 1,..., n,

^i-1(2.52) ffi [ffi-1 + i ()3i-l(ffi-x))] ^ r 1,..., n,

(2.53) i ie-1 (i-l(ffi)), i= 1,""", n,

and (2.24), (2.25), (2.26) we deduce assertion (2.47) using Markov’s property, lq

COROLLARY 2.2. Let the assumptions be as in Theorem 2.3. Then given e > 0 there
exists a ]:unction 3(x)={ti(x), i(x)}=l such that i and i verify (2.48) and (1.25)
respectively, and

(2.54) (t(x)+e >-Jx((x)) Vx e ,
where is the optimal cost given by (0.3).

Proof. We just need to combine the methods of Theorem 2.3 and Corollary
2.1. El

Finally, the unction t3 is regarded as a distribution in ’. Notice that Theorem 0.1 is
completely proved.

Recalling that A is the differential operator (0.4) and assuming

0
2

ro’* Lo()(2.55)

we can define Au, for any u e B(), as the following distribution,

(2.56) (Au, c)= Ie uA*4) dx V& @((Y),

where A* is the adjoint of A,

(2.57) A*&

THEOREM 2.4. Assume the boundary F is smooth, and conditions (1.1), (1.20),
(1.22), (2.1), and (2.55) hold. Then the optimal cost given by (0.3) satisfies

(2.58) Aa <-[ in ’(e).

Moreover, if (2.14) and (2.15) are true, we also have

(2.59) 19 Aa je in ’([a < Mt]).

Proof. We need only to use Theorem 3.6 in [7] and Remark 2.1.

19 [/ <Mt] denotes the subset of (7 such that t(x)< Ma(x).
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3. Quasi-variational inequality. Let aij(x), ai(x) be functions for i, j 1,..., N
such that

(aij)i. is a nonnegative symmetric matrix and

(3.1) 02aii
a0 CI(N), L(NN)

OXk OXl
Vi, j,k,l=l,...,N,

(3.2) ai c(NN), Oai L(N) Vi, k l, N.
OXk

Define the following differential operator A,
N

(3.3) A
i,j=l OXj

where a is a positive constant.
We always identify g and o" given by (1.1) as

(aii)ij 1/2o’er*,
(3.4) Oaii

ai --gi.
10xi

Let /3o(X) and /31(x) be the weight functions (1
A > N/2, respectively.

Introduce the Hilbert spaces

(3.5) H {v/ov L2((2)},

with the inner product

(3.6)

and the norm l;

(3.7)

with the norm

(u, v)= Ie (/3oU)(/3oV) dx

{ 0v N}L2() Vk 1, ,V= v e H/BOx

(3.8)
1/2

V’ denotes the dual space of V and (.,.) the duality between V’ and V.
We have

v/(3.9) V Vi= 1,... ,N}c V.

Let a (.,.) be the bilinear form associated with the operator A,

(3.10)
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where

(1 + Ix[2)-laii(x),
(3.11) N

d,(x) (1 + Ixl)-/a,(x)- 2(A + 1)(1 + Ixl ) x a,i(x)xi.
/=1

Notice that ai, a are not supposed to be bounded, but a is at most of quadratic growth,
and a of linear growth. Then, di, dg in (3.11) are bounded.

This section is divided into two parts. First, we consider the case where ’--Eu.
Next, we study the general case.

3.1. Case =. Assume 7 Eu. After some calculation, we deduce

(3.12) a(u, v) (Au, v) Vu, v V, Au H,

(3.13)=0 La(u, ’-’)1-<- cllullll ll vu, ,., v,

and if c is large enough there exists Co > 0 such that

(3.14) a(u, v) >-_ Oo(U, u) Vu V.

Next, from (3.12) and (3.13), it follows that

a(u, v)=(Au, v) Vu, v V.

We recall that M denotes the operator given by (1.21). We define, for any
u V (’1L(Rr), the closed cone K(u) in V by

(3.16) g(u) {v V/v(x) <-_[Mu](x) a.e. in Rr}.
Let us consider the following quasi-variational inequality,

Find u Vr3L(Nr) such that u K(u) and
(3.17)

a(u, v-u)>=(f, v-u) VvK(u),

and also the sequence of variational inequalities

(3.18) Find u V such that a(u, v)= (, v) v V.

Find u V fqL(1) such that u K(u -1) and
(3.19)

a (u ", v u n) -_> (f, v u ") Vv K(u"-l).
We have

THEOREM 3.1. Let the assumptions (3.1), (3.2), (1.20), (2.1), and

L*(N), k 1, , N(3.20)
Oxk

hold. Then the quasi-variational inequality (3.17) admits a maximumsolution which is

given as the optimal cost (0.3). Moreover, is Lipschitz continuous and the following
estimates are true.

.3.21.21 _<

L O ]/0 L

2o C denotes a constant.
2x [IOa/OxlIL, denotes the smallest Lipschitz continuous constant of a, and 3’o is given by (1.19).
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(3.22) 0 <= u t <= C(n / 1)-1, n 0, 1,. ,
where the constant C depends only on the supremum norm of[ and a, ko.

Proof. First, from Theorem 4.1 in [7], the sequence defined by (3.18), (3.19)
coincides with that defined by (2.12), (2.13).

Then, from (2.17), we have

lug(x) u (x ’) -<_ sup {[J,(u)-J,(u)l/u an impulse control
such that Oi c f i>-n + 1}.

Hence, Lemma 1.1 and (3.20) imply

IlOu _<
1 ii0 11 ’n=0,1,2,....

Thus, using Theorem 2.2 and classical technique, the proof is completed.
Remark 3.1. Clearly, using only analytic methods, like B. Hanouzet and J. L. Joly

[3], we can prove that (Remark 2.2)

(3.24) O<=un-a <-_cq n, n =O, 1, with0<q<l.

3.2. General ease. Now, we come back to the general case, an open subset of RN

with boundary F sufficiently smooth.
Define the closed subspace of V,

(3.25) Vo={V e V/v =0 on F}.

that
Then, as in the case RN, if a is large enough there exists a constant ao > 0 such

(3.26) a(u, u)>=ceo(U, u) Vu e Vo,

and we also have

(3.27) a(u, v)= (Au, v) Vu, v e Vo.

For any u 6 Vo f3 L(6), we define Ko(u), the following closed cone in Vo by

(3.28) Ko(u)={v Vo/v <-Mu, a.e. in }.

Let us consider the quasi-variational inequality

Find u VofqL(6) such that u eKo(u) and
(3.29)

a(u, v-u)>-(f, v-u) VveKo(u),

and the associated sequence of variational inequalities,

(3.30) Find u Vo such that a(u, v) (f, v) lv Vo.
Find u VofqL(6) such that u Ko(u -1) and

(3.31)
a(u ’, v u ’) >- (f, v u") Vv e Ko(u"-).

22 ko is given in (1.20).
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Remark 3.2. Assume (2.1). Suppose that 6 is bounded and satisfies the uniform
exterior sphere condition of radius p > 0, and that

v=
(3.32) tD {x F/2g(x)n(x) < -tr (cr(x)r*(x))},

n (x) is the inner normal with modulus p.

Then, there exists a Lipschitz continuous subsolution

(3.33)z3
e C(6); , xeL(6), i= 1,..., N,

ArP=<-f in if, (x)=O VxF.

Indeed, we only need to use Lemma 1.5 in [7].
THORZM 3.2. Let the conditions (3.1), (3.2), (1.20), (1.22), (2.1), (3.33) andz4

e (if), k=l,... N,(3.34)
Ox

hold. Then the quasi-variational inequality (3.29) admits a maximum solution which is
given as the optimal cost (0.3). Moreover, is Lipschitz continuous and the estimates
(3.22) and

(3.35) I1 11 II ll +11211L 0 L L

are true.

Proof. As for Theorem 3.1, we just need to prove the following estimate,

(3.36)
Ou"

<
1 II011 011L O 0 L L

Indeed, starting at

(3.37) u"(x)- un(x ’) =sup inf [Jx(u)-Jx,(,’)],

we set, for any ’ ={01, :I}=1, the impulse control , ={0i, i}i=l defined by (1.2) and

(3.38) r,, inI {t => 0/yi (t) if}, 0, 1,...

(3.39)z5 Oi={ Oi

(3.40)

(3.41)

i-1 i-1if Oi < Tx A Tx,

otherwise;

if0<o and sc’
-1 (0,) 6,

if 0i co,

if0<oo and h+yl(0)F;

dy (t) g(y (t)) dt + tr(y (t)) dw(t), >- 0,

y’(O)= y’-a(O,)+,i,
i--1y (t)= y (t), < Oi.

23 In the martingale sense with c large enough.
24We also assume a large enough and k(A:)-<_ k(:), VsCA, A [0, 1].
25

rx, is given as rx in (3.38).



738 JOS15.-LUIS MENALDI

Notice that i is well defined, because if sol + y/-i (Oi) and Oi < O0 we have ye-1 (0)
and so there exists Z [0, 1] such that ,scl + yi- (Oi) [’

Thus, , is an admissible impulse control for x, and choosing z, as above in (3.37), we
deduce

(3.42)

u (x)-u (x’)-<supE f(yx(t,u))e dt
’ .rx .rx,

+sup E ]f(yx(t, ))-f(y,(t, ,’))1 e -t de

where the supremum is taken over all admissible impulse controls ,’.
Finally, from Lemma 1.2 and the fact that

(3.43) yx(t, z,)= yx(t, v’), a.s. in [0, r. ^ rx,[,

the estimate (3.36) follows from (3.42).
THEOREM 3.3. Under the conditions of Theorem 3.2, the following quasi-varia-

tional inequality

t W" (), t _<-Mt in
(3.44)

At =<f in ’(ff), At =f in ’([t <Mt]),

has one and only one solution . Moreover, is given as the optimal cost (0.3).
Proof. We only need to prove the uniqueness of problem (3.44). Moreover, it

suffices to show that any solution of (3.44) is a solution of (2.46).
Indeed, using a classical technique (cf. D. W. Stroock and S. R. S. Varadhan [12]),

we can prove that if verifies

a e W0’ (0’), At =f in @’([a <Ma]),

then we also have

Aa f in the martingale sense on [t < Ma].

Therefore, as in Corollary 2.1, we obtain the equality (2.46) and the theorem is
established.

Remark 3.3. It is possible to consider a function ao(x) instead of the constant c for
the definition of cost (0.2). Moreover, we can also consider f not necessarily bounded
and k k (x,

Remark 3.4. All these results can be extended to the parabolic case.
Remark 3.5. In [9], we give an application to the impulse control problems with

partial information.
Final Remark. In a separate paper (cf. [8]) the stopping time and impulse control

problems for degenerate diffusions with boundary conditions will be studied.
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