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APPLICATIONS OF THE FINITE LAPLACE TRANSFORM
TO LINEAR CONTROL PROBLEMS*

RICHARD DATKOfY

Abstract. The finite Laplace transform is applied to various control problems involving linear ordinary
and linear partial differential equations. Since the finite Laplace transform is an entire function, rather explicit
conditions can be given concerning the nature of the controls.

1. Introduction. Consider a differential vector function f:[0, T]-> R". Let s be an
arbitrary complex number. The finite Laplace transform of f is

T T
- —stp = -sT _ —st
(L.1) G(s)—J’0 e f(tydt=f(T)e f(0)+sJ‘0 e “f(e) dt

=f(T) " = f(0) + sF(s).

The complex valued functions F and G are entire and satisfy the conditions

e o] [ee]

(1.2) Lo |F (iw)]* dw < o, Lo |G (iw)|? dw < 00

(see e.g. [4]). Exploiting these two properties and the fact that the initial and terminal
states of f occur in the finite Laplace transform of f it is possible to compute controls for
a variety of autonomous linear control problems expressed by ordinary or partial
differential equations. Briefly what one does in the case of ordinary differential
equations is converts the given problem to a finite Laplace transform and isolates the
transform of the trajectory, X (s), on the left hand side of a certain equation. On the right
hand side of the equation the initial and terminal states of the system and the finite
Laplace transform of the control function explicitly occur in linear combination
multiplied by a holomorphic complex valued linear operator. If the initial and terminal
states of the trajectory are given then the constraint that its finite Laplace transform be
an entire vector function imposes conditions on the transformed control & (s), namely
that the numerators of certain expressions have zeros of the same order as the poles of
the holomorphic operator. These conditions can then be used to find the finite Laplace
transform of the control which guides the system from its initial to its terminal state. A
variant of the above technique can be used to solve the quadratic regulator problem
over finite time intervals. Problems of this type are the content of § 2.

Sections 3 and 4 discuss the case of control problems involving certain types of
hyperbolic and parabolic partial differential equations. In these problems the finite
Laplace transform converts the original system into a linear elliptic partial differential
equation with a forcing term depending on initial, terminal and distributed data. A
Green’s function for the elliptic nonhomogeneous system is constructed. This function
is holomorphic in the complex variable s. The poles of the Green’s function determine
conditions which the finite Laplace transform of the boundary or distributed data must
satisfy. This information, at least in the case of the hyperbolic examples in this paper,
permits one to construct finite Laplace transforms of boundary or distributed controls
which steer the initial state to the zero state in a finite time.

Sections 3 and 4 of this paper overlap previous work in[9]and[11]. In[11] Russell
reduced a control problem for a hyperbolic partial differential equations to construction
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of a function f which satisfies condition (3.28) of Example 3.2 in this paper. (His
conditions are given by Equations (2.24)—(2.27) in [11].) Russell arrived at this
condition by observing that an associated homogeneous equation is a Sturm-Liouville
eigenvalue problem and hence the Fourier method applies. We obtain the same
condition by forcing the finite Laplace transform of the distributed control to be such
that it cancels out the poles of a holomorphic family of Green’s functions. In the most
general setting of system (3.1) given in this paper, the Sturm-Liouville approach will not
be applicable since the coefficient D (x) of u, in (3.1) prohibits a separation of variables
approach.

The one dimensional heat equation considered in Section 4 is a slightly generalized
version of the work in [9]. In that paper the finite Laplace transform was used to
construct a control which could bring a body from a uniform nonzero temperature to a
uniform zero temperature in a finite time. However our viewpoint and that taken in [9]
are somewhat different. In [9] Goldwyn et al. seek only bang-bang controls. In this paper
we determine conditions which the finite Laplace transform of an admissible control
must satisfy and then try to fit entire functions to these conditions. When ‘‘bang-bang”’
controls are sought the problem reduces to the one considered in [9].

The finite Laplace transform does not introduce new properties of linear control
systems, but, we believe, it does offer a useful computational tool which can be used to
attack control problems expressed by autonomous differential systems. Furthermore it
unifies the study of linear autonomous nonhomogeneous differential equations in that it
does not discriminate between initial value problems and boundary value problems.
That is, a nonhomogeneous linear autonomous ordinary differential or partial differen-
tial equation with mixed initial and boundary data is converted by a finite Laplace
transform into a problem in which the initial data, the terminal data and the transforms
of the forcing terms (or boundary values in the case of partial differential equations)
appear explicitly and linearly in the transform. Thus if any two are given they determine
nontrivial conditions which the third must satisfy. For example, if the initial data and the
forcing terms are known, then the condition that the terminal data be such that a finite
Laplace transform exists is equivalent to inverting the ordinary Laplace transform of
the original system.

The exposition in this paper is primarily through examples. Its purpose is to
demonstrate that converting a linear control system to a finite Laplace transform often
leads to conditions which permit direct computation of the controls or at least the
transforms of the controls. It should be mentioned that one important class of control
problem is not discussed in this paper and that is control of linear functional differential
equations. This class certainly falls into the same category of problem as do ordinary
and partial differential equations. However so far as the application of the finite Laplace
transform is concerned there is one important technical difference. That is, for many
problems in linear ordinary and partial differential equations it is legitimate to assume a
knowledge of the spectra associated with their differential operators. Unfortunately this
is not the case with linear functional differential equations.

Preliminaries. The following are definitions and notational conventions which will
be used throughout this paper.

1. € will denote the complex plane, s will denote a point in €. Re s and Im s will
stand for the real and imaginary parts of a complex number.

2. I will be for n-dimensional identity matrix. If A is an n X n matrix, adj A will
denote the transposed cofactor matrix of A and A* will denote the conjugate transpose
of A. The symbol o (A) will denote the set of characteristic valuesof A.If A e a(A), v(A)
will denote the index of A (see e.g. [5, p. 556)).
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3. If f:[0, T]>R", T <, is an L integrable mapping, then the finite Laplace
transform of £, denoted by f, is given by IOT e "f(t) dt. Throughout this paper the finite
Laplace transform will be abbreviated to F.L.T., and its dependence on T will not in
general be emphasized.

4. The characteristic function of a measurable set E in R will be denoted by xz(¢).

We now present the fundamental theorem on which this paper is based (see e.g. [4,
pp. 238, 241])).

THEOREM 1.1. Let f: C - C be an entire function of exponential type, i.e. | f(s)|=
ae’! for all s € C and fixed constants a and b. Then there exist nonnegative constants T
and T' and a function fe L*(—0, +00) with f&)=0 if t¢[-T',T] and fls)=
J'_TTe_S'f(t) dt, if and only if [*, | fliw)|* dw < 0. Moreover the constants T' and T satisfy
the relations

— 1 -
T' = lim ;lnlf(x)],

T =Tm %lnlf_(—x)l.

2. Applications of the finite Laplace transform to finite dimensional control
problems. Consider the n-dimensional time optimal control problem

2.1 X(t)=Ax(t)+Bu(t), x(0) = xo.

Here A is an n X n matrix, B is an n X m matrix, u is a measurable m-vector constrained
to lie in some compact convex set, } = R"™, called the control set. The problem is, given
x; and R", select a measurable control u, with values w(f)€ Q, 1 =0, such that after
some finite time, T, the solution of (2.1), x (¢, xo, ), satisfies x (T, xo, u) = x1. Moreover
it is desired that T be the smallest possible number for which this can be accomplished.
From the general theory of optimal control (see e.g. [6]) we know that if such a u exists it
can be chosen such that, for each ¢ in [0, T], u(¢) lies on the boundary of ().

Suppose there is a measurable w: [0, T]—> Q such that the solution of (2.1) satisfies
x(0, xo0, #) = xo and x(T, xo, w) = x;. Then the F.L.T. of (2.1) for this solution can be
written

(2.2) %(s)=(sI—A) [xo—x1 e T +Bj(s)).

Since x(s) is an F.L.T. this implies that for each A € 0(A)

k
(2.3) %[adj(sI—A)(xo—x1e"ST+B;Z(s))]|S=A=0, 0=k=r(A)—1.

Conversely, if for a given T <0 and measurable u: [0, T]- Q (2.3) is satisfied for all
A €0 (A), then by Theorem 1.1 w is a control which transfers the solution of (2.1) from
Xo at time ¢ =0 to x; at time T. Thus we can state the following theorem.

THEOREM 2.1. A necessary and sufficient condition for a measurable mapping
w: [0, T]1- Q to transfer the solution of (2.1) from xo att =0 to x, att = T is that equation
(2.3) be satisfied for all A e o(A).

The following examples will demonstrate the utility of (2.3) in the computation of
optimal controls.

Example 2.1. Consider the system

R o e N
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Let

()-0)

For this system (2.2) has the explicit form

G

s2+1

o

CZ) * (ﬂ?ﬂ)]'

Since we know the optimal controls are ‘“‘bang-bang” (see e.g. [6]), we may assume that

w () = eolxro.e) (8) = Xer,i) @)+ + + +(=1) "X 71 ()]

where eg=+1,0=t,=¢t -+ =T. Thus

Y 1

ty ty T
2.7) ﬁ(s)=eo[J e“s'dt—J e‘“dt+~-+(—1)'”J e*“dt].

The spectrum, o(A), for this problem is A = +i. Substituting these values into (2.3) we
obtain the following independent equations.

ix0+y0+/1(i) =0-
.8
(2 ) —ix0+yo+;2(-—i)=0.

Using (2.7) and (2.8) we solve for x, and y, to obtain

Xo= eo[l +2 ¥ (=1) cos f;+(=1)""" cos T]

j=1
(2.9) y0=80[2 Y (=1) sin t;+(=1)"""sin T],
j=1

go==1, Oo=sn=4n=---=T.

Xo

Thus given ( ) the minimum value of T for which (2.9) is satisfied is the optimal time,

Yo
the value of ¢q is 1 (0) and the times ¢4, #,, - * -, f,,, are the switching times (i.e. the times
at which w (¢) changes sign).

Equations (2.9) could have been obtained via the usual method. However this
would have required integration of (2.4) which has been bypassed using the finite
Laplace transform.

Example 2.2. (See e.g. [1, p. 536-540].) Consider the scalar system
(2.10) ¥+i=p, x(0), x(0), x(0).

Assume |u(#)]=1forall 1= 0. As in Example 2.1, it is desired to drive the initial values
to x(T)=x(T)=%(T)=0 in some minimum time T. If this is possible the F.L.T. of
(2.10) becomes

(2.11) x(s)= [(s®+5)x(0)— (s + 1)%(0) + £(0) + iz (s)]

s%(s+1)

where g (s) is the F.L.T. of some measurable u from [0, T]-[-1, 1]. By Theorems 1.1



APPLICATIONS OF FINITE LAPLACE TRANSFORMS 5

or 2.1 this implies that
x(0)+x(0)+&'(0)=0,
(2.12) %(0)+%(0)+a(0)=0,
¥0)+a(-1)=0.

Since we may assume u(¢) is ‘“‘bang-bang” ([6]) and that there are at most two switch
(see e.g. [1]) i (s) must be of the form

t t T
(2.13) ﬁ(s)=50“ e ™ dt—J e ™ dt+j e ™ dt]
(4] t t

1 2

where eg==%1, 0=¢;=t,=T. Thus between (2.12) and (2.13) we are led by some
simple calculations to the equations

(2.14)
£(0)=—@(=1)=¢go[1-2e"+2e2—-¢"],
#(0)=a(-1)—a0)=go[-1+2e"—2e2—e" =24, +2£,— T1],
T2
x(O)=—;z(—l)+;2(0)—-;z’(0)=eo[1—2 e"+2e2—eT 42420+ T+t§—t§+—2—],
0§t1§t2§7‘, 80+:’t1.

Asin Example 2.1 the smallest value of T for which (2.14) is satisfied is the optimal time
of transfer to the origin, the switching times are ¢; and ¢, and ¢ is the value of w(0).

Another type of finite dimensional control problem to which the F.L.T. may be
applied is to linear autonomous systems with quadratic cost. Thus let R be an
n-dimensional positive semi-definite matrix with real entries, W a real positive n-
dimensional real matrix and U a real positive m-dimensional matrix. Consider the
problem of minimizing the cost functional

T
(2.15) C(u)=(Rx(T), x(T))+ L [(Wx(2), x(6)) + (Un (1), (1)) dt

where [; [l (9)|? df <o and x(¢) is constrained by the differential equation
(2.16) x(t)=Ax(t)+Bu(t), x(0) = xo.

We assume T < 00.

The solution of the problem (2.15)—(2.16) may be obtained by solving the following
2n-dimensional system of equations (see e.g. [7]).

x=Ax—-BU 'B*q(t),

1 =—-Wx(t)—A*q(1),
w()=-U""B*q(1),

x(0) = xo, q(T)=Rx(T).

(2.17)

The optimal cost C(w ) is given by
(2.18) C(n)=(q(0), x(0))

where q satisfies (2.17).



6 RICHARD DATKO

The problem may thus be reduced to finding the solution of a two point boundary
value problem for a 2n-dimensional system of linear differential equations. Treating

x(0) as known, the F.L.T. of (2.17) is given by
x(0) x(T)e T
(q(O)) B (Rx(T) e'"ST)

If we are only interested in determining g (0) and x (T') we see that it is not necessary
to integrate (2.17) but only to find the values of x(7T') and q(0) for which the right side of
(2.19) is a finite Laplace transform. On the basis of Theorem 1.1 the following theorem
can be stated.

THEOREM 2.2. The solution of the problem (2.15)-(2.16) is found among the
n-vectors q(0) and x(T) which make the right-hand side of (2.19) a finite Laplace
transform.

Example 2.3. Consider the problem (see e.g. [1])

N O A M i}

with cost

(2.19)

Ga)=(1a® o)

T

(2.21) Cw)= [ T0xe)+ (0P + () .
0

For this problem R=0, W=1I, U =1. Let

(2.22) q= (“)

For this problem (2.19) becomes

s7—s s 1 -5
-1 s> s —s?
x(s) 1-s> —s  s°—=s 1 |[x(0)=x(T)e*T
| Vs 1-52 = & y0)-y(T) e
(2.23) as)| st—s7+1 w(0) ’
o(s) v(0)

The roots of the denominator on the right hand side of (2.23) are s, = o™
52=e%/97 53 = 7'9™ and s, = /9™, Equating to zero the first row of the numerator
on the right of (2.23) for s = s, and s = 5, and taking the real and imaginary parts of the
resulting equations we obtain four linear equations in the four unknowns w (0), »(0),
x(T) and y(T). The solution of these equations will be the only solutions for which
(2.23) is a finite Laplace transform. To see this observe that the last three rows of the
matrix in (2.23) are multiples of the first row for some root s = s; of the denominator.
Hence we will obtain four independent relations in x(T), y(T), u(0), and »(0) if we
equate to zero the real and imaginary parts of the numerator of any row on the right side
of (2.23) for any two roots s; and sy, j # k, with §; # s,. In this case we have chosen s, and
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s» and the first row. When this is done the matrix equation

-3 Gar(¥3 T 1. T 5 3 T 1.1
1 — 3/2)T( L 1 ) —( 3/2)T(___ 4 1. _)
—= ¢ 2 52 2sm ) e > cos2 2sm2 i (0)
21 —(ﬁ/m(l T V3, T) —w's‘/m(_l T V3 I)
0 e 2(:0 ) sm2 e 2cos2+ > sm2 v(0)

V3 +3/2)T \/3 T 1. T ~3/2)T V3 T 1 T
1 > e ( osE—-2-s1 2) e (2 SE_Esm2> x(T)
1 1 T3 .1 7, 1 T V3. T
0o -1 (./2)T(__ I V3 __) (3/2)T( I V3 ) T
> e 2cos2+2sm2 e 2os2 2sszy()
V3 V3
—2—x(0)——y(0)
_x(0) y(0)
_TX(OH_Y(O)
_x(0)_y(0)
2 2

is obtained.

Remark 2.1. The last example shows that the quadratic cost problem may be
solved by a method conceptually simpler than the usual Riccati method (see e.g. [1])
since it bypasses direct integration of (2.17) and yet yields the terminal value x(7T) and
the initial value g(0). In general the above procedure may be used to solve the initial
value problem for an autonomous n-dimensional matrix Riccati equation of the form

(2.25) W = WEW +DW + WF + C, W(0)=R

(see e.g. [2]). This is gone using the F.L.T. as follows. We consider the 2n-dimensional
matrix system

2.26) X =—FX(t)-EQ(1),
' O=CX()+DQ(), X(0)=I Q(0)=R.

On the interval [0, b) for which X ~'() exists we set
(2.27) W =X"'(nQ()

and observe that it satisfies (2.25). This is not new; what is new is that we may obtain

X (¢) and Q(¢) by using the requirement that the F.L.T. be an entire function. Thus the
F.L.T. of (2.26) is

C -1, 7 —st
229 (o) (" =p) (r-owes)

Hence the matrices Q(¢) and X (¢) for which the right-hand side of (2.28)isaF.L.T. over
[0, ¢] will solve the Riccati equation (2.26).

3. Applications to hyperbolic partial differential equations. Consider an
autonomous hyperbolic partial differential equation with mixed boundary and initial
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data given by the equations

Ua+ C(x)ugx + D(x)u, + E(x)u, + F(x) = R(x)f(2),
(3.1) ux,0)=¢(x),  wulx0=yx),
u(,n=ao(t),  u(l,t)=a:(r).
Here C, D, E, F and R are continuous for x in [0, 1], C(x) = C, <0 for some constant

Coand ¢ =0. The functions ¢ and ¢ are assumed to be measurable and bounded and the
functions ao, a; and f are integrable over finite intervals in [0, 00).

Setting
T
Ulx, s)= J‘ e u(x, t) dt,
0

(3.2) . .

Ap(s)= I e “ao(t) dt, Ai(s)= j e “ai(t) dt

0 0
and
T
(3.3) Fls)= J' e~ (1) dt
0

we can write the F.L.T. of (3.1) in the form

a’uU d

C(x)—(x, s)+E(x)—E(x, $)+(s>+sD(x)+F(x))U(x, s)

dx dx

(3.4) =s(@(x)—ulx, T) e ") +D(x)(p(x)—ulx, T) e )+ F(s)Q(x)
U(0, s) = Ao(s), Ui(s) = A(s).

We fix s and assume U, (x, s) and Ua(x, s) are linearly independent solutions of the
homogeneous equation

2

3.5) C(x)d—%‘(x, s)+E(x)d—U(x, $)+ (s’ +sD(x)+F(x))U(x, s)=0
dx dx

such that

(36) Ul(O, S)=U2(1,S)=0.

(This last condition will be assumed to hold except for at most a countable number of s,
as itindeed does when D (x)=0. See e.g. [8, the chapter on boundary value problems].)
In terms of (3.5) and (3.6) we can write the solution of (3.4) in the form

=A1(S)U1(x9 S)U’2 (17 s)_AO(s)UZ(xr S)U; (0, S)
Ao(1, s) Ao(0, 5)

U(x,s)

1
(3.7 + L G(x,0,5)(s¢(0)~u(o, T) e ")+ D(o)(b(0)—u(o, T) e ")

1

+ (o) =ulo, T) e ") do + J G(x, o, s)R(0)F(s) do.
o
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In (3.7)
d
U'(x,s)=—(Ul(x, s)),
dx
(3.8) .
Ao(o, s) =—U,(0, s)U1 (0, s) exp [—L E(r)/C(1) dT]
and
G(x,o.,s)=g29_’i).g_lga’_s), 0<o=x,
(3.9) AO(O.a S)
Gix,o,5)=L1Ealers)
AO(O'a s)

Notice from the form of (3.7) and (3.8) that U (x, s) has a pole of order k at a point s if
and only if Ay(0, s) has a zero of order k at the same point, i.e. U,(0, s)U1 (0, s) = 0.
Thus for the right-hand side of (3.7) to be a F.L.T. it is necessary that when we write

1
AO(Oa s)

Q(x, s) have a zero of order k whenever Ay(0, s) has a zero of order k. This condition
allows us to find u(x, T) and u,(x, T) for T > 0. Conversely given u(x, T) and u,(x, T),
0=x=1, T >0, it permits us to find conditions on Ay(s), A1(s) and F(s) such that a,(t),
a(t) and f(¢) may act as boundary and distributed controls taking ¢ and ¢ to u(-, T)
and u,( -, T) in time T. This is the content of Theorems 3.1 and 3.2.

THEOREM 3.1. Given integrable mappings ¢ and ¢ on [0,1] a necessary and
sufficient condition that there exist a pair of integrable functions a, and a, on the interval
[0, T] which act as boundary controls transferring ¢, W to u(- , T), u,(- , T) subject to the
dynamics (3.1) is that the finite Laplace transforms Ao and A of ao and a, be such that
Q(x, s) in (3.10) have a zero of order k whenever Ay(0, s) has a zero of order k.

THEOREM 3.2. Given integrable mappings ¢ and  on [0, 1] a necessary and
sufficient condition that there exist an integrable function f on [0, T] which acts as a
distributed control transferring ¢, tou(-, T) and u,(- , T) subject to the dynamics (3.1) is
that the finite LaPlace transform F of f be such that Q(x, s) in (3.10) have a zero of order k
whenever Ao(0, s) has a zero of order k.

Remark 3.1. If instead of the boundary conditions in (3.1) we substitute the
conditions

(3.10) U(x,s)=

Q(x, s),

(3.11) au(0, 1)+ Bux(0, t) = qo(t), a2+327ﬁ0,
v (1, 1)+ 8ux(1, 1) =q1(1), >+ 8%#0

a, B, v, and 8 constants, we obtain a theorem similar to Theorem 3.1. This is a
consequence of the fact that the F.L.T. of (3.11) has the form

aAo(s)+BU'0, s)=gols), a>+B%>#0,

3.12
(3.12) vAi(s)+8U'(1,s)=qgi(s), vy>+8>#0.

where in (3.12) we let U’(xo, s)=(dU/dx)(x, s)|c=x,. Differentiation of (3.7) and
substitution into (3.12) leads to a linear equation in which we can replace the quantities
g i=0,1 with the quantities A, i=0,1. Thus the two problems are basically
equivalent.



10 RICHARD DATKO

Example 3.1. Consider the control problem
Uy = Un, t=0, 0=x=1,
(3.13) ulx,0)=¢(x),  ulx,0)=¢(x),
ulx, T)=u,(x, T)=0, T < o but unspecified.

The object is to select u (0, t) = ao(t) and u(1, ¢) = a1(¢) such that (3.13) is satisfied. For
the special case of (3.13) equation (3.7) becomes

Qlx, s)= 1

sinhs sinhs

*sinh (s(1 —x)) sinh (so’)
(3.14) * J; s sinh s

Ux,s)= [Ao(s) sinh (s(1—x))+ A1(s) sinh (sx)]

[s¢ (o) +y(o)] do

[s¢ (o) + ¢ (o)) do.

+ J‘ ! sinh (sx) sinh (s(1 = o))
x s sinh s

It is easily seen that no matter what Ao and A, are s = 0 is not a pole of (3.14). However

sinh s has zeros of order one at the points s = xnmi, n=1,2, - - -. Thus by a simple
calculation the finite Laplace transform of a, and a; must satisfy the requirements
(_1)n+1 1

(3.15) (=) Ao(nmi)+ A (nmi) + J sin nwo (nmi¢p (o) + ¢ (o)) do =0
o

at these points.
If we set

1

b = j (sin (170))b (o) dor

1

Y= J. (sin (n7o))¢¥ (o) do
0

(3.16)

n==1,---, we see that (3.15) is equivalent to

(3.17) (=D)"* ' Ao(nmi) + A (nmi) + (—1)"“(i¢,, +£"—) =0.
nm

Whatever requirements are placed on the controls their finite Laplace transforms must
satisfy (3.17). If, for example, we are merely interested in driving ¢ and ¢ to zero we
could select

©  1-e
Ao(s)= ¥ —5——F5 5 hm,
n=18(s"+n"7w")
(3.18) and I
0o N —e s
A1(5)=n§1 -1 +1s2+n27rznw¢"

These would satisfy (3.17) and are respectively the finite Laplace transforms of the
functions
® (1- t
a)= Y (_1__(:25(”_7"))(,,”, 0=r=2,
n=1 ni

(3.19)

e <]

a()= Y (D" (sin (nmt))p,, O0=t=2.
1

n=
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Example 3.2. This example is a special case of a problem considered by Russell
[11]. The problem is to control to zero the system

Uy = Ugy +r(x)u+v(x)f(2), 0=x=1, t=0,
(3.20) u(x,0)=o(x), u(x, 0) = (x),
u©,)=u(1,t)=0.

The function v is assumed to satisfy certain conditions which will be given below and
f:[0, T]> R, T as yet unspecified, is L, integrable over [0, T'].
Using (3.7) we can write the transformed solution of (3.20) in the form

1 1
(3.21) U(x,s)=J G(x, o, s)[s¢ (o) +y(o)] do-+j G(x, o0, s)v(0)F(s) do.
0 0

G(x, o, s) in (3.21) has the structure

Ua(x, s)Ui(o, 5)
_UZ(O, s)Ull (09 S)

Ui(x, s)Ui(o, 5)
UZ(O, S)U,I (09 s)

Ui(x, s) and U,(x, s) satisfy

=G(x, 0, s), 0=o=x,

=G(x,0,5), x=o=1.

U1(0, S)= Uz(l, S)=0

and are, for all but a countable number of s, independent solutions of the differential
equation

a*u
dx*
As Russell has pointed out in Section 2 of [11] there exists a strictly increasing sequence
of nonnegative numbers {A,}, k=0, 1, - - -, such that when s = +A,J

Ui(x, s) = a(s)Us(x, s), a(s)#0,

i.e. G(x, 0, s) has a pole of order one at these values of s. Moreover the {A,} satisfy the
following two conditions, there exists D >0 such that

(3.22) (x, )+ (r(x)—sHU(x, s)=0.

.k . 1
(3.23) IETJOX::D’ hTm(Ak+1—Ak)=B-

We write
F(x,0,s)=Uj(x, s)Ui(o, s), 0=0=x,
F(x,0,5)=Ux, s)U(o, s), o=x=1.

We see that (3.21) is an entire function in s for all 0= x =1 if and only if at the points
s ==£Axl

(3.24)

1 1

I F(x, o, s)s¢ (o) + (o)) do+ I F(x, o, s)v(o)F(s)do=0
0 o

(3.25) ) '
= J Ui(a, s)[s¢ (o) +¢(o)] da'+J Ui(o, s)v(o)F(s) ds.
0 0
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In [11] Russell assumes v(x) satisfies the conditions

1
J Ui(o, Aki)v(o) do#0
(3.26) and
j U1(O‘, )\ki)v(a') do| >0.
o

lim &
k

Under the assumptions (3.26) we seek a function f: [0, T]- R which is in L,[0, T] and
whose F.L.T. F satisfies (3.25) at s = £\, i.e.

o Uila, 5)[s¢ (o) + ¥(0)] dor
(3.27) FO=""1T0.(0, 5)o(o) dor

for s = £Al.

Russell [11] shows that this is possible for T =2 (see Theorems 2 and 3 in [11]).
Our object is not to duplicate Russell’s results, but to indicate how one might proceed to
construct a F.L.T., F, satisfying (3.27). First observe that when s = £A,i

Ui(x, Aii) = Ui(x, —Aki)
is a real function of x, since for these values of s (3.22) satisfies the usual Sturm-Liouville
boundary value problem
2

xlzj'*' (r(x)+A)U =0, U@)=U(1)=0.

Thus when s = + A4, F(s) must satisfy

o Uila, £A)[£Aiid (0) + ¥(0)] dor
(3.28) FMd) = fo Ui(o, £Aii)v (o) do

=il Qi + 1

where g, and r, are real numbers. Russell [11], using properties of nonharmonic
Fourier series, has shown that there exists an f in L,[0, T] whose F.L.T. satisfies (3.28)
for T=2,i.e.

(3.29) F(s)='|. e f (1), T=2.

0

His method is constructive in that it depends on finding a biorthogonal set in L,[0, T']
(see e.g. [11]).

The procedure given below avoids the use of biorthogonal sets, but presents
another difficulty. This is the inversion of a complicated Laplace transform.

The construction of F satisfying (3.28). For each A, # 0 we let

/\i 1— e—ans/Ak

Gk(S)=g(‘—SW—(qu+rk),
(3.30) and ot
Go(s) =—2—r, if 0 € {Aui).

Notice that Gy is a F.L.T. such that

G (i) = + Arqid + 1.
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Furthermore
—1
lirg 7 In |G (t)|=0

and if A, #0

hm—lnIGk( :)|-@—7—’
k

Thus by Theorem 1.1 G is the finite Laplace transform of a function g, whose support
isover [0, 2nm/ A, ). Using work of Redheffer [10] we can show there exists a countable
set S ={wii}, wr =0, such that {A;i} <= S and

2

(3.31) H(s)=sff[(l+—k>

is an entire function which satisfies

(3.32) H(s)= IOTe_"h(t) dt,
(3.33) |H (iw)|=M for w € (-0, )

where M <00, T <00 and h € L,[0, T]. (See also [11, p. 550-551] and use the Laplace
transform in place of the Fourier transform.)
For each Axi we now construct the functions

_ H(S) 2!Ak
E&) =z magy
(3.34)
Fols) =2
Since

H'(Ad) H( Axi)
/\kl —Akl ’

F,(s), as defined by (2.33), satisfies

(3.35) Fe(Aji)=8;j = Fr(—Aji)

for each pair of integers k and j. Moreover because of (3.33) it is easy to verify that
|Fi.(s)| = M, < for s = iw and w real, and that there exists fi € L,[0, T'] such that

T
(3.36) Fi.(s)= I e fi(t) dt.
(4]
We now define
(3.37) F(s)= éo Fo(s)Ga(s).

By our construction for each k
(3.38) Fi(s)Gi(s)

is an entire function of s, is the Laplace transform of the convolution of f; and g, defined
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above and hence the support of this product for each £ must be at most

[o,T+31‘—’—'] i A #0
Ak

and
[0, T+1] ifAo=0.

Thus by assumption (3.24) the maximum support of f,gx cannot be larger than

(3.39) [0, T +1,]
where
2
lo = max [1, sup _77_k]
k Ak

This brings us to the question. Is F(s) defined by (2.37) the F.L.T. of some function f
over [0, T +1,]? We do not know the answer to this if (q«, ) # (0, 0) for an infinite
number of k. However if (g, r.) = (0, 0) for k = ko, then the answer is yes. Since in that
case G (s)=0 for k =k, and hence

k() !
(3.40) 0= 3% | ftt-o)gto) do
k=0 J0

The last example in this section concerns the boundary control to zero of the two
dimensional wave equation in a square region. The mechanics of this example are much
like those of the one dimensional wave equation of Example 3.1. However in this
example there is some geometry involved which permits us to make statements
concerning the boundary control to zero of the two dimensional wave equations for
arbitrary simply connected regions of the plane. To be specific, suppose we are given a
compact region D in R” and we wish to control the two dimensional wave equation to
zero in this region. We circumscribe about D some square, S. We may assume, if need
be, that the boundaries of S and D are disjoint. Let

Uyx T Uyy = Uy,
(3.41) o (x,y)=ulx,y,0), (x,y)eD,
Y(x,y)=u(x,y0), (x,y)eD,

represent the initial data. We wish to select u(x, y, ¢), t >0 and (x, y) € 9(D) (boundary
of D) such that after some as yet unspecified time, T, u(x, y, T) = u,(x, y, T) = 0 for all
(x, y) e D. We accomplish this by extending the initial dataon D to S. Thus on S we have
the boundary control problem

Uyx + Uyy = Uy,
(3.42) ux,y,0=4  élo=4¢,
w(xy,00=d,  dlb=4¢.
We seek a boundary control
u(x, y, t), (x, y)€d(S) (boundary of S), t>0
such that

u(lx,y, T)=u,x,y, T)=0, forsome T>0andall(x,y)eS.
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But if we accomplish this we have also solved the original problem. For u(x, y, t)
restricted to (x, y) € 3(D) will act as a boundary control on (D) which drives the original
system to zero in time T. However in general this procedure cannot be time optimal,
since it restricts the class of boundary controls acting on 9(D). The main point is that
boundary control on a square is sufficient for boundary control on compact regions in

R?.
Example 3.3. In this example all functions are assumed to have the necessary
integrability conditions.
Let
(3.43) S={x,y):0=x=1,0=y=1}
and on S consider
Uy = Uxx + Uyy,
u(x, y,0)=a(x,y),
ut(x, Y7 0) = w(xa Y),
u0,y,t)=u(l,y, t)=0.

(3.44)

Let the boundary controls be

aolx, ) =u(x,0,1), >0, 0=x=1
(3.45)
ai(x,t)=u(x,1,1), t>0, 0=x=1.

We shall attempt to find conditions on the a;, i =0, 1 such that after some time 7' >0
(3‘46) u(x7 Y, T)=ut(x’ y, T)=0’ (x’ )’)ES'
The F.L.T. of (3.44) is

(3.47) U (x, Y, 8)—s¢d(x, y)—w(x,y)=Uu(x, y,s)+ U, (x, y, 5).
T

Aplx, s)= J ulx,0,t)e *dt=U(x,0,s),
0
T

Al(x’ S)=4[ u(x’ 19 t) e—SI:'_U(x’ 1’ S),

0

(3.48)

U@,y,s)=U(1,y,s)=0.
We shall assume that A, and A, in (3.48) are representable in the forms

Aolx, s)= 2 Ag(s) sin (nmx),

(3.49) -
Ai(x,s)= Y Ai(s)sin (nmx).

n=1

For convenience we shall let
1
(3.50) J (sin n7rr)(s¢ (7, o)+ (1, 0)) dr = q,. (o), n=1,---
0

Using the notation (3.49) and (3.50) and the method of separation of variables the
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solution of (3.47)—(3.48) can be written

Ux, y,s) = § Ag(s) sin (narx) sinh m(l—y)

n=1 sinh VsZ+n’n’
. E A'(s) sin (nmx) sinh \/s2+n77-riy
(3.51) n=1 sinh VsZ+n’m’
. © ¥ sinh Vs7+n§172(1—y)sinh Vst nlml o
+ Y sinnmx — — qn(0) do
n=1 0 \/s +n-m sm\/s +n-mw

+ E sin (nmx)

n=1

Ysinh Vs> + n’m> y sinh V?+nlmi(1-o)
qn(a') do.
y .

Vs*+n’m’sinh Vs’ +n’n’
A necessary condition for (3.51) to be a F.L.T. is that for each integer n the

corresponding entry in (3.51) be a finite Laplace transform. Since the zeros
of sinh Vs?n>w> occur at the points

(3.52) s=:ti~/m§+n§ﬂ-, m=1,2,---
this is possible only when

(1) ALV R+ m? wi)+ AL NnE+ m? i)

(3.53) ( 1)m+1 1
+ j (sin (mmo))q.(o) do =0,
mm 0
m=1,2,---. A similar expression holds when we replace v (n*>+m?)mi by
-V (ni + mz)m'. Taking note of (3.50) and setting
1 1
(3.54) Ay = J J’ (sin (mmo))(sin (n77))@ (7, o) dr do
0 Y0
and
1 1
(3.55) Bmn = [ I sin (mmo) sin (n7r)yY (7, o) drdo
0 Y0

we can rewrite the conditions (3.53) in the form

(=)™ ALEVRZ+m? mi)+ AL (VR + m mi)
_ m+1 _ m+1
+%(:I:i)~/ni+mzazm,,+(1")1 Bmn =0.

A choice for Ag(s) will be of the form

(3.56)

(3.57) All)= T AT(s)

m=1
where if VnZ+m? is an integer

s? e *(sinh W52+ nzwi)bm,,

Js? +n§7r7(s2+(n2+ m?)m?)

(3.58) Ag"(s)=

The coefficient b,,, is chosen so that

(m2 + nz)” —an
- bmn = .
m m

(3.59) AN £+ mE ) =
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Thus
Brn

I
" (m+n)r

if Vin®+mZisan integer.

If Vim®+n? is not an integer it must be irrational and there is a natural number /
such that

I-1<Vm®>+n’<l

We define
k 1
(3.60 A —
) 2 Jm*+n?
and observe that the inequality
2
(3.61) kp ————=<2<k
Vm*+n

is satisfied. We then define

s? e sinh (km —2)\/s2+n:ﬂz(smh2~/sz+n2w7)bmn

(s>+n°7A)(s*+(n*+m>7?)

(3.62)  Ag"(s)=

It is not difficult to verify that (3.62) and (3.58) define finite Laplace transforms over
intervals of the form [0, k], 2 <k, =2++/2. In the case of (3.62) we observe that
because Vm*+n” is irrational (k,,)m is also. Thus sin (k,,7) # 0 and the equation

2, 2
Ao(:tslnz+ i) ——-——)(sm mmk,, )by, = —éﬁf
T

has a solution for b,,, which is

2
_ m ar an
(3.63) L ey S

Similarly we define

(3.64) Al(s)= Z AT"(s)

ot
where if Vm>+n’ is an integer

in se ¥ sinh 2VsZ+ n’m’
Al (S)— 2 2 2 Amn
JsZT+nia? (s*+(n*+mAHn?

with
(3.65) Amn = (—l)m'ﬂmamn'

If VmZ+n? is not an integer we define

e™“m sinh (kp, — 2)Vs> + n2m2(sinh 2VsZ+ 127 ) Gumn

(s2+n w2 (s> + 2+ m?)7?)

(3.66) AT (s) ="
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where

mim?

sin (k1L ™"

Notice that when v¥m?>+ n? is not an integer the inequality (3.61) implies that equations
(3.63) and (3.67) tend to the quantities = (m/ vm?+ 1°)Bmn and £mma,,, respectively.
Also observe that

(367) Amn _____(_1)m+1

A EiVP+rY) =0,  j=0,1,

if I #m.

As a final remark in this section it should be pointed out that the convergence of
Agp(s) and Af(s) in equations (3.57) and (3.64) has not been discussed. Since this paper
is meant to demonstrate a technique we shall not concern ourselves with this question.
Suffice it to say that if ¢ (x, y) and ¢/(x, y) have finite Fourier expansions i.e. {a,,,} and
{B:mn} contain only a finite number of nonzero terms, then the above constructions will
always yield controls which drive (3.41) to the zero state in some time T =2 ++2 (i.e.
the maximum possible k,, given by inequality (3.61)).

4. A parabolic problem. Consider the heat equation in one dimension

@.1) W_TU o0, 0=xsl.
at ot
Assume
u(x, 0)=¢(x),
4.2) u(0, t)=ao(t),

u(l, t)=aq(¢),

where ¢, ao and a, are integrable over finite intervals.
If u(x, T)=¢(x) for some T >0 and

T
J e “a;(t) dt = Ai(s), i=0,1,
0

then using the techniques of Example 3.1, the F.L.T. of (4.1)—(4.2) is given by
_ Ao(s) sinh Vs(1—x)+ A, (s) sinh Vs x

(4.3) U(%,s)= =
sinh Vs
1
+[ P 900~ wio) e TN do
where
1 -
F(x, o, s)=fsinh~/:vasinh\/s(l —x) if0=o=x
Vssinh Vs
and
1 — —
(4.4) F(x,0,5)=————=sinhVsx sinhVs(1-0) ife=x=1.
s sinh Vs

Suppose it is desired to drive an initial temperature ¢ to the zero temperature in some
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time T > 0. Since the poles of (4.3) are of order one and occur at the points s = —n’7,
n=1,2,-- -, the numerator in (4.3) must satisfy the equations

. __1 n+1 1
4.5 (1" le(—n2772)+A1(—n2772)+£+j (sin (nmo))¢ (o) do =0.
w 0
Thus it is desired to find entire functions Ao(s) and A(s) which are finite Laplace

transforms over [0, T'] and which also satisfy (4.5). This is not always a practical
problem as the following special case shows (see e.g. [3]). Let

(4.6) @ (x) = ¢po = constant # 0.
For this value of ¢ the equations (4.5) reduce to
4.7) Ao(—n’m%)=A(-n’7?),  neven,
and
(4.8) Ao(—n’m*)+ A (=n’7* =#’5—§, n odd.
nmw
Assume

(4.9) Ao(s)=Aq(s), ie. aot)=ai(t), and |ao(t))=1 on]0, T].
If we also assume ao(?) is piecewise constant with a finite number of switches on [0, T]
then it is easily seen that (4.8) can never be satisfied. For if

N

ao(t)= Y axpy_,.e) (1), 0=ty< --<t,=T,
j=1

then
1 N
(410) AO(S)=; z a,-(e_s""-l —-e—Sti)_
i=1

Clearly Ao(s) given by (4.10) can never satisfy (4.8).
However if we permit an infinite number of switches then it is possible to bring the
temperature to zero in any finite time 7. For let

©
ao(t)=a1(t)= z aiX[,,._l,,j)(t), 0=t0<11<' . '<tn—)T
i=1

Then
1 - -=St; —St;
(4.11) Ao(S)=A1(S)=; 'Zl a;(e”1 —e ™)
i=

and at the points —n°7” we have

E ai(en%ﬂr,.*l _ en2n2t]-)'
j=1

(4.12) Ao(—n’m)=A(-n’7%) =

2 2
n’mw
Thus (4.8) reduces to the moment problem (see e.g. [3]) of selecting {a;}, |a;|=1 for
7=1,2,---,and 0 =¢,<t; <---<t,-> T such that
(4.13)

a,-(e"2"2"'*’ _en2-rr2t'-) — ¢0.
1

18

1

This is a solvable problem (see e.g. [3]) which can be solved for any T > 0.
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DEFINITIONS OF ORDER AND JUNCTION CONDITIONS
IN SINGULAR OPTIMAL CONTROL PROBLEMS*

R. M. LEWISt

Abstract. The generalized Legendre-Clebsch higher order tests for optimality of singular arcs in optimal
control problems depend upon the orders of the arcs involved. To date three distinct definitions of order have
been given but many authors do not distinguish among them. The features of each definition are discussed
with special reference to the applicability of the higher order tests and of the conditions at junctions between
singular and nonsingular arcs; only in terms of one of the definitions are the junction conditions generally
valid. An illustrative example is presented.

Introduction. In optimal control problems an extremal arc or subarc is called
singular if it trivially satisfies the Pontryagin minimum principle, that is, a first order
control variation on the arc or subarc produces no change in cost, to first order (a
statement of the minimum principle and a precise definition of extremality are given in
the following section). Higher order conditions are needed to check the optimality of
such arcs and two different types of condition have evolved; those based upon higher
order control variations (see, for example [1]) and those in which the higher order
changes in cost due to the first order control variations are studied (for example, the
Gabasov-Jacobson condition [4]).

We are concerned here with the former type and in particular among these, the
generalized Legendre—Clebsch necessary conditions. Associated with these is the
notion of the order of a singular arc, of which various definitions have been given (some
authors define a quantity called degree which is just 2X order). We point out here that
these definitions are in need of interpretation and show by means of examples how
differing interpretations can yield different values for the order of some singular arcs.
This is not in itself a cause for concern; however, by failing to state precisely which
interpretation they are considering and, worse, by using different ones alternately, a
number of authors have created some confusion about this issue.

The purpose here is to clear this up. In § 1 the class of problems is defined and the
phenomenon of singularity is briefly discussed. We then give a naive definition of order:
two interpretations of this yield, respectively, the notions of intrinsic and local order.
Most of the definitions in the literature correspond to one or the other of these but we do
find a third distinct one, combining the features of the other two yet being more suitable
with regard to applying the higher order optimality tests.

Conditions at the junctions between singular and nonsingular arcs are discussed in
§ 3 where it is shown that the theorems of McDanell and Powers are valid only if stated
in terms of intrinsic order. Moreover, there exist problems to which none of their
theorems are applicable. The section is ended with an example around which much of
the work hinges. We conclude by considering the implications of these findings.

1. Problem formulation. We consider the optimal control problem of the form:
find the scalar control function u( - )€ L'[#o, t;] which minimizes the cost functional

(1.1) J(u(-))= G(x(tl))+j " Lo(t, x(0)+ La(t, x(0)u () dt

to

* Received by the editors November 14, 1977, and in final revised form March 6, 1979.
tSchool of Mathematics, University of Bath, Bath, England. Now at Department of Electrical
Engineering, University of Newcastle, New South Wales, 2308, Australia.
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subject to the system equation

(1.2) x(@) = fo(t, x(8))+f1(¢, x(£))u(z) for almost every ¢ €[to, ;]
and the constraints

(1.3) lu(t))=K for almost every t € [to, t1],

(1.4) x(to) =x0,  g(x(t1))=0.

Here x( - ) is an absolutely continuous n-vector function of ¢ and x(¢) is called the state
of the system at time ¢ The functions G, Lo, L1, fo, f1 and g are assumed to be analytic
with g: R" >R"™. xo€R" is given and ¢, and ¢, are specified initial and final times. We
further assume that a nontrivial set of solutions to (1.2), (1.3) and (1.4) exists and that J
has a minimum over this set.

The above problem is linear in the control. We shall deal with nonlinear problems,
in which Lo(t, x)+ L1(¢, x)u and fo(t, x)+ f1(¢, x)u are replaced by analytic functions
L(t, x, u) and f(t, x, u) respectively, separately in § 4. Many authors obtain results for
nonlinear problems by considering locally equivalent linearizations (see [1], [2]).

Restricting attention to scalar control problems considerably simplifies notation
and results, many of which (the junction conditions for example) are not available in the
case of vector controls. Admitting variable end times does not substantially affect what
follows.

As usual the Hamiltonian for the problem is defined by:

(1.5) H(,x, A, u)=2A Tfo(t, x)+Lo(t, x)+[A Tfl(t, x)+Lq(t x)]u

where A € R". The well-known minimum principle provides that a necessary condition
for the control-state pair (#*( - ), x*( - )) to be optimal is the existence of an absolutely
continuous function A *( - ) (the adjoint) satisfying

(1.62) A¥()=—H (1, x*(0), A*(1), u*(1)  a.e.in[to, 1],
(1.6b) A¥(11) = vo Gy (x*(11) + v g (x*(12))
where v, is a nonnegative scalar and » € R"™. Further,

H(t, x*(t), A*(1), u™()) S H (¢, x*(1), A*(2), v)
(1.7)

for all |v| = K and for almost every ¢ € [0, t1].

Here H (t, x*(¢), A*(¢), u*(¢)) denotes the partial derivative of H with respect to x,
evaluated at (¢, x*(¢), A*(¢), u*(¢)). T denotes transpose (the derivative is a row vector).
The right hand sides of (1.6b) and (1.8) (below) have a similar interpretation.

For any triple (x( ), A(-), u(-)) satisfying (1.2), (1.3) and (1.6a) set

(1.8) & (6) = Af1(t, x(1)) + L8, x(2)) = (3/3u) H (8, x (1), A (2), (1))

Expression (1.7) yields two distinct possibilities for optimal controls u*(-) on sub-
intervals (¢,, t,) <[, t1], either

(1.9) ¥ #0,  u*(t)=—-K sgn(¢*(1)),  te(ts t),
or
(1.10) ¢*(1)=0,  te(ly tp).

Any triple (x*(-), A*(-), u*(-)) satisfying (1.2), (1.3), (1.4), (1.6) and (1.7) is
called an extremal for the problem of interest (¢* above denotes evaluation of ¢ along
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an extremal). An arc of an extremal corresponding to a subinterval (¢, #,) is called
nonsingular if (1.9) holds, otherwise, if (1.10) holds, it is called singular. Along
nonsingular arcs the minimum principle is strictly satisfied, that is, there exists v with
|v|=K giving strict inequality in (1.7). On singular arcs however, the first order
necessary condition (minimum principle) is trivially satisfied and we are led to seek
higher order tests for optimality.

Remark (i) Along nonsingular arcs (1.9) completely determines u*( - ) whilst on
singular arcs the control is usually completely specified by conditions implicit in (1.10),
namely (d'/dt')¢*(1)=0, i=0,1,2, -, t€(ts ). Singularity does not imply
indeterminacy of the control but that the first order control variations used to derive the
minimum principle produce no first order variations in cost, when applied at ¢ € (¢,, ;).

Remark (ii) Singularity is strictly a property of extremals (x*(-), A*(+), u*(+))
and not of state-control pairs (x*( - ), u*( - )) since for some such pair there may be more
than one adjoint function A *( - ) making the triple extremal. This is a consequence of the
nonuniqueness of » in (1.6b).

Example. Maximize x{(1) (minimize —x;(1)) subject to

@) =x2)+u(),  Xa2()=x3"(0)—u(?),
x1(0)=x200=x2(D)=1, Ju(n)|=1.

A candidate for optimality is (x1(¢), x2(2), u(¢)) =(1+2¢1,1) 0=¢=1. (The functions
defining the problem are analytic in a neighborhood of the trajectory.) We have

Xi(t) =0, M) =ve=0,

Xo(t) ==A1() + A2(0)x3 2 (8) = —A1(£) + A2(2), A2(D) =y,
that is
AM(@®)=vy and Ax(t)=(v—wo)exp (t— 1)+ vo;

hence

¢ (@) =A1()=A2(t) = (vo—») exp (1 —1).

Therefore ¢ (¢t) =0 if v = vy whilst if v > v, ¢(¢) <0 and u(t) =—sgn ¢ (¢) = 1.
Both singular and nonsingular extremals corresponding to (x1( - ), x2(* ), u(-)) are
possible.

2. The order of singular extremal arcs. We begin this section by defining the order
of a singular extremal arc. The value obtained in a particular problem is seen to depend
upon the interpretation given to the definition and this leads us to two different notions
of order. Four examples from the literature are then investigated to determine which
notions their authors had in mind and in so doing we discover a third independent one.

DEFINITION 2.1. The order of a singular extremal arc on (¢, f) is that integer q
such that (d*9/dt**)[H,] is the lowest order total derivative of H,, in which u appears
explicitly. (H, = (8/ou)H =L, +A"fy).

As H, = H,(t, x, A), total derivatives of H, are defined only when x(-) and A(-)
are specified as functions of ¢. Then, strictly, H, = H,(¢) and detection of the explicit
appearance of u is impossible. It is therefore necessary to interpret the definition.

Interpretation 2.2. To determine the order of a singular extremal arc, form the
derivatives of H, as follows:

(d/d)H,=H,+HT % +HA
= ut+HZx[f0(t, X)"'f](t, x)u]'—HZAH:,
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i.e. substitute the functional forms given by the right hand sides of (1.2) and (1.6a) for x
and A respectively. These forms hold along all extremal arcs; hence the above
expression for (d/dt)H, is valid along all extremal arcs and is explicitly a function of
(t, x, A, u), M(t, x, A, u), say. It is easy to show directly that M = M (¢, x, A) and hence
(8/du)(d/dt)H, =0.

Continuing, form

(d*/dtHH, = M, + M X[ folt, x)+f1(t, x)ul-MIH{ =N(t, x, A, u).

This expression is also valid along all extremal arcs. If N depends explicitly upon u,i.e. if
for some (£, x, A\) eRXR" XR" (3/0u)N (¢, x, A, u) # 0, then the order of the singular arc
is ¢ =2/2 =1, otherwise the above process is continued until a total derivative of H,, is
found which is dependent upon u. If no such derivative exists, set g = 0.

Note (a) It is implicit in Definition 2.1-Interpretation 2.2 that the first appearance
of u is in an even order derivative of H,. This is proved by Robbins [2] whose definition
of order is the same as Definition 2.1-Interpretation 2.2 (see below).

Note (b) Though we set out to determine the order of a particular singular extremal
arc, we note from Interpretation 2.2 that the number q arrived at there is a property of
all the extremal arcs in a given problem. This motivates:

DEFINITION 2.3. The intrinsic order of an optimal control problem in which the
control appears linearly is the least integer g such that (d°?/dt*?)H, depends explicitly
upon u, with the Interpretation 2.2.

Note (i) The intrinsic order of a problem linear in the control is always greater than
or equal to one.

Note (ii) For problems linear in the state x as well as in the control, g = c0.

Note (iii) u appears linearly in (d*%/dt*") H,, that is (d2q/ dt*)H, =
A(t,x,\)+B(t,x,\)u where B is not the null function. The importance of this is
discussed in § 3.

A necessary condition for optimality of singular arcs is:

THEOREM 2.4. Suppose (x*(-), A*(+), u*(+)) is a normal extremal for a problem
of intrinsic order q, with a singular arc on the interval (., t,), and that |u*(¢)| <K for
t € (t,, tp). Then for the extremal to be optimal it is necessary that

2.5) (=1)%{(8/0u)(d**/dt*)H.}* 20

for all points t € (t,, ty) at which u* is analytic.

* denotes evaluation along the extremal, i.e. the left hand side of (2.5) is
(=1)B(¢, x*(¢), A*(2)), where B is as in Note (iii) above.

Normality guarantees that the terminal constraints can be satisfied by varied
trajectories and is equivalent to uniqueness of the A *( - ) making (x*( - ), A*(- ), u*(+))
extremal [1]. Nonnormal extremals are included in a modified version of Theorem 2.4
at the end of this section.

A proof of Theorem 2.4 can be found in [2]. Condition (2.5) is known as the
generalized Legendre-Clebsch (GLC) condition. By the strengthened GLC condition
we mean that strict inequality holds. Of course it is possible to have B(z, x*(t), A*(¢)) =0
for t € (¢, ts) < (¢4, t») even though B is not the null function. Then on (z, #;) the GLC
condition is trivially satisfied and does not provide a test for optimality of this subarc. To
obtain a test the following is needed:

DEFINITION 2.6. The local order of an extremal on the interval (¢, ;) is the least
integer p such that

{(8/0u)(d?**/d**)H,}*#0 forallte(z, ts).
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Interpretation. The derivatives up to order 2¢q (q = intrinsic order) are formed as
before, yielding

(d*/dr*)H, = A(t, x, \)+ B(t, x, \)u
where B is not the null function. If however B(¢, x*(¢), A*(¢)) = 0 on (¢, ¢;) we then form
(d**/ar* " YH, = A, + Bu+[AT+Bullfolt, x)+ f(t, x)u]
+[AV+Blul-H;1+Bu
=P(t, x, A\, u, u).

It can be shown that (3/du)(d>*"/dt*** " H, = (3/0u)P(t, x, A, u, 1) is zero along (x*(2),
A%(8), u*(¢)) for t € (t, t;) because B =0 there [7]. Continuing, we have

[i]
(@72 P H, = P+ PT[fo+ fiul- PTHT + (BZP)” +Bii= O, x, A, u, 1, i),

We now evaluate  (8/du)(d***/d*"*HH, = (8/3u)Q(t, x, A, u, u, ii) along
(x*(2), A*(2), u*(t)) for te(t.,ty). If it is nonzero there, then the local order of the
singular extremal (x*(¢), A*(¢), u*(¢)) is p = (2q +2)/2 = q + 1. Otherwise, continue the
above process until a total derivative of order 2q+2r, r>1, is found such that
(8/8u)(d***?"/dt****") H,, is not zero along the extremal. If no such derivative exists, set
p=0.

Note (i) To obtain (4> /dt**"*")H, we appear to require u*(¢) to be 2r times
differentiable on (%, #;). As the value of r is not known a priori we therefore assume that
u*(+) is piecewise analytic. This implies that the interval [#,, ¢,] divides into at most a
finite number of subintervals on which the local order of the extremal is different. That
the local order can change along the extremal is shown by the example in § 3.

Note (ii) Note that the coefficients of u, i etc. are zero along the extremal
concerned. This may enable us to extend Definition 2.6 to extremals corresponding to
nonpiecewise analytic controls.

Note (iii) It is evident that if the local order p is greater than the intrinsic order q,
then u no longer appears linearly in (d*?/dt*")H,. Indeed (d**/dr*")H, is generally a
polynomial of degree 2(p —q)+1 in u. (The function Q defined above is cubic in u.)

Note (iv) Proof that the first nonzero term {(3/0u)(d"/ dt*)H,Y* occurs for k even
is given in [7].

In terms of local order, the necessary conditions for optimality are the same.

THEOREM 2.7. If (x*(-), A*(-), u*(-)) is a normal extremal with a singular arc of
local order p on (i, ts) and |u*(t)| <K for te(t., t;) then a necessary condition for the
extremal to be optimal is

(2.8) (=D)"{(6/ou)d*/dr*")H}* =0

for all t € (t,, t4) at which u*( ) is analytic.

Using local order, for a normal extremal the higher order tests for optimality are
never trivially satisfied unless p =00; no further definitions of order nor tests for
optimality of GLC type are possible. Of course satisfaction of the strengthened GLC
does not guarantee optimality, as an example due to Jacobson and Bell [4, pp. 94-96],
shows.

We conclude, provisionally, that there are two useful notions of order, the intrinsic
order of a problem and the local order of a particular extremal subarc and that these are
not the same. The literature on singular control problems abounds in different state-
ments of a definition of order. The stress here is on ‘‘statements’’ since many authors do
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not give interpretations of their definitions and in fact use the intrinsic order on some
and local order on other occasions. Some of these definitions are now examined, in
order of publication.

Note. Some authors quoted below refer to optimal arcs instead of extremals. Their
definitions actually apply to pairs (x*, u™*) satisfying (1.6) and (1.7), for which the
extremal (x*, A *, u*) is unique.

Among the earliest derivations of the generalized Legendre—-Clebsch conditions is
that of Kopp and Moyer [3] who treat general, nonlinear problems and would therefore
be expected to use local order (see § 4). Actually, they do not explicitly define the order
of a singular arc but state the GLC as:

(=1)*d/ou)(d**/dr**)(8H/3u)]1= 0 [3,(24)].

The left hand side is evaluated as above, along the singular arc of interest. k is to be
found as follows [3, p. 1443]: “If the inequality is met marginally (equality) for the first
necessary condition, in which case the test is inconclusive on the nature of the extremal
arc, the second test is applied and so on.” The first test refers to [3, (24)] with k = 1, the
second with k =2 etc. This confirms that local order is being used as it is the same
procedure as used to determine local order. The authors also state the strengthened
GLC condition as necessary for optimality [3, (A12)]; this is true only when k is local
order.

Robbins, by contrast, gives a very detailed definition of degree (= 2% order). In[2],
linear problems with vector valued controls of dimension n,. are considered. r control
variables are assumed singular, that is, correspond to components of H,, which are zero.
The definition of degree is then [2, p. 365] (in [2] A is written as p):

The condition H, =0 is independent of u (as already noted) and hence gives a

relation among x, p and ¢. By use of the equations x = H, and p = —H,, the

other conditions given in (17) can successively be reduced to similar relations
among these variables, until sooner or later (in general) a relation will be
encountered which explicitly involves u. Let Q,, denote the r X r matrix whose

elements are
9 a” 81-1]
wi == (5) = 18
Qni au[(dt )au (18)

and let M denote the smallest value of m for which Q,, has at least one

nonzero element. In general, M is a function of x, p and ¢ but to simplify

the discussion we shall assume that M is constant in the neighborhood of the

extremal arc of interest and make a similar assumption for the rank of Q..

These assumptions exclude certain atypical cases in which the extremal arc

coincides with a line or surface in the x, p or ¢ space where M is greater, or the

rank of Q, is less, than at neighboring points. (I am indebted...to my
attention.) These atypical cases will be discussed in section 8. In all other cases,

M is the first value of m for which the elements of Q,, do not all vanish

identically in the region of interest.

Defined in this way, degree equals twice intrinsic order. Robbins ‘‘atypical cases”
are those arcs along which local order is greater than intrinsic order. For the application
of the GLC condition to these cases, he specifies a procedure equivalent to the use of the
local order of the arc [2, p. 272].

The precision of Robbins definition is lacking in many subsequent to it. Typical of
these (and important since it appears in the first text on singular control) is (vector
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valued controls are considered: [#;, t,] is a subinterval of [, ], the interval of interest;
the word optimal should be replaced by extremal):

“Let ux be an optimal singular element of the control vector u on the interval
[#1, £2] which appears linearly in the Hamiltonian. Let the 2qth time derivative of H,, be
the lowest order total derivative in which u; appears explicitly with a coefficient which is
not identically zero on [#, £,]. Then the integer g is called the order of the singular arc.
The control variable u, is referred to as a singular control.” [4, p. 4 definition (1.1).].

This is difficult to interpret satisfactorily because of the simultaneous demands
‘“‘appears explicitly”’ and ‘“not identically zero on [#,, £,]”. The first phrase indicates that
intrinsic order is meant, that is, explicit dependence of (d 24y dtz")H.,k on u;, considered
as a function of (¢, x, A, u). The second phrase confuses this by requiring that along the
arc of interest the coefficient be not identically zero, as a function of ¢ along the arc:
unless one is to understand that the “‘atypical cases’’ of Robbins are excluded from the
definition it is not sensible. On the contrary, the authors do not seem to intend intrinsic
order for they write [4, p. 63]:

“In the following derivation of the GLC a sequence of special control variations
will be constructed which in turn will generate a sequence of necessary conditions.
Should the first condition of this sequence be trivially satisfied, then the second
condition is tested and so on until new information is obtained.” This sequence of
testing implies consideration of local order.

It must be remarked again that from the point of view of applying the GLC tests it
does not matter which order is used, except that in terms of local order, the GLC
condition holds strongly except on a null set of points. However, this robustness of the
GLC condition is not shared by other necessary conditions (see § 3).

Recently, Krener has given a hybrid definition of degree (= twice order) which
obviates the need for normality in the GLC condition, [1, p. 278 et seq.], (a nonlinear
problem is considered):

DEFINITION 2.9. Suppose u*(+) and x*(-) are a singular extremal control and
trajectory on [1,, t,]. The pair is singular of degree m on this interval if m is the smallest
integer for which there exists A (- ) satisfying the adjoint differential equation

A(e)=—H7(t, x*(t), A(2), u*(1)),

the necessary conditions H (¢, x*(¢), A (1), u*(¢)) =0, (d*/dt*)H, (¢, x*(t), A (t), u*(t))=0,
k=0,---,00, and (8/ou)(d™/dt™)H,(t, x*(t), A(¢), u*(t)) is not identically zero on
[ta’ tb]'

The adjoint A ( - ) in this definition need not be the same as the A *( - ) forming the
extremal in that it need not satisfy the boundary conditions (1.6b).

Definition 2.9 has something of the flavor of the intrinsic order definition whilst
having local statement and q =m/2=p where q is intrinsic and p, local order. In
example 5.1 of [1], m/2 = q < p while in the example in the following section g <p =
m/2, so the above definition is not equivalent to either the local or the intrinsic one. It
should not be difficult to combine the features of these two examples to produce a
problem for which g < m/2 <p.

The GLC condition now takes the form:

THEOREM 2.10. Assume that u®( - ) and x*( - ) are extremal and singular of degree
mon [t,, t,] and that lu*(t) <K fort € [t,, t,). Then mis even and if u*( - ) is optimal there
exists a A(+) such that (x*(-),A(-), u*(-)) is extremal and

(=1)™(8/ou)(d™/dt™ ) H, (1, x*(2), A (8), u*(1)) =0.
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For normal problems, the A (- ) above must be A*( - ) but in nonnormal cases the
GLC condition need not hold for A*(-).

The major disadvantage of Definition 2.9 is that one may need to compute a large
number of multipliers A (- ) to determine m, unless either (i) the multiplier satisfying
the conditions of Definition 2.9 is unique, in which case m = p or (ii) a multiplier exists
for which

(3/ou)(d??/de* ) H,, (¢, x*(¢), A (t), u*(£)) #0, whence m =q.

Against this there is the advantage of including nonnormal extremals in Theorem 2.10.

3. Junction conditions. The generalized Legendre—Clebsch condition provides a
test for optimality along the singular subarcs of an extremal. At the junction between
singular and nonsingular subarcs, further tests are required. In [5], McDanell and
Powers give the first general junction conditions for problems linear in the control.

THEOREM 3.1. Let t. be a point at which singular and nonsingular subarcs of an
optimal control u(-) are joined and let q be the order of the singular arc. Suppose the
strengthened GLC condition is satisfied at t., i.e., (—1)*(8/du)(d**/dt**)H,>0 and
assume that the control is piecewise analytic in a neighborhood of t.. Let u®” (r = 0) be the
lowest order derivative of u which is discontinuous at t.. Then q +r is an odd integer.

This is Theorem 1 of [S]. The control does not actually have to be optimal but has to
satisfy the minimum principle and the GLC condition.

The discussion in § 2 leads one to the question, for which definitions of order is this
theorem true? The definition of order given in [5], (definition 3), is virtually identical to
the confusing one offered in [4] except that it is restricted to linear problems with scalar
control. Local order is therefore indicated. However, the proof of the theorem given in
[5] depends upon (d*%/dt**)H, being linear in u which is generally true only if g is
intrinsic order. Failure of the theorem when local order is used is shown in the example
below.

Accepting that intrinsic order is employed, the theorem is inapplicable when the
GLC condition holds trivially at #.. Then ‘“To treat this case note from Definition 3 that
for a gth order singular arc the GLC expression (3/0u)(d*?/dt**)H, (i.e. B) cannot be
identically zero on the singular arc. Therefore in view of our analyticity assumptions a
derivative of some order must be nonzero at the junction point . even if 8(¢.) =0. This
then leads to the following theorem, - - - 7[5, pp. 166-167]. This is incorrect, or at least
incompatible with g being intrinsic order, for the example below shows that it is in fact
possible for (3/0u)(d*?/dt**)H, to be identically zero on the singular arc. We see then
that there is a class of problems whose junction point behavior is not specified by the
theorems in [5].

Example. Consider the problem of minimizing

Lt
3.1) Tw=["-b2a
to
subject to
(3.2) X1=X2U, x1(to) = &1 #3,

X2=Uu—Xx1, x2(t)) =& #0;

(3.3) lu|=1.

to, 11, &1 and &, are fixed but remain unspecified for the present. The Hamiltonian, the



SINGULAR OPTIMAL CONTROL PROBLEMS 29

multiplier equations and the switching function are given by

(3.4) H=)\1x2u +)\2(u—x1)+(x1—%)2,
3.5) )t:=)12——2(x1—%), Ai(t) =0,

Aa=—Au, Aa(t1) =0;
(3.6) ¢ =H,=A1x2+A3).

Arcs where ¢ # 0 are nonsingular and extremal controls for such arcs are given by

u* = —sgn (¢). The extremal arc

(3.7 (=3 x0)=0, u®)=3 Ai()=i(t)=0

is singular. The increment in cost along (3.7) is zero and the necessary conditions
indicate that the optimal solution from any initial point (&5, &) # 3, 0) comprises a
nonsingular arc from (&;, &) reaching (3, 0) at time #, followed by the singular arc (3.7)
for t. =t =t,. It will be shown that &;, &, ¢, and ¢, can be chosen so that such a trajectory
is extremal and has a piecewise analytic control.

The problem is autonomous so choose ¢, = 0 with £, <0 <¢;. The singular arcis on
the interval (0, #;], the nonsingular on [#o, 0). On [#,, 0) let us attempt to construct an
extremal with ¢ =A;x,+A,<0; then u =—sgn ¢ =1 and (3.2) and (3.5) become:

X1=Xxo, X2=1—1x4,
A1=2A2—2(x1—3), A2=—Ay
or
(3.8) (d*/dt* +2d%/dt* + 1A, =1.

Thus A,(t) = A sin t+ Bt sin t+ C cos t + Dt cos t + 1, t€[to, 0). From the bound-
ary conditions (3.7) at ¢, =0,

A2(t)=1-cost—(t/2)sin ¢

whence

A(®)=(/2)cos t—(1/2)sin ¢,

x2(8)=(1/2)sint and x;(t)=1-(1/2)cost,

(1) = A1(0)x2(1) + A2(1)
(3.9) =1—cos t—(#/2) sin t+ (1/2) sin ¢((t/2) cos ¢t —% sin )

=1—cos t—(t/2) sin ¢ + (¢/8) sin (2¢) + (1/8)(cos (2¢)— 1),
(d/dt)e(t) = (1/2)(sin t —¢ cos t) — (1/8)(sin (2¢) — 2¢ cos (2¢)).

Now
sinr—rcosr=@r—r/314r°/5!— - ) =r(1=r*/21+r/4!—- . .)
=r’/3-r/30+- -
hence
(d/d)e(t) =(1/2)( /3~ /30+- - -)—(1/8)(8¢>/3—-32¢°/30+- - -)
=—1*/6+76 /60— - - .
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For ¢ negative but sufficiently near zero then (d/dt)¢(¢t)>0 and ¢(0)=0 implies
& (1) <0. We conclude that there is an interval [ #o, 0) on which ¢ (¢) < 0 and therefore the
control u(¢) =1 and trajectory x;(¢) =1—(1/2) cos ¢, x, =(1/2) sin ¢ are extremal. For
such a #,, taking &; = 1 —(1/2) cos to, £2 = (1/2) sin tp and any ¢; > 0 the control problem
admits an extremal of the stated form.

Comments. The above detail is necessitated by the fact that problems very similar
to the one given do not admit extremals with piecewise analytic controls. Indeed, if we
replace the bilinear form x; = x,u above by x; = x», the singular arc remains the same.
Assuming ¢ <0 on the nonsingular arc, u, x1, x2, A; and A, are as above but

d=Ay=1—cost—(#/2)sint=1-(1—-£2/21+¢*/41—- . .)
—(t/2)(t =1 /31+ 17 /51— - ),
p=1"/12-0("),

i.e. >0 near t=0, a contradiction and it transpires that the switching function
switches infinitely often in a neighborhood of ¢#=0. The corresponding control is
measurable but not piecewise analytic; cf. [5], [6].

Let us determine the intrinsic order of the problem and the local order and degree
of the singular arc.

H, =Ax;+As,
(d/dH, = (A2=2(x1=3))x2+A1(u—x1)— A
=(A2—=2(x1=2)x2—A1x1,
(d2/dt*)H,, = (—A1u = 2X5u) %2+ (A2 = 2(x1 = 3))(4 — x1) — (A2 = 2(x1 = 3))x1 — A1 xou
=—202=2(x1=2)x1+(A2—2(x1=3) = 2(A1 + x2)x2) .

Hence (3/du)(d’/dt*)H, = A;—2(x1—3)—2(A1 +x2)x, and the intrinsic order is g =
2/2=1.

However, along the singular arc (3/ du)(d*/dt*)H, = 0 so the local order is greater
than 1. Since (d*/df*)u(t)=0,k=1,2, - - -, along both arcs of the solution, these terms
are neglected in higher order derivatives of H,. We find:

(d°/df’)H, = (4(A1+2x2)x1 —4(A2—2(x; —3))x2) + (=3A1 — 6x2)u)u
and as expected (3/0u)(d>/dt’)H, = 0 along the singular arc.

(d*/dt*)H, = (8A2x1— 16(x1 —3)x, —8x3)
+(14x1+8(A1+2x2)x2—T(A2—2(x1 = 3)))u + (=6)u?)u.

Along the singular arc

(8/ou)(d*/dtYH, = —8x1+2(14x)u +3(—6)u*=2(1/4) =%

1
as U =x;=3.
The local order is therefore 4/2 = 2. Note that (=1)%(3/du)(d*/dtH, =3>0, i.e.
the strengthened GLC condition is satisfied along the singular arc.
The adjoint multipliers associated with the singular arc are unique: we require
H,=Ax2+A,=A,=0and A, = —A;/2 which implies A; = A, = 0. Therefore the degree
of the singular arc, as defined by Definition 2.9, is 4, twice the local order.
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Now, in terms of local order p, this example satisfies the conditions of the junction
theorem but p =2 and r = 0 (the control is discontinuous at ¢ =0) so p—r =2, an even
integer. This contradiction shows that the theorem is invalid in terms of p.

4. Problems nonlinear in the control. Singularity of first order necessary condi-
tions can also occur in problems nonlinear in the control, where the functions Lo(¢, x) +
L(t, x)u and fo(t, x)+f1(t, x)u in (1.1) and (1.2) are replaced by analytic functions
L(t, x, u) and f(¢, x, u) respectively. The minimum principle takes the same form as in
§ 1, with the Hamiltonian defined by

4.1) H(t,x, A, u)=ATf(t, x, u)+L(t, x, u).

An extremal arc is singular if
i

(4.1) %;H(t, x,A, u)=0 alongthearc, i=1,2,---.

We note that if a problem is strictly nonlinear in the control then there exist
(¢, x, A, u) such that (6>/au®)H (¢, x, A, u) # 0 and therefore the intrinsic order of such a
problem must be zero. Hence only Definitions 2.6 (local order) and 2.9 are useful here.
The interpretations of these are the same as for the linear case. Theorems 2.7 and 2.10
remain true (see [3] and [1]).

An interesting alternative procedure is given by Robbins [2]. He shows that
when replacing the nonlinear Hamiltonian H(t, x,A, u) by H(t x, A, u)=
H(t x, A, u*())+(u—u*(t))H,(t, x, A, u*(t)) the effect of a second order control varia-
tion along the extremal (x*( - ), A*(+ ), u*(-)) is the same; hence H can be used in place
of H in the GLC test for optimality. Using H the degree of the extremal can be
determined as in the linear case but this is not intrinsic as H depends on the extremal;
moreover it may not correspond to the local order either as H may be an “atypical
case”. It therefore seems better to use local order ab initio.

In § 3 we noted that the validity of the junction condition, Theorem 3.1, depends
upon the linearity of (d>?/dt**)H, with respect to u (¢ as in the statement of Theorem
3.1). In nonlinear problems this will not hold and neither therefore will the junction
conditions.

5. Conclusions. Loosely worded definitions of order have led to some confusion
and incorrect claims about the nature of singular control problems. Several important
ones have been studied here and it has been shown that their authors intended one of
the basic interpretations (a third, different definition is not yet widely used).

The junction conditions of McDanell and Powers are valid only in terms of the
weaker form, i.e. intrinsic order, and it appears that there are problems for which no
junction condition can be given. The frequency of occurrence of such examples is of
interest since various authors have either implied they do not exist [5] or called them
atypical cases [2]. The example given is a two dimensional bilinear one, not reducible to
a lower dimensional canonical form and not having special boundary conditions. Until
at least the class of bilinear problems has been exhaustively studied, it might be
advisable to refrain from any claims involving genericity.

The first results in this direction are given in [8], where the time optimal behavior of
systems linear in the control is considered. The functions fo(x, ) and f1(x, ¢) are required
to be C™ and the set of control systems is given a Whitney topology. For systems of
dimension 2 it is shown that singular extremals cannot be generic, i.e. given a system
which admits a singular extremal and any open neighborhood of that system, there is a
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system in this neighborhood which does not admit singular extremals. However,
singular extremals can be generic among systems of dimension 3 or greater. With regard
to order, when dim = 3 only 1st order extremals can be generic. It is tempting to suppose
that with increasing dimension higher order extremals can be generic but this has not yet
been proved. Then, since the order used in [8] is the local variety, we might be able to
make useful statements regarding the ‘‘atypical cases.”

The problems considered here have all involved a scalar control variable u( - ).
With vector controls u(-)=[ui(), -, um(+)]%, problems can be singular of rank r
for any 1=r=m, by which we mean, in the linear case, that (3/du;)H =0, on the
extremal arc, for r indices i. Clearly the arc can have different order with respect to each
control u;, whatever definitions of order are used, and this complicates application of the
optimality tests. The simplest case, when for each u; the local and intrinsic orders
coincide, is dealt with in [2]. Junction conditions for vector control problems are not yet
available.

Acknowledgments. I wish to thank Dr. D. Bell for discussions which led to the
discovery of the example in § 4, and anonymous referees for suggesting an improved
presentation of this material.
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REPRESENTATION AND APPROXIMATION
OF NONCOOPERATIVE SEQUENTIAL GAMES*

WARD WHITTY

Abstract. Noncooperative sequential games, including the noncooperative stochastic game of Rogers
(1969) and Sobel (1971), are investigated in the monotone contraction operator framework of Denardo
(1967). Sufficient conditions are determined for the existence of equilibrium points in this setting. Techniques
for comparing and approximating dynamic programs previously developed by the author are then applied to
these sequential games, yielding conditions for the existence of e-equilibrium points.

1. Introduction and Summary. It is now widely recognized in economics and
several other fields that there is a need for mathematical models which can represent the
behavior of several competing decision makers interacting over time, possibly under
uncertainty. A natural model for this purpose is the sequential game, which combines
the dynamic properties of dynamic programming with the competitive properties of
game theory. The purpose of the present paper is to provide a general framework for
analyzing and approximating a large class of noncooperative sequential games. We
focus on noncooperative equilibrium points in the sense of Nash (1951), i.e., we look for
policies or strategies for all players with the property that no single player acting alone
can do better by changing. We consider the important questions of existence and
approximation. Approximation seems particularly worth studying because it opens the
way to computation and existence proofs for larger games.

The framework we suggest is the monotone contraction operator model intro-
duced by Denardo (1967). He showed that this model encompasses the two-person
zero-sum discounted stochastic game of Shapley (1953) plus many dynamic program-
ming models. In this paper, we consider N-person nonzero-sum noncooperative
sequential games in the same framework. The motivating special case is the
noncooperative discounted stochastic game studied by Rogers (1969), Sobel (1971),
Parthasarathy (1973), Himmelberg, Parthasarathy, Raghavan and Van Vleck (1976)
and Federgruen (1978). As with Denardo (1967), the generality and abstraction here is
useful to identify the essential structure. The contraction operator framework is also
very natural because it emphasizes the reduction of the initial dynamic sequential game
to a static one-period game. The final payoff to all players associated with a specification
of all strategies is the unique fixed point of the contraction operator; the static game
involves the choice of the fixed point. However, the sequential game is not immediately
covered by the existing theory of static one-period noncooperative games because, as
will be developed, the payoft (fixed-point) is a function of the state.

The contraction assumption means that the criterion for evaluating a payoft stream
is discounted present value. However, it is well known that in many instances the
average cost criterion can be reduced to a discounting criterion, cf. p. 149 of Ross
(1970). Moreover, as in Section 5 of Denardo (1967), we use the N-stage contraction
assumption, which covers a larger class of models, including many finite-stage models,
cf. Whitt (1977).

A primary purpose of this paper is to apply to noncooperative sequential games
the approximation techniques developed for dynamic programs and two-person zero-
sum stochastic games in Whitt (1978). The idea is to replace the original state and action
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spaces with smaller sets and define a new transition and reward structure to approxi-
mate the original. In this way, we show that the extension of an &,-equilibrium policy
vector in the smaller model is an e,-equilibrium policy vector in the original model,
where &, is a function of £; and an appropriate measure of oscillation, cf. Theorem 4.2.
The approximation results are in turn used to provide conditions under which a
noncooperative sequential game has an e-equilibrium point for each >0, cf.
Theorem 5.1.

As special cases, we obtain new results for stochastic games. Of particular interest
is the application of the approximation procedure to provide conditions for the
existence of e-equilibrium points for all £ >0 in the noncooperative discounted
stochastic game when the state space is uncountable, cf. Theorem 6.4. The only other
results for uncountable state space seem to be in Himmelberg, Parthasarathy,
Raghavan and Van Vleck (1976). We also suggest what appears to be a promising
procedure for finding e-equilibrium points in many large noncooperative stochastic
games, namely combining the approximation procedure here with an algorithm for
finding approximate fixed-points of a continuous function mapping a subset of R" into
itself, cf. Remark (3) at the end of § 6.

A good indication of possible economic applications can be obtained by looking at
the specific stochastic game in Kirman and Sobel (1974). As noted by Federgruen
(1978), earlier work by Sobel (1973) on discounted stochastic games with uncountable
state space, which is applied in Kirman and Sobel (1974), is not valid. Our results can be
applied to obtain conditions for the existence of e-equilibria in the game studied by
Kirman and Sobel (1974).

We now briefly indicate how this paper is organized. We begin in § 2 by defining d la
Denardo (1967), noncooperative monotone contraction operator games. Following
van Nunen (1976), Wessels (1977) and others, we allow for unbounded rewards. As in
§ 5 of Denardo (1967), we use the N -stage contraction assumption. In § 3 we apply the
Glicksberg (1952)-Fan (1952) generalization of the Kakutani fixed-point theorem to
obtain sufficient conditions for the existence of equilibrium points. In § 4 we show how
two sequential games can be compared, which provides the basis for approximations. In
§ 5 the approximation scheme is applied to provide conditions for the existence of
e-equilibrium points for each £ >0. Finally, the special case of a noncooperative
stochastic game is investigated in § 6.

2. Noncooperative monotone contraction operator games. Our model of a
noncooperative sequential game is a direct extension of Denardo (1967), with the
representation of a noncooperative discounted stochastic game being very similar to the
representation of Shapley’s (1953) two-person zero-sum stochastic game in Example 2
of § 8 in Denardo (1967). Let the state space S and the player space I be nonempty sets.
For each player i € I and each state s € S, let the action space A;(s) be a nonempty set.
To allow for randomized strategies, A;(s) is often 2 (B;(s)), i.e., the set of all probability
measures on an underlying action space B;(s), but we do not stipulate this yet. Let the
space of all possible actions for all players in state s be the product space A(s)=
X;cfAi(s). Foreach i € I, let the policy space for playeri be A; = X;.sA;(s). An element §;
in A; is called a stationary policy for player i because it represents the policy that takes
action 8;(s) every time the system is in state s. Let A= X;<;A; represent the space of
policies for all players. Throughout this paper, we consider only stationary policies, but
the symmetry argument in § 7 of Denardo (1967) can be used to show that no one player
acting alone can do better by employing a more general history-remembering policy.
Hence, we show that there exist equilibrium points or e-equilibrium points consisting of
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stationary policies within the class of all history-remembering policies. Of course, we do
not exclude existence of other equilibrium points and e-equilibrium points consisting of
nonstationary policies. While A and A; contain only stationary policies, more general
policies such as history-remembering policies can be included in this scheme by
enlarging the state space. For example, the stage should usually be included as part of
the state description in representations of finite-stage sequential games via monotone
contraction operator models, cf. Whitt (1977).

Let the space V of potential return functions be a subset of R $*I In order to allow
for unbounded rewards, let « : $ » (0, c©) and B8 : S - R be two functions. (The common

choice of a and B is a(s)=1 and B(s) =0 for all s € S, which yields bounded rewards.)
For any vy, v,€ R, let

odll=sup {Jvi(s, i)l :s€ S, i eI}
(1) and
d(vy, v2)= ||a(1)1 - 02)“9

where we regard a(s) as a function of both s and i which is independent of i. Let the
space of potential return functions be

() V={veR¥|d(v, B) <}

It is easy to see that (V] d) is a complete metric space.
The basic ingredient in the model specification is the local income function
h(s, i, a, v), which assigns a real number to each quadruple (s, i, a, v) with s€ S, i€,
ac A(s) and v € V. The number k(s, i, a, v) represents the return to player i beginning
in state s when player j uses action q; for all j € I and all future returns are described by
thefunctionvin V.Foreach§ € A, let (Hsv)(s, i) = h(s, i, §(s), v). We make the following
basic boundedness (B), monotonicity (M) and N-stage contraction (NC) assumptions
about the collection of operators {Hj, § € A}:
(B) There exist constants K; and K such that | (Hsv — B)| = K1 + Kalla (v — B)||
foralldeAandve V.
M) Ifvi=v,in Vii.e., if v1(s, i) S v(s, i) forall s € S and i € I, then Hsv, = Hsv2
for all § e A.
(NC) There exists a positive integer N and nonnegative constants m and c,
0=c <1, such that

d(Hsv1, Hsv2) = m d(vy, v2)
and
d (H5v1, HYv))=cd(v1, v2)

for all € A and vy, v2€ V, where H Y is the N-fold iterate of H.

Obviously (B) implies that the range of Hj is contained in V. Property (NC) is the
N-stage contraction assumption, cf. § 5 of Denardo (1967). The ordinary contraction
assumption occurs when N = 1. The contraction modulus ¢ often arises as a discount
factor. Properties (M) and (NC) imply that each operator H; has a unique fixed point vs
in V which we call the return function associated with policy vector 8. Note that the
monotone contraction operator model reduces a sequential game to a one-stage game;
the set of strategies available to player i is A; and the return to player / from a
specification of strategies by all players, i.e., §, is the fixed point vs( -, i). This differs
from the usual static noncooperative game, however, because the return to each player
is not a real number, but a function of the state.
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A slight modification of Theorem 4 in Denardo (1967) yields
3) dvs, V)=(A+m+- - +m "Y1 —-c)" d(Hsv, v)

for all §€ A and v e V. The N-stage contraction assumption covers many N-stage
sequential games with ¢ = 0, cf. Whitt (1977).

It should be noted that it is often possible to transform an N-stage contraction into
a 1l-stage contraction by modifying the bounding function a. A transformation for
Markov programs, which also applies to the stochastic games in § 6 here, was con-
structed in § 8 of van Nunen (1976). However, it appears that such a transformation is
not always possible for the more general monotone contraction operator models here.
Moreover, even when such a transformation is possible, the new distance d is different
from the old one and may be difficult to compute. Hence, we keep the N-stage
contraction assumption.

For any 6 € A and y; € A, let [6 ', y;] represent the policy vector &' in A with 8} = §;
for j #i and 8; = vy, Let f5 represent the optimal return function given that the other
players are using 8 ' for each i, defined by

fs(s, i) =sup {vrs-1,y, (s, i) :vi €A}
Let Fs be the associated maximal return operator, defined by

(F5v)(s, i) =sup {(Hs~,10)(s, i0):vieA}

foreachseS,iel,§cAandveV.

Note that property (B) insures that the range of F; is in V for each § € A. A slight
modification of Theorem 4 in Denardo (1967) shows that f; is the unique fixed point of
F;. 1t is natural to define a disequilibrium function n : AXSXI->R as ns(s,i)=
fs(s, i) —vs(s, i). Call a policy & an e-equilibrium point (e-EP) if n5(s, i) = e/a(s) for all i
and s, i.e., if d(fs, vs)=e. Call a policy 8 an equilibrium point (EP) if it is an e-EP for
e =0.

3. Existence of equilibria. The existence of equilibrium points in noncooperative
sequential games can be established by applying classical fixed point theorems, follow-
ing the original line of reasoning used by Nash (1951) to treat static games. This
approach has been applied to stochastic games by Rogers (1969), Sobel (1971),
Parthasarathy (1973), Himmelberg et al. (1976) and Federgruen (1978). In this paper,
we indicate how to apply the Kakutani fixed-point theorem for point-to-set functions
as generalized by Glicksberg (1952) and Fan (1952) to the monotone contraction
operator games. An alternate approach would be to apply the Brouwer fixed point
theorem as generalized by Schauder and Tychonoff, cf. Theorem 1 of Sobel (1971).

Let 2Y represent the set of all nonempty closed subsets of a Hausdorff topological
space Y. Let X be a Hausdorff topological space. A set-valued function ® : X »2Y is
called upper-semicontinuous (u.s.c.) if y € ®(x) for each x € X, net {x;, jeJ} in X and
net{y;, j€ J}in Y such that x; > x, y; >y and y; € ®(x;) for each j. (Since X and Y need
not be first countable, we use nets instead of sequences, cf. Chapter X of Dugundji
(1966).)

THEOREM 3.1 (Kakutani, Glicksberg and Fan). If X is a convex compact subset of a
Hausdorff locally convex topological vector space (LCTVS) and ®:X »2% is convex-
valued and u.s.c., then x € ®(x) for some x € X.

For our application, we want X = A and ® = ¢, where ¢.(8) = Xer¢.(8); and

(4) Ue(8)i={yicAi:fs(s,i)Svis—i (s, i) +e/a(s) for alls}.
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The rest of this section is devoted to providing conditions on the monotone contraction
operator game in order for (A, ) to satisfy the conditions of Theorem 3.1. The obvious
modification (to account for the metric d in (2)) of Corollary 1 together with Theorem 4
of Denardo (1967) shows that ¢.(8); is nonempty for each & >0. Throughout this
paper, let A= X,.;A; and A; = X,.sA;(s) be given the product topology, cf. p 98 of
Dugandji (1966).
THEOREM 3.2. There exists an EP if
(i) A;(s) is a convex compact subset of a LCTVS foreachiclandse€S,
(ii) h(s, i, a, v) is a concave function of a; for each s, i, a, v, and
(iii) vs(s, i) and f5(s, i) are continuous functions of 8 for each s€ S and i € I.
Proof. Since the properties of convexity, Hausdorff, compactness, TVS and LCTVS
are preserved under arbitrary products, cf. pp. 138 and 224 of Dugundji (1966) and pp.
19 and 52 of Schaefer (1966), the product spaces A; and A are convex compact subsets
of a LCTVS. Condition (ii) implies that ¢, is convex-valued. Conditions (i) and (ii) plus
Corollary 2 of Denardo (1967) show that ¢, (8); is nonempty for £ =0 as well as £ > 0.
To see that i, is u.s.c., suppose {8;, j € J} and {§], j € J} are nets in A with §;> &, §] > &'
and §; € Y. (8;) for each j € J. Let §; and §}; be the ith coordinate in A, of §; and §; in A.
Apply the triangle inequality to obtain

lots=i50 (s, i) = f5(s, )| = |vrs=i,51(s, i) — 15705515, i)

+|U[57"‘5"‘](s, i)_fai(s, i)l +|f81(s9 l) —fﬁ(sa l)l

for each s and i. The first and third term converge to zero by condition (iii) and the

second term is less than or equal to & for each j because §}; € . (5;) for each j. Hence,

8' e Y. (8), so ¢, is u.s.c. and the conditions of Theorem 3.1 are satisfied with £ =0.
Lemma 3.1. If

(1) A;(s) is a compact metric space for each i€l and s € S,
(ii) S is countable, and
(iii) vs(s, i) is a continuous function of 8 for each s€ S and i € I, then f5(s, i) is a
continuous function of 8 for each s and i.
Proof. Suppose {5, j€J} is a net in A with §; > 8. Let s and i be given. For any
€1, £2>0 there is a y; € A; and a j, such that

fs(s, D) S vis—i (s, i)+ &1
Svs;iy(s, i) tert+es forj=jo
=f5(s, ) +e1+e2 for j = j,.
Moreover, there is a net {v;;, j € J} in A; such that

f5,(s, 1) S v[s7iy,1(s, i) +€1 for all j,
so that
lim sup f5,(s, i) =lim sup v(s;i ;1 (s, i) + 1.

jeJ jeJ

Choose a countable totally ordered subset J' of the directed set J so that the
lim sup is attained on the left. Then, using the fact that A; is compact metric space, by
virtue of conditions (i) and (ii), choose a convergent subsequence {y,.} of {v;;, j€J'}
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with limit ;. Hence

lim sup f5,(s, i) =lim sup VL6711 (s,i)+eq
jeJ k—>o0

=Svs yi](S, i)+e;
§f5(s, i)+€1.

LemMA 3.2. If Hsv : A— Vis a continuous function of 8 for each v € W, where Wis a
subset of V containing vs for all 8 € A, then vs : A~ Vis a continuous function of 8, so that
v5(s, i): A= R is a continuous function of 8 for each s€ S and i € I.

Proof. By (3),

dwsyv)=(1+m+ - +m" (1 =)' d(Hsps, vs),

where d(Hjvs, vs) = d(Hs,vs, Hsvs) > 0 as 8; > 6.

The continuity condition in Lemma 3.2 is more likely to hold if W is a subset of V/
with convenient properties. For example, if Hsv is continuous (concave, monotone) for
each 8 and each continuous (concave, monotone) v in V, then Hs maps the closed
subset of all continuous (concave, monotone) functions in V into itself, so the fixed
point vs is continuous (concave, monotone). However, even if W has convenient
properties, the continuity condition in Lemma 3.2 is quite strong because it requires
(5) d(Hs,v, Hsv) = sup |a(s)(h(s, i, 8,(s), v) — h(s, i, 8(s), v))| >0

v
whenever §, - 8. Since A has the product topology, the metric convergence in (5) is
difficult to achieve unless S and I are finite. More useful conditions are contained in

LeEMMA 3.3. Suppose {6, j € J} is a net in A converging to 8. If

1) h(s, i, 8i(s), v;) > h(s, i, 8(s), v) wheneverv;(s, i) > v(s, i) foralls € S, i€ Iand v,
veV; and

(i) supjes d(H';,vo, vs;) =0 as k >0 for some vo€ V; then vs (s, i)~ vs(s, i).

Proof. By (i), (Hs,00)(s, i) = (Hsv0)(s, i) for all s, i.

By (i) again and mathematical induction,

(H500)(s, i) =[Hs,(H5 "v0)1(s, i) > [Hs(H5 00)1(s, i) = (H 500)(s, i)

as j - oo for each k=1. As a consequence of this and (ii), vs,(s, i) = vs(s, ).

The standard way to make A convex and h(s, i, a, v) concave in q; is to introduce
the mixed extension, i.e., let A;(s) = P(B;(s)), the set of all probability measures on an
underlying action space B;(s), and let the local income function applied to probability
measures be defined via expectation:

(6) h(s,i,a,v)= jh(s, i, b, v) dua(b),

where w, is the product probability measure on the product o-field of X;.(B;(s) with
one-dimensional marginal probability distributions a; and the integral is an upper
integral if h(s, i, b, v) is not measurable in b, cf. Example 3 in § 8 of Denardo (1967).

It is well known that if B;(s) is a topological space and 2 (B;(s)) is endowed with the
topology of weak convergence, then (B (s)) tends to inherit the topological properties
of B;(s). For completely regular spaces, the weak convergence topology is naturally
characterized by the continuity of | f dP in P for each bounded continuous real-valued f.
The basic inheritance properties here can be found in § I1.6 of Parthasarathy (1967),
Varadarajan (1958) and footnote 10 in Fan (1952). Call a measure u regular [Radon] if
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w(A)=sup {u(C): C < A} for all measurable subsets A, where the supremum is over
all closed [compact] subsets. Obviously regular and Radon are equivalent in compact
Hausdorff spaces. The LCTVS that appears below is the space of finite signed measures.

LEMMA 3.4. Let A;(s) = P(B;(s)) with the topology of weak convergence.

(a) If B;(s) is a separable [ compact] metric space, then A;(s) is a separable [ compact]
metrizable convex subset of a LCTVS. .

(b) If Bi(s) is a compact Hausdorff space, then the subset of regular probability
measures in P(B;(s)) is a compact convex subset of a LCTVS.

There is still a major stumbling block—the integral in (6). There is no problem if
the set I is countable and the set B;(s) has a countable base (i.e., is second countable,
which is true if B;(s) is a separable metric space); then the product o-field on X ;B;(s)
will coincide with the Borel o-field with respect to the product topology. However, if
either I is uncountable or if B;(s) does not have a countable base, then there can be
complications. Henceforth, we make the assumptions to avoid the complications. We
can combine this observation with Theorem 3.2 and Lemmas 3.1-3.4 to obtain the
following result for the mixed extension.

THEOREM 3.3. If

(i) S and I are countable,

(il) A;(s)=P(Bi(s)) with the topology of weak convergence, where B;(s) is a
compact metric space,

(iii) h(s, i, by, v.)=> h(s, i, b, v) whenever b,; > b; and v, (s, i) > v(s, i) foreach s € S
and i€l

(iv) h(s,i,a,v)=[h(s,i,b, v) dua(b), where . is the product measure on X;<B;(s)
with marginal measures a; € A;(s),

(v) sup,d(H ’;nvo, vs,) > 0 as k > 00 for some vy in V and any convergent sequence
{8.} in A,
then there exists an EP, i.e., there exists 8* € A such that 8* € Yo(6*).

Proof. By conditions (i) and (ii) and Lemma 3.4(a), A is a convex compact
metrizable subset of a LCTVS. By (i) and (ii), the Borel o-field on X, ;B:(s) with the
product topology coincides with the product o-field. By (iii), the integral in (iv) is well
defined. By (iii) and the almost-surely convergent representation of weak convergence,
cf. Dudley (1968), h(s, i, 8,(s), v,) > h(s, i, 5(s), v) whenever 5, (s) > 6(s) and v, (s, i) >
v(s, i) for each (s, i). This and (v) plus Lemma 3.3 imply that vs(s, i) is continuous in §
for each (s, {). Lemma 3.1 implies that f5(s, i) is continuous in § for each (s, i). By (iv), ¢
is convex-valued. Hence, all conditions of Theorem 3.2 are satisfied.

Remark. The difficult condition in Theorem 3.3 is (iii). Since the convergence
b, »b and v, > v is pointwise in s and i, in order to satisfy (iii) it will often be convenient
to have I and/or S finite. :

4. Comparing sequential games. Followmg Whltt (1978), let (S, I,{A(s),s €S,
iel}, h, a, B, ¢) and (S, I,{A:(s),seS,iel}, h, & B, ¢) be two sequential games as
defined in § 2. In order to compare these games, we require that several comparison
functions be defined. These comparison functions arise naturally in deliberate approx-
imations, which can be constructed by selecting partitions of subsets of the sets S, I and
A;(s)foreach i € I and s € S, with one point selected in each partition subset, cf. Section
4 of Whitt (1978). In that setting the mappings below correspond to projections and
extensions, which is the motivation for the notation. The comparison functions are:

(i) a mapping p of S onto S;
(ii) a one-to-one mapping p of I onto I;
(ili) a mapping p of A;(s) onto Ap(i)(p(s)) foreachiel andseS;
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(iv) a mapping e of S into S such that p(e[§]) = § for each §e S;
(v) a mapping e, of A,,(,)(p(s)) into A;(s) such that p(e;;[d])=da for each
a GAP(,)(p(s)), ielandseS.
(vi) e: V—)R I with e(v)(s =70(p(s), p(z)) for each Se S and iel;
(vii) p: V- V with p(v)(s, t) = v(e(s), e(t)) foreach §e§ and iel;
(viii) e: I—>I with p[e(z)]—z forall iel;
(ix) e: A,,(,)—> A; with e(6,,(,))(s) e, ,(6,,(,)[p(s)]) foreach se S and i€, and
(x) p: A; —>A,,(,) with p(8;)(5) = p(8i[e(s)]) for each § seSandiel
Let e and p also map product spaces onto product spaces in the obvious way, e.g.,
e:A- A with e(8) = e(5,) and p: XiciAi(s) > X P(z)eIAp(l)(p(s)) with p({a:(s)})p) =
pla;i(s)) for a;(s)e A;(s) foreach iel and s € S. Note that e(8)e A for each seA.

Assume that e(3) e V for each © € V. Note that this is automatic if a(s) = a(p(s))
and B(s)— ,67 (p(s)) =0 for all s € S, but might fail in general.

We expect interest to be focused on approximating the action spaces A;(s), because
these spaces—usually being sets of probability measures—are often large. Thus the
mapp: S~ S might often be one-to-one as is the map p: I - I, but we do not require it.
The “distance” between these models can be expressed in terms of the measure of
oscillation

K (8) =sup d(Hie (0), e(Hp5)9))

M .
=sup |ee($)LA(s, i, 8(s), e(D) — h(p(s), p(i), p[8(s)], D).

seA
iel

Obviously p: I - I should usually be one-to-one, as already assumed, in order for K (D)
to have any chance of being small, but the following results hold even if p: I > I were
not required to be one-to-one.

THEOREM 4.1. For any Se 5,

d(e(@s), ves)=(1+m+ - +mV H(1-¢) 'K (D5).

Proof. Just as in Theorem 3.2 of Whitt (1978), substitute e(5) for 8§ and U5 for ¢ in
(7) to obtain

d(H.e(05), e(35)) = K (35)-

Finally, apply formula (3) recalling that we have assumed that e(5) e V for each 5 € V.
THEOREM 4.2. If & is an e-EP, then e() is an (1+m+---+m"™)
(1—c¢) '(e +2K (65))-EP.
Proof. As in the proof of Theorem 3.1 of Whitt (1978),

a($)[Hiedy v ()]s, 1) = a(s)h(s, i, [e(®) 7, %:)(s), e(s))

=a()h(p(s), p(i), p([e(8) ™", v )(s)), B5)+ K (35)
=a(9)h(p(s), p(i), p([e(8) 7", v:)(s)), F5)+ K (55)
= a(s)fs(p(s), p(i)) + K ()
=a(s)e(@s)(s, i)+ (K (05)+¢)

for each s €S, y; € A; and i € I. As a consequence of properties (M) and (NC),

() H{os) v €(@5)(s, i)
=a(s)e@s)(s, DN+A+m+ - +mVN )NK(Bs)+¢)



NONCOOPERATIVE SEQUENTIAL GAMES 41

and, by induction,
() H ety €(B5))(s, 1)
=a(s) e@)(s, )+ A+c+ -+ NA+m+- - +m" NK (55 +e)
for all k =1. Since d(H5*v, v5)~>0 as k - o0,
a($)0redy iy (5, D) = a(s) e([@s)(s, D)+ (A —c) '"A+m+ -+ +mN"NK(s5)+e)
for all y; € A, so that
a(s)fes(s, D= als)e@)(s, ) +(1—c) "(L+m+- - +m" ) (K (55)+e).
Apply Theorem 4.1 to obtain

a(s)fo)(s, ) =a($)ves (s, )+(A1—c) 'A+m+- - +mN "HRK (55)+¢)

or

d(fosy Ve@)=1—c) "1+m+-- - +m" 2K (55) +¢).

5. Existence of e-equilibria. We now combine Theorems 3.3 and 4.2 to obtain
sufficient conditions for the existence of e-EP’s in sequential games with uncountable
state spaces and noncompact action spaces. The ¢-EPs obtained are also mixtures of
only finitely many actions for each player in each state. Throughout this section, let m
represent several different metrics and let the set I be countable. For any subset C in a
metric space (B, m), let

C*={beB:m(b,b')<e for some b'ec C}.

THEOREM 5.1. If

(i) S is a separable metric space;

(ii) B(s)=0 and a(s) is bounded over any finite sphere {s}° in S,

(iii) for each (i, s), A;(s) = P(B;(s)) with the topology of weak convergence, where
Bi(s) is a subset with compact closure in a metric space B

(iv) foreachi, the set-valued function mapping s into B;(s) is uniformly continuous:
for each £1> 0 there is an £,> 0 such that B;(s1) < B;(s2)"* whenever m(sy, s2) = &2;

(v) for each (i,s), h(s,i,a,v)=[h(s,i,b, v) dua(b), where wu, is the product
measure on the product o-field on X;c1B;(s) with marginal measures a; € A;(s) and the
integral is an upper integral if h(s, i, b, v) is not measurable in b;

(vi) for any €,>0, there is an 5> 0 such that

sup |a(s)[h(s', i, b, v)—h(s", i,b", v)]|<e:
Yer
if m(s', s")= e, and m(b}, b)) = e, forall i;
(vii) h(s, i, b, v,)> h(s, i,b, v) whenever b,; > b; and v, (s, i) > v(s, i) for all s, i
(viii) sup,d(H 'énvo, vs,) > 0 for some vy in V and any convergent sequence {8, } in A,
then, for any € >0, there exists an e-EP 8* with 87 (s) being a probability measure on a

finite subset of B;(s) for each s and i.
Proof. We construct a sequence of approximate models

(S, Iy {Ani(s),s €S,y i € 1}, By @y By €), n =1}

accozding to the scheme in § 4, each of which satisfies the conditions of Theorem 3.3.
Let I, =1 foreach n = 1. Let {5, } be a countable dense subset of S, which exists by virtue
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of condition (i). For each n =1, form a countable partition of subsets of S by setting
Sa={seS:m(s,s)=n""}

and
k—1
Su={seS:m(s, s )=n"",s¢ U S,}, k=2
j=1

For each n =1, let S, be obtained by selecting one point s, from each nonempty subset
in the partition {S,.. }. (Henceforth, omit all empty partition subsets.) Select the point s,.x
so that a(s,.) = a(s)/2 for all s € S,,x. This can be done by condition (ii).

For each n =1, k=1 and s € Sk, form finite partitions {B,;(s), 1 =j =K} of
nonempty measurable subsets of B;(s) of common cardinality K, such that m (b1, b2) =
v(n) if by € Bui(s1) and b; € B,i(s2), where s1, s2€ S, and v(n)—>0 as n - co0. These
properties can be satisfied because of conditions (iii) and (iv).

Foreachiel,n=1,k=1ands €S, let B,;(s) be a finite subset of B;(s) obtained
by selecting one point from each partition subset B,;i(s), 1 =j =K, Let Au(s)=
P(B,i(s))foreachiel,se S.andn=1.

We now define the five basic comparison functions. Let p,.: I - I, be defined by
pn(i)=1i. Let p,: $->S, be defined by pn(s) =snx if 5, Spx €S and s, €S, This
obviously yields m(s, p.(s))=n~" for all s and n. Let p,:A;(s) »/in‘p"(,')(p,, (s)) be
defined by

Pn(ai(s)){b}) = ai(s)(Bukis(s)),

where beB,, ) (pn(s)) and b € By, )i(Pn(s)), which requires that se S, This
obviously means that p,(a;(s)) is the probability measure in An‘,,"(i)(p,, (s)) assigning
mass to each point in B, ,, ) (p.(s)) equal to the mass the probability measure a;(s)
assigns to the corresponding partition subset B,;(s) in B;(s).

Let the mapping e,: S, S be defined in the obvious way: e,(S,)=S$,. Let the
mappings e,s;: A~,.,,,n(,~)(p,, (s))—> A;(s) be defined by setting

€nsi(An,p,i)(Pn ($))){B}) = Gp.p,i)(Pn (5))({b})

for b € B,i(s), b € Bukij(s) and b’ € Boukp, )i (Pn (). This~ imp~1ies that e,.(gn,,n(i))(s) is a
probability measure on a finite set for each i, s, n and 5,, € A,...
Let the approximate local income functions be defined as

hn (fn’ in’ dn, 5") = h(gm im dm en (6'1))

foralln, §, €8, in€ I, d.;, € A (5,) and &, € V,, just as in (4.1) of Whitt (1978). Then,
by condition (vi), the measure of oscillation K,,(¢,,) in (7) is

K..(3,) =sup o () (s, i, 8(s), €n (D)) = h(Pn(s), i, Pa[8(5)], €4 (3))]]

iel
el

=sup |la(s)[A(s', i, b, v)—h(s", i,b", v)]|
1

where the second supremum is over all veV, all s', s"e€S with m(s',s")=n"",
b!eB;(s') and b;e B;(s") with m(b,,b")=v(n)>0 as n—>o and all iel Hence,
condition (vi) implies that sups, <4, K (05,) > 0 as n - 0.

The construction above plus conditions (vii) and (viii) imply that the conditions
in Theorem 3.2 are satisfied in each approximate model, so there exists an EP in each
approximate model. Theorem 4.2 then implies that, for each £>0, there is an ng such
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that the extension of each EP in the nth approximate model is an e-EP in the original
model for all n = n,.

Remarks. (1) Note that conditions (vii) and (viii) are only applied to establish the
existence of an EP in each approximate model. If the existence is already known, these
conditions can be omitted. The conditions could also be stated for each approximate
model. For example, if I is finite, then (vi) can be replaced with h(s, i, b, v,)~>
h(s, i, b, v) whenever v,(s, i)> v(s, i).

(2) If S is a subset with compact closure in a metric space, then S, can be finite for
each n.

6. Stochastic games. We now consider the special case of a noncooperative
stochastic game. As before, let the set I of players be finite or countably infinite. Let the
sets S and B;(s) be separable metric spaces endowed with their Borel o-fields. Let A;(s)
be the space 2(B;(s)) with the topology of weak convergence. A stochastic game is
obtained by letting the local income function be

8) his,i,b,v)=r(s, i, b)+J v(x, i)q(dx|s, b),
s

where r(s, i, b) is a measurable real-valued function of s€ S, i€l and be X;.Bi(s),
q(Cls, b) is a subprobability measure on S for each s€ S and be X;.;B;(s) and a
measurable function of (s, b) for each measurable subset C, and the integral in (8) is an
abstract Lebesgue integral if v is measurable and an upper integral otherwise. (We
assume the integral is well defined, i.e., the integral of |v| is finite.)

Also let

rE(Sa i) = r(S, i’ 6(5)) = j r(sa i’ b) d#’S(S)(b)’
and

45(Cls)=a(Cls, 5(5)) = [a(Cls, b) duoin(d)

where s is the probability measure on the product space X;.B;(s) with marginal
measures §;(s) for each i.
Let the associated return operator H; be defined by

(Hsv)(s, l) = h(s9 i’ 8(5)’ U)
= [ (s, i,b, 0) duao )

=rs(s, i)+ L v(x, i)qs(dx|s).

Let the space (V, d) of potential return functions be as in (1) and (2). Let (gsw)(s) =
f w(x)qs(dx|s) for any function w for which the integral is defined. Following van
Nunen (1976), with the obvious modification to include N-stage contractions, we make
the following assumptions:

9) la(rs = (1=c)B)| =M,
(10) llee (gsB — cB)I| = Mo,

o(s) [ 11/2(0las(drls)| = m

lagse || = sup
seS

(11)
lagsalsc<1
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forall 8 € A, where g3 is the N-step transition kernel associated with g5, defined as usual
by

q5 (Cls)= L g5 ' (Cls")gs(ds']s).

Conditions under which (11) hold with N =1 are discussed by van Hee and Wessels
(1977). If a(s)=1 for all s, then (11) holds with N =1 if gs(S|s)=c, which arises
naturally if a discount factor ¢ has been incorporated into the probability transition
function. As a straightforward extension of Lemma 3.2.2 of van Nunen (1976), we have

THEOREM 6.1. Under (9)-(11), the return operators Hs, 8 € A, satisfy properties (B),
(M) and (NC). Moreover, HY maps V, into itself, where

(12) Vo={ve Villa@=-B)=1+m+- - +m (1 =) (M, +M,)}.

Proof. (B) Note that

lle (Hsv — B)l| = llax (75 + gs0 — B)II
=lla(rs —(1—¢)B) + a(qs(v — B)) + a(qsB — cB)|
=l (rs = (1= )B) +llegqs (v = B + [l (gsB — cB)|
=M +agsa” ||+ la(v = B)|+ M,
=M+ M+ m|a(v-B)|.
(M) This is straightforward.
(NC) For any vi, v,€V,
d(Hsv1, Hsv2) = |laqs(v1—v,)||
§||a‘18a_1|| Nl (v1 = v)| = md(v1, v)
and
d(H3'v1, H3'v2) =|laqs (v1—0))|
=llagsa |- lla(v1— vl = cd (01, v2).
(Vo) First note that
laegswl|=llegse ™" - flaw|
=llags(qs'a ™| - lawl|
=llagse 'l lags™ a7 - llawl|= m*[lawl|.
ForanyveV,
a(HYv—B)=alrs+qsrs +qsrs+ - - +q5 'rs+q50—f]
=a[rs—(1-c)Bl+agslrs —(1-c)B]
+- o +aqs [r—(1-c)Bl+aqs[v—B]
+alqsB — cBl+ aqs[qsB — cB]

+-+aqs '[qsB—cB,
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so that
la(HSv=Bl=A+m+- - +m" )M+ M) +llagsa™| - la(v-B)]
=(1+m+ - +mN )M+ M) +cla(v—B),
which implies that

laHSv-Bll=(1+m+- - +mN"H(1—c) (M + M)
if
la=PBll=sA+m+---+mN"H1—c) (M, +M,).

We now determine sufficient conditions for the existence of an EP by applying
Theorem 3.3.
THEOREM 6.2. The stochastic game defined above has an EP if
(i) S is countable,
(ii) Bi(s) is a compact metric space for each i and s
(iii) r(s, i, b) and q({s'}|s, b) are continuous functions of b in X;<Bi(s) for each s, s'
and i, and

(iv) for any € >0 and convergent sequence {b,}, there exists a finite subset C of S
such that

’ é_c (1B +a " (s)g({s}s, bu)<e for all n.

Remarks. (1) Condition (iv) follows from condition (iii) if B8(s)=0 and a(s)=1
because the convergence q({s'}|s, b,) = q({s'}|s, b) implies uniform tightness, cf. p. 47 of
Parthasarathy (1967).

(2) Conditions (iii) and (iv) are both satisfied automatically if [ is finite and B,(s) is
countable and discrete for each i and s.

(3) Theorem 6.2 reduces to Theorem 1 of Federgruen (1976) when N =1,
B(s)=0, a(s)=1 and I is finite—which in turn reduces to Theorem 1 of Sobel
(1971)—when, in addition, S and B;(s) for each i and s are finite.

Proof. We show that the five conditions of Theorem 3.3 are satisfied. By direct
assumption, conditions (i), (ii) and (iv) hold here. By condition (iii) and (iv) here

h(s, & bn, v) =r(s, i, ba) + £ on(s’, )q({s'}s, bn)

->r(s, i, b)+ sés v(s', )q({s"}s, b) = h(s, i, b, v),
which is condition (iii) of Theorem 3.3. Finally, condition (v) holds because, for any
SeA,
d(H 5*vo, vs) = d(H 3" vo, H5 *vs)
=c*d(vo, vs)
=c(la(wo— B+l (vs — Bl
=2¢A+m+ - +mN (1 — ) (ML + M),

We now consider comparisons between the stochastic game model (S I, {B (s),
iel,seS}, h, a,B,c)anda “smaller” stochastic game model (S, [{B;(s), i e I, s € S}, h,
a, B, ¢) which are both assumed to satisfy (8)—(11). Assume that the comparison
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functions in § 4 have been defined. Let S, éi(s) for each iel and se S, and I be
countable sets. Assume that

S.=p ') ={seS:p(s)=5), S5.e$

and

B.i(s)=p ' (B)N Bi(s)
={beBi(s):p()=1ipls)=35pb)=5}, beBi(s),
are measurable subsets for each n, i and s.

As in § 4, assume that e(5)e V for each 6 € V. In this setting, the comparison
results in § 4 can be expressed in terms of the measures of oscillation

K, = sup la(s)[r(s, i, b)—F(p(s), p(i), p(b))]|

iel
be XB;(s)
iel

K@= sup {al) £ (56D|a(Sls -adslp(s), po)) |

seS
beXeB;(s)
iel

and K, = K, (%), where

(14)  *(s)) =sup {B(sn)+& ‘() +m+- - +mNHA-&) (M + M)}, n=z=l.

seS,

THEOREM 6.3. For any 8 € A, K(35) =K, + K, (35) =K, + K.
Proof. By (7) and the triangle inequality,

K (35) =sup la(s)[h(s, i, 8(s), e(55)) — A (p(s), p(i),p[8(s)], 55)]]
sca
ésuls) lac () (s, i, 8(s))—F(p(s), p(i), p[6(s)]]

seA
iel

+sup a(s) ¥ (G(s.))la(Sls. 55) = dllsap(s). pLa(s)

deA
=K, +K,(05) =K, + K,

where the last step follows because |55(s,)| = 5%(s,) for all n by (12).
Remarks. When a(s)=da(p[s])=1 and B(s)=B(p[s]) =0 for all s, Theorem 6.3
reduces to Theorem 6.1(a) of Whitt (1978). For further refinements, see § 6 of Whitt

(1978).
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We now present sufficient conditions for the stochastic game to have an &-EP for
each £ > 0. For simplicity, we assume I is finite and a(s) =1 and B(s) =0 for all s.

THEOREM 6.4. The stochastic game has an e-EP for each ¢ >0 if

(i) Lis finite,
(ii) B;(s) is a subset with compact closure in a separable metric space for each i and
S5
(iii) the point-to-set function mapping s into B;(s) is uniformly continuous for each i:
foreach e,> 0, there exists an £, > 0 such that B;(s1) € Bi(s2)"* if m(sy, $2) < &2;

(iv) a(s)=1 and B(s)=0 forall s;

(v) r(s, i,b) and q(C|s, b) are uniformly continuous in s and b, uniformly in C.

Proof. Construct a sequence of approximating models as in the proof of Theorem
5.1. Note that conditions (i)—(v) of Theorem 5.1 have been assumed again here and
condition (vi) of Theorem 5.1 holds because of conditions (iv) and (v) here. For this
purpose, it suffices to consider only those v with |v(s, /)| = (1+ - - - + mN Y1 -c¢) 'M,.
Alternatively, it is easy to see that K, (05,) - 0 by applying Theorem 6.3. Theorem 6.2
implies that each approximate game has an EP.

Remarks. (1) The transition kernel g satisfies condition (5) in Theorem 6.4 if
q(Cls,b)= Icf(xls, b)A (dx), for all measurable subsets C, where A is a finite measure on
S and f(x|s, b) is uniformly continuous in s and b, uniformly in x.

(2) To see that it is not sufficient in Theorem 6.4 to have g( - |s, b) be uniformly
continuous in the space of probability measures on S with the topology of weak
convergence, let S be the unit circle, i.e., $=[0,1) with the metric m(si, s2) =
min {s,—s;, 1 —s,+s;} for s;=s,. Let T:S—>S be defined by T(s)=s+A(mod 1)
where A is a fixed irrational number. Let q({T}}|s, b) = c and q(S —{T}s, b) =0 for all
s,b. Then q(-|s,b) is a uniformly continuous function of (s, b) into the space of
probability measures on S with the weak convergence topology. However, since the
transformation T is ergodic, it is impossible to have K, <c¢ for K, in (6.9) and any
countable partition of S.

(3) If, in addition to the assumptions of Theorem 6.4, S is a subset of a compact
metric space, then there is a natural algorithm to find an ¢-EP. Since each approximate
model then can have S as well as I and B;(s) finite, the EP’s in each approximate model
can be found by applying Brouwer’s fixed point theorem, as shown in Theorem 1 of
Sobel (1971). Hence, it suffices to apply one of the algorithms for finding an approxi-
mate fixed point of a continuous function mapping a subset of R" into itself, cf.
Karmardian (1976).

(4) We have yet to determine interesting sufficient conditions for the existence of
an EP (rather than an ¢-EP) when S is uncountable. For example, suppose S =[0, 1],
I={1,2}, Bi(s)={1, 2} and A;(s) = P(B;(s)) for each i and s. For simplicity consider
either 1))N=1or (2) N=2and c=0.
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A STABILITY THEORY FOR THE LINEAR-QUADRATIC-GAUSSIAN
PROBLEM FOR SYSTEMS WITH DELAYS IN THE STATE, CONTROL,
AND OBSERVATIONS*

R. H. KWONGt

Abstract. The estimation and control of linear stochastic systems with delays in the state, control, and
observations are studied. First, the deterministic optimal control problem with quadratic cost over an infinite
time interval is examined. Using an extended notion of stabilizability, the existence and characterization of
the optimal control law is obtained. Using the additional assumption of detectability the optimal closed-loop
system is shown to be L?-stable. Next, the stochastic filtering problem is studied. A new version of the duality
relations between optimal control and filtering is developed. This combined with a suitable notion of
detectability, is exploited to show convergence of the filter gains. Under the additional assumption of
stabilizability, the optimal stationary filter is shown to be L?-stable. Finally, by putting together the optimal
control and filtering results, a stable constant stochastic control law is obtained for the linear-quadratic-
Gaussian problem.

1. Introduction. Recently, there have been many investigations on control and
filtering problems for linear systems with delays in the state [1]-[13]. Both finite as well
as infinite time problems have been treated, and various viewpoints and techniques
have been developed. In [11], [12], we have given a complete linear-quadratic-
Gaussian theory for linear systems with a single delay in the state, although the same
methods can be extended to cover linear systems with multiple and distributed state
delays. The situation is quite different when there are also delays in the control and
observations. Koivo and Lee [14] studied the quadratic control problem for linear
systems with delays in the state and control and derived the optimal feedback law.
Bagchi [10] and Kwong and Willsky [11], [12] obtained the optimal filter for linear
systems with delays in the state and observations. Lindquist, in a series of papers [8],
[15], [16] discussed the stochastic control problem and proved versions of the separa-
tion theorem. However, all the above papers are concerned only with finite time
problems (the infinite time problems treated in [11] and [12] were for systems with no
control or observation delays). Thus, qualitative properties such as stability of the
optimal control law or optimal filter have not been studied. In this paper, we shall
present a linear-quadratic-Gaussian theory for systems with delays in the state, control,
and observations, with particular emphasis on infinite time problems, stability of
control laws and filters, and relationship to the notions of stabilizability and detect-
ability. We shall first discuss the finite time quadratic control problem for linear systems
with delays in the state and control. Although this problem has been studied earlier by
Koivo and Lee [14], their results are incomplete as the expression for the optimal cost
was not given. We complete the picture by presenting the expression for the optimal
cost and deriving differential equations satisfied by the gains. Next, we study the infinite
time quadratic control problem. A stabilizability notion is formulated which enables us
to solve the infinite time problem and obtain the optimal control law. Under the
additional assumption of detectability, the optimal closed-loop system is shown to be
L?-stable. We then turn to the problem of optimal filtering of linear stochastic systems
with delays in the state and observations. Duality relations between optimal control and
filtering, and between the notions of stabilizability and detectability are proved. These
relations enable us to exploit the infinite time optimal control results to prove

* Received by the editors December 30, 1977, and in revised form May 29, 1979. This research was
supported by the National Research Council of Canada under Grants A4786 and A0875.
T Department of Electrical Engineering, University of Toronto, Toronto, Ontario, Canada MSS 1A4.
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convergence of the filter gains. The resulting stationary optimal filter is shown to be the
‘“adjoint” system to the optimal stationary closed-loop system for the infinite time
control problem. Using this fact together with an additional assumption of stabilizabil-
ity, the optimal stationary filter is shown to be L>-stable. By combining the results for
deterministic optimal control and optimal filtering, we obtain a stochastic control law
for the linear-quadratic-Gaussian problem which is L*-stable. The approach used here
parallels the one used in [12]. Other approaches to the problem are certainly possible,
and in fact, Ichikawa [23] has independently studied the finite time problem using the
method of evolution equations. It would be interesting to see how his approach can be
used in the finite time problem and how it would compare with the results obtained
here. Numerical and implementation aspects of the theory have not been considered
here at all. These are important in their own right, but must be left for future
investigations. A summary of the results here was presented in [17].

2. Finite time quadratic optimal control for systems with delays in the state and
control. We begin our investigation with the deterministic optimal control problem for
linear systems with delays in the state and control. The system under consideration is
given by

x()=Aox(t)+Ax(t—h)+Bou(t)+Bu(t—h),
(2‘1) x(9)=X0(0), 06[_]1, 0]’
u(0) = uy(9), 6e[—h,0).

The state vector x(¢) takes value in R", the control vector in R™. The constant matrices
Ao and A; are n X n, while By and B; are n X m. The positive fixed number £ is the
length of the delay interval. The initial trajectory piece x, is taken to be an element in
the space R" x L*[—h, 0], denoted by M’[—h, 0] (or simply M?) as in [3]. That is,
xo= (x5, xo) when x§ is a vector in R", and x§ is an element of L*[—h, 0]. For any
¢=(°¢") and o =(w’, ') in M, their inner product is defined by (¢, w)ar2=
(¢° 0% rr+{(¢", ®")12_no). The norm on M? is the one induced by this inner product.
The initial control piece u, is taken to be an element of the space L*[—h, 0]. The symbol
¢ (possibly with subscripts) will be used for elements of the space M’[—h, 0]x
Lz[—h, 0]. Define also the linear operator M mapping L’[—h, 0]x L*[~h, 0] into
L[—h, 0] by

M(,v)(0)=A14(6)+B1v(8), 6e[-h,0]

A moment’s reflection shows that in order to determine the future state trajectory x(z),
t = s, we need to know the values of x(s), the function M (x,, u,), and the future inputs
u(o), s =o =t Here, x; and u are defined as usual by

x:(0)=x(s+86), #e[—h,0],
us (@) =u(s+4), #e[—h,0].

Thus, we might think of the pair (x(s), M (x;, us)) as the true state of the system. In this
paper, we shall be primarily interested in the infinite time control problem, particularly
stability properties of the optimal closed-loop system and their relation to the proper-
ties of stabilizability and detectability. However, we shall have to first discuss the finite
time problem as existing results are incomplete. We consider therefore the following
cost functional associated with (2.1)

T

Jr(u)= I [x'(0)H'Hx(t)+ u'(t)Su(t)] dt

0
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where T'<00, H a p Xn constant matrix and S a positive definite m X m constant
matrix. The problem is to choose u in L*[0, T'] such that J; is minimized. This problem
was studied by Koivo and Lee [14], who obtained the optimal control in feedback form
as follows:

u(t)= S_IBB[L(t, 7, 7)x(1)+ J” L(t,o+h,7)A1x(o) do
T—h
+ J’T L(t,oc+h, 7)Biu(o) dO’]
T—h
(2.2) ~S“‘B;[L(t+h, 7, 7)x(1)
+J.T L(t+h,o+h, 71)Ax(o) do
T—h

+I L(t+h,o+h, 7)Biu(o) da]
T—h
where the function L(t, s, 7) for 7 =s, t = T, satisfies a Fredholm integral equation

T
Lt s, 7)=M(t,s) —J L(t, o, 7)(s, o) do

T
(2.3) =M(t, s)-—J I'(t, 0)L(o, s, 7) do

L(t,s,7)=0 iftors>T.

Here the matrix-valued function M (¢, s) is given by
T

(2.4) M, s)= J' @'(o, ' H'H®(o, 5) do

max(t,s)

where ®(z, s) is the fundamental matrix associated with the homogeneous system
x()=Aox(t)+Ax(t—h).
The function I'(s, o) is given by

['(s, o) =M(s, 0)BoS 'Bb+M(s, o+ h)B1S 'Bixr1-n(0)

(2.5) _ B
+M(s, 0)B1S ' Bixr+n1(0)+ M (s, 0 — h)BoS ' Bixrsn1(0)

where

1 ifs=o=y
0 otherwise.

xuil@) =]

In particular, if we take 7 to be ¢ in (2.2), we obtain the optimal control as feedback of
the pair (x (), M (x,, u,))
0

u(t)= —-S"IBQ[L(t, t, )x(t)+ J L(t,t+6+h, )M (x, u.)(8) do]
h

(2.6) -

0

—S“B&[L(t +h,t x()+ I \ L(t+h, t+0+h, t)M(x,, u,)(8) de].
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Of crucial importance for our later development is the expression for the optimal
cost associated with the optimal control law (2.6), which was not obtained in [14].
Motivated by an idea of Datko in [4], we introduce the following functions:

For any initial conditions ¢; = (¢;, v;) in M 2x L [-h,0],i=1,2, let

2.7) pi(t) = J &' (o, t)H'Hx[" (o) do

where x{"(+) and u;"(-) are the optimal state and control trajectories associated with the
initial condition ;. It was shown in [14] that the function p;(¢) satisfies the equation

0
(2.8) pi(t)=L(t,t, )x" () + J-;. Lt t+0+h t)[Ax"(t+60)+Bul"(t+6)]de

and that the optimal control u;" satisfies

T T
(2.9) u"(t)=—S"'Bj I ®'(s, ) H'Hx " (s) ds — S™' B} J ®'(s, t+h)H' Hx{"(s) ds.
t t

+h

Introduce the bilinear form (-, - ) on (M?x L} [—h, 0]) x (M* X L*[—h, 0]) defined by

(Y1, Y2) ={(d1, v1), (62, v2))
(2.10) . .

=65 Op0+ | #h6)Ails+h ds+ [ or©)Bipi(s+h) ds.

We then have the following lemma.

LEMMA 2.1. The optimal cost JT associated with the initial trajectory piece ¢ and
initial control piece v is given by {(¢, v), (¢, v)).

Proof. Using (2.7) and the variation of constants formula for the solution of (2.1),
we find

T

$4(0)p1(0) = L $4(0)®'(s, O)H'Hix'(s) ds

0

T T
=j x;'"(s)H'Hx;"(s)ds—j I 65 ()AL (s, o+ B)H Hx™(s) dor ds
0 0 h

(2.11)

T ps
—J J‘ uy (0)Bo®' (s, o)H'Hx " (s) do ds
0 0
T ps
—J J us (c—h)B 1 ®'(s, 0)H Hx T (s) do ds.
0 0

Using the fact that (¢, s) =0, ¢ <s, and applying Fubini’s theorem, the first three terms
on the right hand side of (2.11) can be written as

0

T T
J x5 (s)H'Hx ' (s) ds -j I é5(0)A D' (s, 0+ h)H'Hx ' (s) ds do
0 o+h

—h

(2.12)
T oT ,
—J:) I us' (o)Bo®'(s, o)H'Hx 7 (s) ds do.
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For the fourth term on the right hand side of (2.11), we obtain

T as
I I ul (o0 —h)B (s, 0)H'Hx 7' (s) do ds
0

0

0 T
(2.13) =I I v5(0)B1®' (s, 0+ h)H'Hx 1 (s) ds do
—h Yo+h

T oT

+ J j U (0)B ®'(s, o+ h)H'Hx ' (s) ds dor
0 o+h

Combining (2.7), (2.9), (2.11)-(2.13), we get

T

#50pi(0)=

0

(4]
X (s)H'Hx ™ (s) ds—-j 6 ()AL py(o+h) do
(2.14) -

0

T
+I ud (s)Su(s) ds—j v2(0)Bipi(o+h) do.
o h

On substituting this into (2.10), we see that

T

T
2.15) (b, 1), (s, u2)>>=j0 xa"'(s>H'er(s)ds+j uZ (5)Sul(s) ds.

0

This proves the lemma.
Using the above lemma and (2.8), we establish the following theorem.
THEOREM 2.1. For any 7 <T, and fixed initial trajectory and control functions ¢,

and v, defined on [t —h, 7] and [1— h, T) respectively, the optimal cost J'T for the control
problem

Jr(7, ¢, v:) =J' [x"(¢)H'Hx (t)+ u'(¢)Su(z)] dt

is given by
0

T35, 60 0) = (DLl 7, () + | &L 7+0+h IM(, 0,)(6) do
—h

0

(2.16) + I M (., 0.)(O)L(r+ 8 +h, 7. 7)b(7) db
—h

0 0
| [ M@ oy @OLG+0+h 74 e+ M@, 0@ dode
—h J-h

Proof. By Lemma 2.1, the optimal cost J T (7, ¢,, v) is given by
(2.17) ¢'(T)p(f)+j &'(s) AL p(s +h) ds +J' v'(5)Blp(s +h) ds.
T—h 7—h

Substituting the expression (2.8) for p into (2.17) yields (2.16) after some straightfor-
ward computations.

Remark 2.1. The expression (2.16) for the optimal cost is similar in form to the one
for systems with state delays only. The role of the ‘state” here is played by the pair
(x(¢), M(x,, u,)), and the optimal cost is a quadratic form on (x(¢), M(x,, u,)).
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Remark 2.2. We can define the bounded linear operator 7r(7) mapping M % into
M? as follows:

mr(1)(6°, 1) =(k° k),
0

k°=L(r, T)¢0+J L(r,7+6+h, 7)¢" () do,
—~h

(2.18) 0
kl(o)=L(T+o+h,T,T)¢°+I L(r+60+h, 7+ &+h, 7)¢ (&) dE.
—h

Using the definition, the optimal cost JT (7, ¢,, v,) can also be written as
(2.19) JT (7, ¢ ) ={(&(7), M (s, v,)), wr(7) (B (1), M(bs, V))) pr2.

We can also derive differential equations satisfied by the kernel L(¢, s, 7). The
following equations were given in [14].

6—8-L(t, 5, 7)=[L(t, 7+h, 7)B,S" B+ L(t, 7, )BoS BbIL(r, 5, 7)

7
(2.20)
+[L(@t, 7+h, 7)B:S"'B +L(t, 7, 7)BoS ‘B, 1L(r+h, s, 7);

5";1,(:, 7.7y = —L(t, 7, T)Ao—L(t, 7+, 7) A1 + L(t, 7, 7)BoS ' BbL(r, 7, 7)

(2.21) +L(t,7+h, 7)B.ST'B\L(r, 7, 1)+ L(t, 7, 7)BoS 'BiL(t+h, 7, 7)
+L(t,7+h,7)B:S'BiL(r+h, 1, 7);

diL(r, 7,1)=—A0L(r, 7, 7)—L(7, 7, ) Ao~ ALL(T+h, 7, 7)
.

—L(r,7+h,7)A1—H'H+L(r, 7, 7)BoS 'ByL(r, 7, 7)
+L(r,7+h, 7)B:S'B\L(r, 7, 1)+ L(7, 7, 7)BoS 'B\L(r+h, 7, 7)
+L(r,7+h, 7)B.S 'B\L(r+h, 1, 7).

(2.22)

In fact, following the method given in [6], we can directly show that L(¢, s, 7) also
has partial derivatives with respect to ¢ and s. This involves simply differentiating the
integral equation (2.3) and using the fact that the function M (s, s) has the following
derivatives:

For t #s,
(2.23) -‘;?;M(t, )= — AWMt s)— AYM(t +h, s)— H H®(t, ),
(2.24) a—as-M(t, )= =M1, $)Ao— Mt s +h)A,—D'(s, ) H'H
and
d

(2.25) EM(t, =—AM(@, t)—-M(t, ) Ag— AM(@+h, t)-M((t+h, t) A, —H'H.
We find that

(2.26) %L(t, 5, 7)=—ALL(t, 5, ) — ALL(t+h, s, 7V — H'HS(t, s, 7)
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and

d
(2'27) é‘;L(L S, T) = _L(t9 S, T)AO_L(t9 s+ h9 T)Al “S’(S, L, T)H,H

where

min(T, t)
S(t, s, 7)=d(t, s)— j ®(t, 5)BoS 'B,L(0, s, 7) do

(2.28) -

min(T—h,t—h)
j &1, 0+ h)B.:S'BLL (0, 5, 7) dor

T

min(T,t4+2h)
—J [®(t, 0)B:1S'B +®(t+ h, 0 —h)BoS 'Bi1L(0, s, 7) do

+h

Define L,(6, £)=L(t+0,t+&t), 0=0, £ = h. Then using (2.20), (2.26) and (2.27), we
can derive the following set of differential equations for L,(6, £).

d
L0, 0= —[A(—L,(0, h)B,1S™'B41L,(0, 0)

(2.29) — L0, 0)[A¢—BoS™'BiL,(h, 0)]— A1L,(h, 0)—L,(0, h)A,
+L,(0,0)BoS 'ByL,(0, 0)+L,(0, h)B,S 'B\L,(h,0)—H'H
i_i = _ o -1 7
E a‘f)Lt(O,f) [A)—L.(0, 0)BoS "B} IL.(0, &)
(2.30) +L,(0, h)B1S™'ByL.(0, £)+ L,(0, 0)BoS ™ 'BiL,(h, ¢)

+L,(0, h)B1S'BiL,(h, &)~ ALL/(h, &)

(i—i—i)uo, £)=L.(6,0)BoS " B4L,(0, &)+ L,(6, h)B,S "B4L,0, )
(2.31)
+L,(6,0)BoS™'BiL/(h, &)+ L.(6, h)B:S™'BiL(h, £)

The optimal feedback control can now be written as

u(t)=—S""[B4LL/(0,0)+ B1L,(h, 0)]x(t)
(2.32)

0
-s! J' [B4L.(0, 6 +h)+BiL,(h, 6 +h)IM(x., u,)(0) dé
—h

3. Infinite time quadratic optimal control. In this section, we study the infinite
time quadratic control problem for linear systems with delays in the state and control.
The system considered is again (2.1), and the cost functional to be optimized is given by

[ee]

Joo(x0, Uo, U) = J:) [x"()H'Hx(t)+ u'(t)Su(t)] dt.

For the infinite time problem to be well-posed, we need some condition which
guarantees that for each initial condition (xo, 4o), the cost Jo(xo, Uo, #) can be made
finite by some choice of u € L[0, ). This involves the notion of stabilizability, which
we shall now discuss.

Stabilizability for linear system with delays in the state only has been studied by
Manitius and Triggiani (see [18] and references therein). In that situation, we have the
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system
(3.1) x(t)=Aox(t)+Aix(t—h)+Bu(t).

If a bounded linear operator K : M- R™ can be found such that on putting u(¢) = —Kx,
in (3.1), the resulting closed-loop system is L*-stable, then the control u itself will be an
element of L2[0, ), and the system (3.1) is said to be stabilizable. The point to notice
here is that the feedback system

(3.2) X(t)=Aox(t)+A1x(t—h)—BKx,

is again a delay differential equation. In the case of systems with delays also in the
control, we have already seen in § 2 that the optimal control law for the finite time
quadratic control problem has not only a feedback term on x,, but also a feedback term
on the past control u, As such, the optimal closed-loop system under the law (2.2) is no
longer a single delay differential equation. The reasoning used in formulating the notion
of stabilizability for (3.1) cannot be used here directly, and we have to extend it
somewhat to accommodate this additional complication.

One possible formulation would be to say that (2.1) is stabilizable if there exist a
constant matrix Gy, and measurable and essentially bounded functions G;(-) and
G,(+), both defined on [—h, 0] and taking values in R™" and R™™™ respectively, such
that the control law
0 0

(3.3) u(t) = Gox(t) +I , G1(0)x(t+6) do + Lh G>(0)u(t+0) do

stabilizes (2.1) in the sense that the resulting solution x and control « are both elements
of L,[0, ). Indeed, this type of definition has been used by Olbrot [24] who also
derived algebraic conditions for stabilizability in this sense. However, it turns out that
for the study of duality between optimal control and filtering, this is not the most
convenient definition. We shall instead adopt the following definition essentially given
in [17].

DEFINITION 3.1. The system (2.1) is said to be stabilizable if there exist a constant
matrix K,, a matrix function K;(-) defined on [—h, 0] which is measurable and
essentially bounded, and a measurable matrix function K,( - ) defined on [0, c0) which is
integrable on every compact subset of [0, c©0) and which generates a Volterra integral
operator mapping L*[0, ©) into L[0, ), such that the control law
0

(3.4) u(t)= —[Kox(t) + j . Ki(6)x(t+6)do+ J‘_h Ks(t—s)x(s) ds]

gives rise to a state trajectory x(-) which is an element of L2[0, ), i.e., the system
process x is L*-stable. We then also say that (Ao, Ay, Bo, B;) is stabilizable.

It is easy to see that controls of the form (3.4) include controls of the form (3.3). In
fact, in the case that the initial control segment is zero, we can view (3.3) as a Volterra
integral equation in u. Solving it for u yields precisely a feedback law solely in terms of x
of the form (3.4). Notice that in contrast to systems with no control delays, we now
require feedback not only on x,, but also on the entire past history x(s), —h =s =r. Note
also that if the system is stabilizable in the sense of Definition 3.1, the resulting control is
an element of LZ[O, 00). Thus, if the system is stabilizable, there exists a control & in
L,[0, o©) such that the corresponding cost J (xo, uo, iZ) is finite.

We now return to the infinite time optimal control problem and give the following.

- THEOREM 3.1. Assume that (2.1) is stabilizable. Then limr_.» ((¢(7), M (¢, v,)),
7r(7)(d (1), M (., v,))) exists, is finite and independent of r. Furthermore the kernel
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L.(-, *) has the following convergence behavior:
(i) L.,-(O, 0) -> LO;
(i) L,(0, -)A1~>Li(-)A .
and L,(o,l- )B,1-> Ll(l. ) Bl} strongly in L[—h, 0];

ALL.(-, -)B1>A'Ly(-, -)B; variable with the other variable
BiL.(-, -)By~>B'\Ly(-, -)B, } fixed.

Proof. We shall follow closely the arguments of [4] and [5]. By the assumption
of stabilizability, there exist maps Ko, K;(-) and K,(-) such that
u(t)=Kox(t) +Igh Ki(0)x(t+6)de6 +Iih K,(t—s)x(s) ds is a stabilizing control law
in the sense of Definition 3.1. This implies that J <oo. Since {((¢(7), M (¢-, v,)),
7r(7) (@ (1), M (¢, v,))) is monotone in T, it follows that its limit as T - 00 exists, is finite
and independent of 7 (see the arguments in [4] and [5]). To show the convergence
behavior of the kernel function, define the map Z: M*>x L*-> M?> by

Z(¢°% "), v)=(¢°, M(¢", ).

' (i) ALL (-, -)A;>ALLy(-, -)Al} strongly with respect to each

By the above considerations, the operator Z*7r(7)Z converges strongly to an operator
# on M?*x L?. Since for every (¢°, ¢"), v) in M*x L?, we have

Z*rr(NZ(¢°, 1), v) = (6T ¢T), v7)

where

0
84=L.0.06"+ | L.(0.6+mM(@", 0)E) de

0
BHO) = ALL.(0+h, 008"+ [ ALL(8+h £+ M, 0)(@) ds
—h

0

or(0)=BIL,(6+ 1, 006°+ | BIL(0+h ¢+ WM($", v)(&) dé

~h

the strong convergence of Z*mr(r)Z implies that ¢ converges, and that ¢ and vr
converge strongly in L*[—h, 0] for every ((¢°, ¢'), v) in M>x L. This immediately
implies the convergence properties stated in the theorem.

Consider now a sequence T, » o0 as n - 00, From Theorem 3.1, we can find a
subsequence T,, such that as i -» oo,

L.(0, -)By~>L4(")B;
B'L.(h, -)A;>B'Ly;(-)A;} pointwise a.e.
BiL,(h, -)By~> BiL1;(-)B;

Define lim;. BiL.(h, 0)= BiLo,. We then have:
THEOREM 3.2. The optimal control law for the infinite time problem is given by

u(t)=—=S"(BHLo+B'iLo1)x(t)
(3.6)

-5 J [BoL1(6+h)+BiL11(6+h)IM (x, u,)(6) db.
—h

The optimal cost J is given by

(3.7 {((x(0), x0), uo), 7 ((x(0), xo), o))-
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Proof. Let x and u, denote the solution of the closed-loop system defined on [0, 00)
under the stationary law (3.6), and y and u, denote the solution of the closed-loop
equation defined on [0, T,,] under the time-varying law (2.32).

Let

¥(O)=y@)—x(t) and a(t)=u,(t)—u.(r)
Then
(3.8) X(t)= Aok (t)+ A %(t —h) +Boii(t)+ B1ia(t— h), tel0, T,,],
with initial conditions
x(0)=0, #e[—h,0],
i(0)=0, 0e[—h,0].

Applying the variations of constants formula, we obtain
t

(3.9) )Z(t)=J [®(t—s)Bo+®(t —s —h)B1}i(s) ds.
0

Let
[BOLA(0, £+h)+BiLi(h, £+h)]=Pi(t, £)
and
B4Li(0, 0)+ B, Li(h, 0) = Wi(t)

where we have added the superscript i to indicate explicitly the dependence of
L;( ry ) on Tn... Slmllarly, define P(§)A1 = B€)L1(§ + h)A1 +B,1L11(§+ h.)Al, P(f)Bl =
BoL(¢+h)B1+B1L11(é+h)By and W = BoLo+ B1Lo:. Then

() =—-S""W()Z(t) - ST [Wi(t) - Wix(t) - S~ J’t Pi(t,s—t)A1X(s) ds
t—h

(3.10) -s1 '[ . [Pi(t,s—t)—P(s—1)]JA1x(s) ds—S! j:hP,»(t, s—t)Bii(s) ds

-s! I [Pi(t, s —t)—P(s —t)]B1ux(s) ds.

—h

Let q;(t)=—S"'[Wi(t1)— Wlx(t)—S! L’_h [P(t,s—t)—P(s—t)[A1x(s) + Byu,(s)] ds.
We can then combine (3.9) and (3.10) into the equation

) [s“ tIV,-(r) 2][:;8]

Lot s maemna " ngs—om ae) e
tel0, T, ]

Equation (3.11) is, with obvious notation, of the form
t
(3.12) &0 =0+ | Rt )E(s) ds.
0

Let c;(t) = sups=, |Ri(t, s)|. Then from the properties of ®(¢) and P, (¢, ¢), we see that ¢;(¢)
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is uniformly integrable over any finite interval. Now

(3.13) () =l ()] + ¢ (0) j 1&.(s) ds.

By Gronwall’s inequality, we obtain
t t
6I=la0l+ [l exp [ eo) do] as
0 s

Furthermore, «;(¢) is uniformly bounded in i, and for each t < T,,, a;(¢) » 0 as i » c0. By
dominated convergence, we obtain that for each t < T,,, |.§,~(t)| ->0asi—>00,
Next, let

y'(tyH'Hy () + u, (£)Su,(¢), te[0,T,,]

0 otherwise

gi(t)={

and
g(t)=x"(0)H'Hx(t) + u,(t)Su,(¢), te[0, o).

The above development shows that g;(¢) > g(¢) pointwise in [0, o) as { - 0. By Fatou’s
lemma

J g(t) dt =lim inf J gi(t) dt
0 0

i—>00

(3.14) = lim inf ((x (8), M (xo, uo)), 7r, (0)(x(0), M (xo, o))

i—>00

=(((x(0), x0), uo), w((x(0), x0), uo))

from previous considerations. On the other hand, for all "= 0, optimality considera-
tions give

T
I [x'(6)H'Hx () + u’ (t)Su,(¢)] dt
(3.15) 0

Z((x(0), M (xo, uo)), mr(0)(x(0), M (xo0, uo)))-

The two inequalities (3.14), (3.15) establish that the optimal cost is given by
{((x(0), x0), uo), 7((x(0), x0), uo)), and that this cost is attained with the law (3.6). The
proof is completed.

Theorems 3.1 and 3.2 are generalizations of the results of [4] and [5] to systems
with delays in the state and control. It gives the existence and characterization of the
optimal control for the infinite time quadratic cost problem, but as usual, does not
guarantee that the closed-loop system is stable. For that, we need the additional
assumption of detectability of (Ao, Ay, H) (see [12] for the definition and further
discussions).

THEOREM 3.3. Let (Ay, A4, By, B,) be stabilizable and (Ao, A1, H) be detectable.
Then the closed-loop system generated by the control law (3.6) is L*-stable.

Proof. By detectability of (Ao, A, H) (see the definition in [12]), there exist
matrices Fy and Fi, and a measurable and essentially bounded matrix-valued function
F5(+), such that the system

0

(3.16) y'(t)=Aoy(r>+A1y(r—h>—FoHy<r>—ﬂHy(r—h)—j_th(mHy(He)de
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is exponentially stable. Now the solution x satisfies the following equation
0
x(t)=(Ao—FoH)x(t)+ (A, ~F1H)x(t—h)—J' F>(6)Hx(t+0) do
—h
(3.17)

0

+ FoHx () + FyHx (1— h) + j Fo(0)Hx(t+6) 6 + Bou(t)+ Bau(t — ).
~h

Letting ®£(-) be the fundamental matrix associated with (3.16), we obtain, using the
variation of constants formula,
0

(8] = | s (1)x0(0) + L O (t—5 — WAy — FyH)xols) + Buuo(s)] ds

0

0
+ j By (5 +0)Fy(6)Hxols) ds dol
6

Jn

FoHx(s)+FHx(s—h)

(3.18) +‘; |Dr(r—s)|

r O

+| F5(6)Hx(s+80) dOI ds+j |®r(t—s)Bo+ Pr(t—s —h)By| |lu(s)| ds.
0

Jon

Let ky = max {|Fy), |F1l, ess sup_n=e=0 |F2(6)|}. We obtain
0

lx(f)l = [Pr(£)x0(0) + Lh Dr(t—s—h)[(A1—F1H)xo(s) + Biuo(s)] ds

0 [4]
+J' j Dr(t— s+ 0)Fa(6) Hxols) dst‘
(3.19) o
+klj |®p(t—s)| le(s)+Hx(s—h)
0

0

+I Hx(s+6) dO’ ds+I |®F(t—$)Bo+®r(t—s —h)B,y| |u(s)| ds.
—h 0

Since for u corresponding to the optimal control, we have u € L*[0, ) and Hx e
L?[0, ), we have, by application of Young’s inequality,

Uooo [x () dt] v = kz{ J:o U(I)p(t, 0)x0(0) + .[0,, O (t—s—h)(Ar—F1H)xo(s)

2 1/2
'

2 1/2
]

0

+Byug(s)) ds +J

~h

0
I Or(t—s+ 0)F,(0)Hxo(s) ds db
]

(3.20)

0

+ks Loo |® ()| dt“: }Hx(t)+Hx(t— h) +J \ Hx(t+6) dé

oo o) 1/2
+k4J |®F(t—5)Bo+ Pr(t—s — h)B,| dt“ lu(e) dt]
0 0

for appropriate constants k», k3 and k. Since |®x(t)| =B e ™ forsome B =1, a >0, we
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have that

“:O lx (1) dt] " o

and the theorem is proved.

Theorems 3.1, 3.2 and 3.3 together describe the structure of the optimal control
law for the infinite time quadratic control problem. Note that we have not shown that
the gains of the optimal stationary control law can be obtained from the unique solution
of a Riccati-like differential equation. Thus the justification of the existence and
uniqueness of solutions to the steady state version of equations (2.29)—(2.31) is still an
open question. This is in contrast to the case of linear systems with delays only in the
state where complete results on the infinite time quadratic control problem are
available [12].

4. Optimal filtering over a finite time interval for linear systems with delays in the
state and observations. In this section, we shall discuss optimal filtering, in the minimum
mean square error sense, for the stochastic delay system

dx(t)=[Aox(t)+Ax(t—h)]dt+Fdw(t),
x(0)=0, 6e[—h,0],
4.2) dz(t)=[Cox(t)+ Cix(t—h)] dt + N dv(¢).

4.1)

Here w(t) and v(¢) are independent standard Wiener processes in R™ and R”
respectively. The matrix N is assumed to be nonsingular. We shall also denote NN' by
R. The nonsingularity of N then implies that R > 0.

For any s=t, we denote the conditional expectation E{x(t)|z(o), 0=0 =s} by
#(t|s). Let the estimation error x(t)— £(t|s) be denoted by %(t|s), and let P(t, o, s)
denote the error covariance function E[£(t|s)%(ca|s)'] for t =s, o =s. The filter equa-

tions characterizing £(¢|t) have been derived independently in [10] and [12], and are
stated below:

Az (t|t) =[Aof(t]t) + A1£(t = h|6)) dt +[P(1, 1, )Ci + P(t, t—h, t)C1 IR

(4.3)
[dz(t)— Cok(t|t) dt — C1X(t — hlt) dt]

J?(t—h|t)=£(t—h|t—h)+J [P(t—h,s,s)Ch +P(t—h,s—h,s)C;JR™
t—h

(4.4)
[dz(s)— CoX (s|s) ds — C1%(s — h|s) ds].

A set of differential equations was also derived for P(¢, o, s) [10], [12]. The existence
and uniqueness of solutions to (4.3)—(4.4) can be obtained using standard techniques, an
outline of which is given in the Appendix.

It turns out that the equations for P(¢, o, s) in[10], [12] are not quite convenient for
the development of duality results for linear control and filtering in our problem. Thus,
in the following, we will derive an integral equation for P(¢, o, s) using the projection
theorem characterization of £(¢|s) [20].

We know that the process £(¢]s) is Gaussian [10]. By the projection theorem, we
can write

4.5) £(t|s)= J: G,(t,r) dz(r)
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for some L* kernel G, (1, r). We now characterize the kernel G,(t, r). Forany 0= o =35,

0=E[%(t|s)z'(0)}
(4.6) -
- L (EL£(t]s)x'(@)]Ch +EL£(t]s)x' (@ — 1)]C} } da — E{Z(t]s)0' (@ )}N'"

But, by the projection theorem again, E[(¢|s)x'(a)] = E[£(t|s)X'(a|s)]= P(t, @, s) and

4.7) E{Z(t|s)v'(o)}N'=— r G,(t, )R dr.
0
This yields
(4.8) Gi(t,a)=[P(t,a, s)Ch +P(t,a —h,s)C{ IR

Thus the error covariance function P(¢, «, s) satisfies

P(t, a, s) = E{x(t]s)x'(a)}
4.9) =E[x(t)x’(a)]—J’s [P(t, 0, s)Ch +P(t, 0 —h,s)C1 IR
0

E{Cox(o)+ Cix(0—h)]x'(a)} do.
Let (o, @) = E[x(0)x'(a)]. Then (4.9) can be written as

P(t,a, s)=2(t, a)— j P(t, 0, s)C4R'[Co2(0, @)+ C12(0 — h, a)] do
(4.10) 7
—L P(t, 0, s)CiR'[Co2(0 +h, a)+ Ci3(0, a)] do
where we have used the assumption that x(#) =0, 6 €[—h, 0]. Define the kernel
K (o, a) by
K (o, a)=CHR ' Co2(0, a)+ C4R™'Z(0 — h, @)xns(0)
+CIR ' Co2(0 +h, @)xo.5-r(0)+ C1R ™' C12(0, a)xo.5-1(0).

Then we see that P(t, a, s) satisfies the integral equation

(4.11)

s

(4.12) P(t, a, s)=2(t, a)—~J‘ P(t, 0, s)K (0, a) do.

0
Furthermore, since by definition,

Pt a,s)=Pla,t,s)
we get

s

Pt a,s)=2(a, t)—j K'(o, t)P'(a, o, s) do
0

(4.13) .
=3(t, ) —I K'(o, t)P(0, a, s) do.
0

From the variation of constants formula for (4.1), it is easy to see that the matrix 2(¢, a)
is given by

min(t,a)

(4.14) 2t a) =I (1, 0)FF'P'(a, o) do.

0
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For each fixed s and ¢, (4.13) is a Fredholm integral equation satisfied by P(¢, a, s). Since
the kernel K (o, o) is readily seen to be positive, we can apply standard Fredholm theory
to conclude that there exists a unique L? solution P(t, a, s). Moreover, P(t, a, s) is
continuous, as discussed previously in [12], so that P(¢, «, s) is also defined pointwise.
Equations (4.3), (4.4) and (4.12)—(4.14) thus give an alternative characterization of the
optimal filter.

Notice that the form of the integral equation defined by (4.12)-(4.14) is very
similar to the one satisfied by L(¢, s, 7), i.e. (2.3)-(2.4). In the next section, we will make
this precise by giving a duality theorem relating optimal linear filtering to quadratic
optimal control of a dual system.

5. A theorem on the duality between estimation and control. Let us consider the
following system
y(O)=—Aoy()—Ary(t+h)—Cou(t)— Ciu(t+h),  t€[0, T],
5.1) y(0)=¢(0), T=6=T+h,
u(f)=10(0), T=60=T+h.

The control problem is to optimize the functional
T

(5.2) J¢= J' [y (&)FF'y(t)+u'(t)Ru(t)] dt
0

by some choice of u € L’[0, T']. The advanced system (5.1) runs backwards in time. Bya
change of variables, we can convert the problem into the standard control problem for
linear systems with delays in the state and control.

Define s=T—t, y(s)=y(T—s)=y(t), i(s)=u(T —s)=u(t). Then we have

L 5(5) = Ab3(6)+ AL (s — )+ Ch(s)+ Chials — ),
(5.3)
5@)=b(T—6), 6e[-h,0],
u(@)=v(T—-0), 06[—h,0],
T
(5.4) Ja=j [)7'(S)FF')7(S)+11'(S)Rli(s)]ds.
0

The results of § 2 can then be applied directly to the problem defined by (5.3)~(5.4).
This gives rise to a kernel L(s, a, 7) satisfying the integral equation

T
(5.5) L(s,a, 7)=M(s, a)— J L(s, B, 1)I"(a, B) dB

where

[(a, B)=CoR'CoM (B, )+ CoR ' C:M(B +h, )x~1-(B)
(5.6) _ _
+CiR™T'CoM (B —h, a)xrsn1(B)+ CLRT'CM (B, a)x r+n1(B).

Here M(s, ) is given by
T

(5.7) M(s, a)= j ®'(B, s)FF'®(B, a) dB

max(s,a)
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where ®(s, a) satisfies

dis'ifl(s, o)=ALD(s, )+ A D(s —h, o),
(5.8)
Do, 0) =1,

O(s,0)=0, selo—h, o).

To transform the equations back to the original time variable, we let s =T —¢,
a =T —1v, 7=T — o, and define the function

(5.9 At y,0)=L(T—t,T—v, T—0).
Then the function A(t, y, o) satisfies the integral equation
T
Ay, ) =M(T—4, T=y)- [ At T-8,00(T~v, B)dB
T—o

(5.10) .
=M(T—t,T—vy)— L Alt, ¢, )T (T—v, T—¢) do.

On the other hand,
T

M(T —t, T—'y)=j e )&)’(3, T —t)FF'®(B, T—v) dB

(5.11) min(.y)
- j & (T—B, T—)FF'&(T—B, T—v) dB.

)

Now recall that the homogeneous equation

(5.12) x@)=Aox(®)+Ax(t—h)
has as its adjoint equation
(5.13) y(£) =—Aoy(1)— Aly(t+h).

The fundamental matrix Y (¢, o) to (5 .13) satisfies

% Y(t,0)=—A Y (t,0)~ AL Y (t+h, o),

Y(o,0)=1,
Yt o)=0 if t>o0.

(5.14)

It is easily verified that Y (¢, ) and ®(T —¢, T — o) satisfy the same differential equation
and boundary condition. By uniqueness, we conclude that

(5.15) Y(t,o)=®(T -t t—0).
Hence
min(¢,y)
M(T—1,T—y)= j Y'(8, )EF'Y (B, ) dB

(516) min(s,y)
_ j( ®(1, B)FF'®' (v, B) dB

)
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where ®(¢, B) is the fundamental matrix associated with (5.12). We have here used the
well-known result that ®(z, 8) = Y'(B, ) (see, for example, [19]).

We can now state the duality theorem.

THEOREM 5.1. The function A(t, v, o) in the dual control problem defined by (5.10)
is the same function as the error covariance function P(t, vy, o) defined by (4.12).

Proof. From equations (4.14) and (5.16), we see that

M(T—t, T—vy)=2(7).
It is now readily verified that
[(T-v, T-B)=K(B,v)
where K (B, y) is as defined in (4.11). Hence A(z, v, o) satisfies the integral equation

Ay, ) =3t y)— j Al &, DK (S, 7) do

which is the same integral equation as the one satisfied by P(¢, vy, o) (equation (4.12)).
By uniqueness of solutions to the Fredholm integral equation, we obtain the conclusion
of the theorem.

In addition to its theoretical interest, the above theorem enables us to apply the
infinite-time optimal control results to the filtering problem. Various versions of the
duality theorem have been given in the literature [15], [19], but Theorem 5.1 seems to
us to be the most convéenient for the purpose at hand.

6. Detectability and adjoint systems. In § 3, we have obtained the infinite-time
control results under the hypotheses of stabilizability of (Ao, Ay, By, B1) and detec-
tability of (Ao, A1, H). In order to apply these results to the filtering problem, we study
the notion of detectability which is dual to the stabilizability of (Ao, A1, Bo, B1). We
make the following.

DEFINITION 6.1. Consider the system

(6.1) (@) =Apx(t)+Ax(t—h), x(0) = x0(8),
(6.2) z(t) = Cox(t)+ C1x(t—h).

We say that the system (6.1)-(6.2) is detectable if its dual system
(6.3) y () =—Aoy (1) = Aiy(t+h)— Cou(t) = Cru(t+h)

is stabilizable. We then also say that (Ao, A;, C,, C,) is detectable.

Note that if we construct a stabilizing control law for (6.3), we will obtain for the
closed-loop system a linear Volterra integrodifferential equation running backwards in
time. For our study of filter stability, we need to use the fact that such a system is in a
certain sense adjoint to a linear Volterra integrodifferential system running forwards in
time. The precise notion of adjoint systems of linear Volterra integrodifferential
equations is given in the following proposition.

PROPOSITION 6.1. For K(+) a locally L" matrix function, and v < T, the systems

6.4) Jé(t)=A0x(t)+A1x(t—h)+J K(t—s)x(s)ds, r=t<co,
and

T
(6.5) y(t)=—A6y(t)—Aiy(t+h)—I K'(s —t)y(s) ds, —0<t=T,
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are adjoints of each other in the sense that if x(t) and y(t) are any solutions of (6.4) and
(6.5), then for any t€ [, T], the form (y', x', t) defined by

t+h
<y',x',t>=y'<r>x(r)+j V() Arx (s — h) ds
(6.6) '

T

T s t
+J y’(s)I K(s—o)x(o) dads+I J' y'(s)K(s—o) ds x(o) do

T Yo

is constant in t. Furthermore, if V (s, t) is the fundamental matrix satisfying (6.5) in s with
Vt,t)=1, V(s, t)=0 fors >t and U(t, s) is the fundamental matrix satisfying (6.4) int
with U(s,s)=1, U(t,s)=0 for t<s, then V'(s, t) = U(t, s).

Proof. We compute

T '
%(y', x't)= [——A[)y(t)—A’ly(t+h)—-[ K'(s—1t)y(s) ds) x(t)

+y’(t)[on(t)+A1x(t—h)+J K(t—s)x(s)ds]
+y'(t+h)Awx()—y'(t)A1x(t—h)

t T
—y’(t)J. K(t—o)x(o) da'+j y'($)K(s—t) ds x(¢)

=0.
Now for equations defined on (—0, ¢+ h], we have that
(V5 x5 8)=(V',x', t)

where, for each fixed ¢, we are considering V' (s, ¢) as a function of s. This yields

t

s+h
V'(s, t)x(s)+j V'(g, t)Aix(oc—h) da-+j

V'(o, t) J'UK(O'—a)x(a) do do
6.7)

= x(t)+jtj V'(a, )K(a — o) da x(o) do.

After simplification, (6.7) becomes

s+h
(6.8) x()=V'(s, t)x(s)+ J V'(s, ) A1x(o—h) do.
If we now take x(¢) = U(t, s) for fixed s, we get
(6.9) U, s)=V'(s, 1)
as claimed.

Remark 6.1. From the constancy of (6.4) and (6.5), we see that U (¢, s) is a function
of t —s and V (s, t) is a function of s — t. Hence if U(z, 0) is an element of L0, o), V(0, t)
is an element of L*(—co, 0]. Using (6.8) we see that this implies that if the solution y(¢) to
(6.5) is an element of L,(—o0, 0], for each initial condition, the solution x(¢) to (6.4) is an
element of L,[0, o), for each initial condition.

Remark 6.2. Using Proposition 6.1, we can show that (6.1)-(6.2) is detectable if
and only if there exist a constant matrix Ny, a measurable and essentially bounded
matrix function N;(-) defined on [—h, 0], and a matrix function N,(-) defined on [0, c0),
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which are measurable and integrable on every compact subset of [0, c©), and which
generate a Volterra integral operator mapping L?[0, ) into L°[0, ©), such that the
system

0

(6.10) x(t)=on(t)+A1x(t-—h)—Noz(t)—J‘ N1(0)z(t+0)d0~I Ny(t—s5)z(s) ds
—h —h

is L*-stable.

For the sake of completeness, we mention here that the dual notion of detectability
of (Ao, Ay, H) is the stabilizability of the dual control system defined by (Ao, A1, H').
Note that the absence of delays in the observations leads to a dual control system
without delays in the control. The reader is referred to [12] for additional discussions.

7. The existence and stability of the stationary filter. Our objective in this section is
to show that under suitable hypothesis, the filtering error covariance matrix converges
to a constant matrix. This is of great importance in the evaluation of filter performance,
for then we can assess the accuracy of the filter by examining the limiting value of the
error covariance. Moreover, we will show that the stationary filter thus obtained is
L?-stable. The technique is to relate the filtering problem to a dual control problem, and
use the infinite-time optimal control results. First, we state what we mean by filter
stability.

DEFINITION 7.1. The optimal filter defined by (4.3) and (4.4) is said to be stable if
the following two conditions are satisfied:

(i) The estimation error covariance P(t, ¢ t) is bounded on [0, ) and that
lim,. P(t, t, t) exists and is finite.

(ii) The estimation error e(t|t) = x(¢) — £ (¢|¢) associated with the stationary version
of the optimal filter satisfies an equation whose homogeneous solution is
L*-stable.

Remark 7.1. The boundedness condition for P(t, ¢, t) should certainly be required
in any definition of filter stability. Since the error process is Gaussian, the convergence
of P(1, ¢, t) implies that the distribution associated with e(¢|t) converges to a constant
Gaussian distribution. If the second requirement is also satisfied, then in view of the
linearity of the system, any disturbance on the error process with trajectories in
L0, ) will still generate an error process with trajectories in L2[0, c0).

THEOREM 7.1. Consider the stochastic delay system

dx(t)=[Aox(t)+ A1x(t—h)]dt +Fdw(t),
x(6)=0, 6 e[—h,0],
(7.2) dz(t)=[Cox(t)+ Cix(t—h)] dt+ N dv(t).

(7.1)

Assume that the system (6.1)-(6.2) is detectable. Then the error covariance matrix
P(t+&1t+6,1), —h=¢& 0 =0, has the following asymptotic behavior as t - ©:"

P(t7 t’ t)QPO;
P(t,t+6,1)A] > P1(0)A]

} strongly in L*[—h, 0];
P(t,t+6,t)Ci > P1(0)C}

We shall abuse notation and write P(t, t+6, )A} > P,(8)A} in L*[—h, 0], etc., to mean
P(t, t+-, )AL > Py(-)AY in L*[—h, 0], etc.
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AP(+0, 1+ DA1> APa(6, Ay strongly with respect to
CiP(t+6,t+ £ )AL > CiPy(0, )AL each variable with the other
CiP(t+6,1+¢ 1)Cl > C1P5(6, £)C) variable fixed.

Proof. Consider the dual control problem defined by (5.1)-(5.2). We know by
Theorem 5.1 that A(¢, y, o) = P(t, v, o). Also by the hypothesis of detectability, the dual
system (5.1) is stabilizable. Hence by Theorem 3.1, we have that as T - co,

L(r,7,7)> Lo

L(r,7+o+h,71)A} > Li(0c+h)A}
L(r,7+0+h,7)Ci > L,(0c+h)C}
AL(a+7+h o+7+h 1)Al > A Ly(a+h, o+ h)A} strongly in each
AiL(a+7+h,0+7+h,7)C; >AL(a +h, o +h)C1; variable with the other
CiL(a+7+h,o+7+h,7)Cy > CiLya+h,o+h)C} variable fixed.

} strongly in L*[—h, 0]

But since L(T—t, T—v, T—0o)=A(t, y,0) = P(t, y, o), a simple change of variables
shows that these convergences yield the asymptotic behavior for P(t+ & t+6, t) as
stated.

Henceforth, we shall denote P;(—h) by Py, and P>(—h, 6) by P1,(8).
We now examine the infinite-time dual control problem. We have the system

y(t)=—Aoy(t)—Aly(t+h)—Cou(t)—Ciu(t+h), te(-00,0],
(7.3) y(@)=¢(8), 0=6=h,
u(@)=0v(6), 0<6=h,

with cost functional
0

(7.4) J% =I [y'(0)FF'y(#)+ u'()Ru(t)] dt.

Using Theorem 5.1 again, we obtain that the optimal control law is given by

h

u(t)= —R“‘co[Poy(t)+j

0

Pi(a—h)(Aly(t+a)+ Cru(t+a)) da]

(7.5) .
—R—lcl[Poly(t)“l‘J'O Pll(a —h)(A'ly(t+a)+C'1u(t+a)) da]

On the other hand, the stationary filter is given by the equations

di(t|t) =[Ack(t]t) + A1£(t — h|t)] dt +[PoCly + Py CL IR

(7.6)
[dz(t)— Cok(t|t) dt — C1£ (¢t — hlt) dt]

t
Al)?(t~h|t)=A1)?(t—h|t—h)+j A Pi(t—s—h)CH +Pi1(t—s—h)Ci]

t—h
7.7 3
(7.7) - R7'[dz(s) — Cof (sls) ds — C12(s — hls) ds],
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Cl)?(t—hlt)=le(t—hlt—h)+J Ci[P, (t—5—h)Ch + Pl (t—s —h)C} ]
t—h

(7.8) ‘R '[dz(s)— Cof (s|s) ds — C1# (s — hls) ds].

We will now show that the stationary control system and the stationary filter are in
fact adjoint systems of each other in the sense of Proposition 6.1. Once this is
established, we can appeal to Theorem 3.2 to investigate the stability of the stationary
filter. To this end, we first express the control law (7.5) solely in terms of feedback on y.
Let

CoPy(t)+ C1Py14(t), te[—h,0],

0 otherwise,

Dy(1) ={

and let
F(t)=—R7'Di(t—-h)C,,  t€[0, h].

Also denote (CyPy+ C1Py1) by Dy. Then we can write

h
(7.9) u(t)=q(t)+j F(t—o)u(o) do
where
t+h
(7.10) q(1)=—R 'Doy(t)—R™" j Di(c—t—h)Aly(o) do.

We can view (7.9) as a Volterra integral equation in u. Define H(¢) to be the resolvent
kernel associated with F(¢) [22], i.e.,

(7.11) H(t)=F (1) +j F(t-0)H(o) do
Then we can solve for u(¢) in (7.9) to give

h
(7.12) u(t)=q(t)+j H(t—o)q(o) do.

Substituting (7.10) into (7.12), we obtain

t+h h
u(t)=—R“D0y(t)—R“‘j Di(oc—t—h)ALy(o) da—j H(t—0o)R 'Dyy(o) do

h

o+h
~[ Hu-oR" [ Do -0 -mAly(@) db do

(7.13)
t+h h
=—R 'Doy(t)-R™" j Di(oc—t—h)Aly(o) da—-j H(t—o)R 'Dyy(o) do

h pmin(t+h,¢)
-] H(t—0)R™'Di(¢ — o —h) doAty () do.

max(t,¢—h)
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Substituting (7.13) into (7.5), we obtain the closed-loop system as

y(t)=—(A5— CoR "' Do)y(t)— (A1 — CiR 'Do)y(t+h)

t+h h
+CHR™! J Di(o—t—h)Aly(o) do+ cz)j H(t—0)R 'Dyy(o) do
t t

h pmin(t+h,¢)
+ch| f H(t-0)R'Di(¢ —o—h) do Aly(d) dp

max(t,—h)
(7.14) t+2h h
+Ci,R! J D.(c—t—2h)Aly(c) do+ C} I H(t+h-0)R 'Doy(o) do
t+h t+h

h min(t+2h,¢)
j H(t+h—0)R™'Dy(¢ -0 —h) do Aty (¢) do.

+C’1J

t+h Ymax(t+h,—h)

Next, we give the equation satisfied by the estimation error é(¢|t) associated with
the stationary filter. In particular, in our study of filter stability, we are concerned with
the homogeneous part of the equation satisfied by e(t]¢). For ease of notation, we write
x(t) for e(t|t) and £(¢) for e(t —h|t) in the homogeneous equation for e(¢|t). We then
obtain the following integral equation from (7.8):

Cié(t) = Cix(t—h) —J C.D\(t—s—h)R 'Cox(s) ds
(7.15) o

—I C.D(t—s—h)R™'C:1&(s) ds.
t—h

Let W(t)=—C.D}(r—h)R ™" and define N(r), the Volterra resolvent kernel of W(z),
by

N =W()+ L W(t—s)N(s) ds

(7.16) ,
= W(t)+j N(t—s)W(s) ds.

Then on solving (7.15), we get

le(t)=C1x(t—h)—J Ci\D' (t—s—h)R 'Cox(s) ds
t—h
+J’ N(t—s)Cix(s—h) ds
—h
(7.17) —J' N(t—s)r C.D(s—o—h)R 'Cox(c) do ds
—h s—h
=C1x(t—h)+J N(t—5)Cox(s —h) ds
—h
—J' [CID’l(t—o-—h)R_l
—h

min(t,o+h)
+I N(t—s)CiD'(s—o—h)R™! ds]Cox(a) do.

max(o,t—h)
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But by (7.16),

min(t,c+h)

ClDi(t—cr—h)R"‘+j N(t—-s)C:D\(s—a—h)R ' ds
max(o,t—h)
min(t,c+h)
=—W(t—cr)—J N({—s)W(s—o)ds
max(o,t—h)
=—-N(t—o).
Thus
(7.18) Cié(t)=Cx(t—h) +J' N(t—s)Cox(s)+ Cix(s—h)] ds.
—h

Combining (7.6), (7.7) and (7.18), we see that the error process e(t|t) satisfies the
equation

%(t)=(Ao—DOR ' Co)x(t)+ (A1 —DoR ' C)x(t—h)

—A, J’_hD’l(t—s~h)R"1[C0x(s)+C1x(s—h)] ds

t min(t,oc+h)
(7.19) —A, J J D' (t—s—h)R'N(s — o) ds[Cox (o) + C1x(o—h)] do
—h

max(o,t—h)

—-D)R™! j N(t—s)[Cox(s)+ Cix(s —h)] ds.
-h

One can also readily see that the homogeneous part of (7.6)—(7.8) (i.e., with z(s)=0)

gives rise to an equation in £(¢|¢) identical to (7.19). Thus we shall call (7.19) the
homogeneous stationary filter.
We can now give:

THEOREM 7.2. The stationary closed-loop system (7.14) is the adjoint to the
homogeneous stationary filter (7.19) in the sense of Proposition 6.1.
Proof. First notice that on comparing (7.11) and (7.16), we obtain

(7.20) N(t)=H'(-1).
Now the adjoint to (7.19) is given by

%(t)=—(Ab— CoR'Do)x(t)— (A1 —CiR ' Do)x(t +h)

stth t+2h

+ CoR 'Di(s—t—h)A'x(s) ds +j CiR'D(s—t—2h)Ax(s) ds
Je t+h
s h pmin(o,t+h)
+ j CIN'(s= )R 'Dy(0—s —h) ds Asx (o) do
Jt max(t,oc—h)
(721) rh min(o,t+2h)

J' C'N'(s—t)R'Dy(c—s—h)Ax(c) do
Jt+h Jmax(t+h,0c—h)

ph h
+| COLN'(s—t)R 'Dox(s) ds +j CiN(s—t—h)R ' Dox(s) ds.

Jt t+h
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Using (7.20), we immediately verify that (7.21) and (7.14) are identical. This completes
the proof of the theorem.

We have now all the ingredients to prove the central result of the paper, the
stability of the stationary filter.

THEOREM 7.3. Assume that (Ao, Ai, Co, Cy1) is detectable and (Ao, Ay, F) is
stabilizable. Then the stationary filter exists and is L*-stable.

Proof. By Theorem 7.1, we need only to prove the L>-stability. The hypothesis
gives that (Ao, A1, F') is detectable. Thus by Theorem 3.2, the optimal stationary law
for the dual control problem gives rise to an L*-stable closed-loop system. Thus, the
solutions y of (7.14) are elements of L,(—c0, 0]. By Proposition 6.1 and Remark 6.1, the
solutions of the system adjoint to (7.14) are thus elements of L,[0, c0). By Theorem 7.2,
the system adjoint to (7.14) is precisely the homogeneous stationary filter (7.19). This
implies that the solutions x of (7.19) are elements of L,[0, c©) and the theorem is
proved.

8. Stochastic control of linear systems with delays in the state, control, and
observations. In this section, we put together the theory we have developed for
quadratic optimal control and linear filtering to obtain a stable stochastic control
scheme. The system we are interested in is of the form

dx(t)=[Aox(t)+A1x(t—h)] dt +[Bou(t)+ Biu(t—h)] dt + Fdw(t)

(8.1) x(6)=0, 0 €[—h,0],

u(6)=0, 0€[~h,0),

(8.2) dz(t)=[Cox(@®)+ Cix(t—h)]dt+ N dv(t).

The finite time stochastic control problem has been studied by Lindquist [8], who
proved a version of the Separation Theorem in the case where there are no delays in the
control, although his methods can be extended to cover that case also (see the remarks
in [16]). Here, we provide the final missing element in the linear-quadratic-Gaussian
theory for general delay systems: the asymptotic behavior of the stochastic control
law given by the cascade of the stationary filter with the stationary deterministic
feedback law.

THEOREM 8.1. Suppose (Ao, A1, Bo, B1) is stabilizable, (Ao, A1, H) is detectable,

(Ao, Ay, Co, C1) is detectable, and (Ay, A1, F) is stabilizable. Then the control law
given by

u(t)= —S"I[B6LO+B[1L01]f(tlt)

(8.3) 0
-5 J [BoLi(o+h)+BiLi(c+h)[A£(t+o|t)+Biu(t+ o)) do
—h

where Lo, Loi, L1(+) and Lii(-) are obtained as in Theorem 3.2, and %(t+olt),
o e[—h,0] is generated by the stationary filter (7.6)—(7.8), gives rise to an L*-stable
closed-loop system.

Proof. Let the estimation error x(s) — £(s|t), s =t, be denoted by e(s|¢). Then the
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error process satisfies the following set of equations:

de(t]t) =[Ace(t]t) + Are(t — h|t) = DHR ' Coe(t|t) — DoR ™ Cre(t— h|t)] dt

(8.4) L
+Fdw(t)—DoR ™ Ndv(t),
Ale(t-h|t)=Ale(t—h|t-h)+A1J Di(t—o—h)R 'Coe(o|o) do
8.5) , o
+A1J- Di(t—o—h)R™'Cie(o —hlo) do
t—h
+A1J. Di(t—o—h)R'Ndv(o),
t—h
cle(t—hlt)=cle(t—h1z~h)+j C\D (t— 0 —h)R ™ Coe (o]o) do
t—h
(8.6) +I C\D(t—o—h)R™'Cie(o—hlo) do
t—h

+CII D' (t= o~ RN do (o).
t—h

The homogeneous part of (8.4)—(8.6) is precisely the same as those of (7.6)~(7.8). By
Theorem 7.3, we find that the error process e(t|t) is L*-stable. Now the control law can
be rewritten as

0
u(t)==S""(BoLo+ B Lo)x(1)—S™! J' [BoL(o+h)+BiLi(c+h)]
—h

8.7) [Aix(t+0)+Biu(t+o)] do

0
+8 1 (BsLo+B'Lo)e(t|lt)+S7! I [B4Li(o+h)+ B Lii(o+h)]
~h

‘Ase(t+olt) do.

Since the error process is decoupled from the x system, we find that the composite
system given by (8.1), (8.4)—(8.6) and (8.7) is L?-stable if the part involving only the x
and u processes (with e(s|f) = 0) is. As Theorem 3.2 guarantees the L’-stability of the x
and u processes, the theorem is proved.

Appendix. We give here an outline of the proof of existence and uniqueness of
solutions to equations (4.3)-(4.4).
Let

n(@) =%,  £@)=x@—hl),

Ki(t)=[P(t,t,0)Cy+P(t, t—h, t)CL IR,

K1, s)=[P(t—h,s,s)Ch+P(t—h,s—h,s)C; IR’

z1(0) = I Ki(s)dz(s), za(t)= J K (1, s) dz(s).
0 t—h

Note that the processes z; and z, have continuous sample paths almost surely.
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Consider the interval [0, T], and let ¢(¢) = £(¢t|t) = Ex(t), —h =t =0. Equations
(4.3)-(4.4) are equivalent to the following integral equations.

AD 20 =¢<0>+L [Ao—Ki(s)Coln(s) ds +L [A1— Ki(s)C1é(s) ds +21(0)

’¢<r—h>—j_h Ka(t—5)Cod(s) "S‘L Ka(t—$)Con(s) ds

t

—I K(t, s)C1&(s) ds + z5(t) for0=t=h
t—h

(A2) f(t) = t—h t—h

[Ao-Ki)Coln() ds+ [ (41~ Ki(5)C11és) ds

)

50+

0

t

+21(t'—'h) —'J'_h Kz(t, S)C()’I](S) dS “I_h Kz(f, S)C1§(S) ds +22(f)

for h=t=T.

Now assume the function ¢ is continuous (in (4.3)-(4.4), ¢ =0), and for each A >0,
define a norm on the Banach space C[0, T]x C[0, T] by

[, f)IIA=maX{ sup e [n(1)|; sup e"“|§(t)|}
[4] T 0=t=T

==

Define also the map F: C[0, T]x C[0, T]- C[0, T]x C[0, T] by
F(TI» g) = (771, gl)

where 7,(¢) is the function on the right hand side of (A.1) and &(¢) is the function on the
right hand side of (A.2). Straightforward estimates show that for A sufficiently large, F is
a contraction mapping. We can therefore conclude the existence and uniqueness of
solutions to (4.3)—(4.4).
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EQUIVALENCE OF LINEAR COMPLEMENTARITY PROBLEMS AND
LINEAR PROGRAMS IN VECTOR LATTICE HILBERT SPACES*

C. W. CRYERT aND M. A. H. DEMPSTER#

Abstract. Let X be a vector lattice Hilbert space with dual X*. Let M be a continuous linear mapping of
X onto X*. Let p, ge X* with p>0. We consider the relationship between the linear complementarity
problem: Find x € X such that x =0, Mx +q =0, (x, Mx +q) =0, and the linear programming problem: Find
x € X which minimizes (x, p) subject to x =0, Mx + q = 0. For the problem of a cavitating journal bearing,
which is used as an example, the linear program requires the minimization of a linear functional which is
proportional to the load borne by the bearing.

1. Introduction. The linear complementarity problem in real n-dimensional
Euclidean space R" is: Find x € R" such that x =0, Mx +q =0, and x"(Mx +q) =0,
where M is a given real n Xn-matrix and q is a given vector in R". The linear
programming problem in R" is: Find x € R" which minimizes p "x subject to x =0 and
Myx +q =0, where M is a given real n X n matrix and p and q are given vectors in R".

Mangasarian (1976) showed that, under certain conditions, each solution of the
linear programming problem in R" is a solution of the linear complementarity problem
in R". Mangasarian (1977), (1979) has subsequently extended this work. Related work
is due to Cottle and Veinott (1972), Moré (1971), Tamir (1973), Cottle, Golub, and
Sacher (1978), Cottle and Pang (1976), (1978), Pang (1976), (1977), (1978), and Cottle
(1976).

Quite independently, and often not very explicitly, the relationship between
certain infinite-dimensional linear programming problems and linear complementarity
problems has been noted (Moreau (1971), Durand (1968), Lewy and Stampacchia
(1969), Stampacchia (1965), Lions and Stampacchia (1967)).

Here, we consider extensions of some of the results of Mangasarian to infinite-
dimensional spaces. Apart from their intrinsic value, our results provide useful ways of
interpreting, analyzing, and solving linear programming problems and linear comple-
mentarity problems arising in physical situations.

The following abbreviations are used: LP (linear program), LD (dual linear
program), LE (least element problem), LC (linear complementarity problem), VI
(variational inequality), and UM (unilateral minimization problem).

2. Preliminaries. X denotes a real Hilbert space with norm || - | and dual Y = X*,
The evaluation of a continuous linear functional / € X* at a point x € X is denoted by
(x, D).

It is assumed that X is partially ordered by a vector ordering =. Let
P={xeX:x=0}.

Then (Kelley and Namioka (1976, p. 224)) P is a convex cone in X with vertex at the
origin: that is, P+ P < P and AP < P for all nonnegative real A. We assume that P is
closed. x=y iff x —y =0, thatis, x —y e P.

* Received by the editors November 7, 1978, and in revised form May 7, 1979.
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The dual cone P* < X* is defined by
(2.1) P*={x*e X*:(x, x*)=0 for all x € P}.

We write x* = 0 if x* € P*. Since P is closed it follows from the Hahn-Banach theorem
that x =0 iff (x, x*)=0 for all x* € P*.

It is also assumed that X is a vector lattice (Kelley and Namioka (1976, p. 229)).
Thatis, for all x, y € X, there exists a unique element sup (x, y) € X such thatsup (x, y) =
x and sup (x, y) = y; furthermore, if z € X satisfies z = x and z =y then z =sup (x, y).
The assumption that X is a vector lattice has the following consequences. For all
x, y € X there exists a unique element inf (x, y) such that x Zinf (x, y) and y Zinf (x, y);
furthermore, if ze X satisfies z=x and z=y then z=inf(x,y). If x=y then
sup (x, y) =x, and if y = x then sup (x, y) = y; since sup (x, y) is unique, it follows that if
xZyandy=xthenx =y.Forevery x € X, x = sup (x, 0) —inf (x, 0) so that X = P— P. If
0=x+y where x, y € P then x =y =0; thus 0 is an extreme point of P, that is, P is a
pointed cone.

M:X->Y=X* denotes a continuous linear transformation with adjoint
M*: Y* > X* defined by

(2.2) (x, M*y*) =(Mx, y*).

Associated with M we have the continuous bilinear operator a: X X X > R'
defined by

(2.3) a(v, u) =(u, Mv);
a is symmetric if a(u, v) = a(v, u), and coercive if
(2.4) a(x, x)z alx|P,

for some real strictly positive constant « and all x € X
We will sometimes impose the following conditions upon a and M:
Condition S. If re X* and u, v € X are such that

a(u, y)={y, r) and a(v, ) =(y, r) for all Yy € P,
and if w =inf (i, v), then
a(w, )=y, r) for all Yy € P.
Condition Z. If u, v € P satisfy inf (u, v) =0,
then a(u, v) =0.

p and g denote elements of X*. We assume frequently that p € P*. We will
sometime assume that p is strictly positive, that is, if x € P and (x, p) =0 then x = 0.
Since

(2'5) a(u, (//)_<¢’ r>=<$’Mu_r>9

Condition S may be rewritten as follows: if Mu=r, Mv =r, and w =inf (u, v), then
Mw=r. If =M is the Laplacian operator V> and r=0 then Mu =0 means, in an
appropriate sense, that —u is subharmonic. In this case, Condition S reduces to the
well-known fact that the infimum of two superharmonic functions is superharmonic.
There is, therefore, a close connection between some of the present results and the
theory of subharmonic functions (Rado (1972), Brelot (1945), (1965), Stampacchia
(1965), Littman (1963), Moreau (1971)).
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Condition S is equivalent to the condition that the set
S={ueX:a(u, )=y, r)for all y e P}

is a meet semi-lattice for all r € X.

In the case when M is a square matrix, Condition Z is equivalent to the require-
ment that the off-diagonal elements of M be nonpositive—that is, that M is a Z-matrix
(Fiedler and Ptak (1962)). There is, therefore, also a close connection between some of
the present results and the theory of M-matrices and Z-matrices (Poole and Boullion
(1974), Plemmons (1976)). Condition Z was implicitly used by Stampacchia (1965, p.
151) with the conclusion a(u, v) =0 replaced by a(u, v) =0.

Conditions S and Z are not equivalent because, as shown in § 2.1, the necessary and
sufficient conditions for Conditions S and Z are not equivalent in the case of matrices.
However, we do have the following

THEOREM 2.1. Let a be coercive and satisfy Condition Z. Then a satisfies
Condition S.

Proof. Let u,ve X and re X* satisfy a(u, ) =(y, r) and a(v, )= (¢, r) for all
¢ =0. We wish to show that if w =inf (i, v) then a(w, ¢) = (¢, r) for all ¥ 2 0. To do so,
we modify an argument of Stampacchia (1965, p. 205).

Introduce the set U = X which consists of all { € X satisfying{=w. U=P+w is
closed and convex. From the fundamental theorem on variational inequalities (Stam-
pacchia (1964)) we know that there exists n € U such that

(2.6) a(n,z—m)z(z—n,r),
for all z € U. In particular, choosing z = n + ¢, we see that a(n, ¢) =y, r) for all y = 0.
The theorem will therefore be proved if we can show that n = w.
Set ¢ =inf (n, u) € U. From (2.6) with z = ¢,
(2.7 a(n, {—m=—m, ).
On the other hand we know that n—¢=0, u—¢=0, and inf(n—¢, u—¢)=
inf (n, u)— ¢ =0. Invoking Condition Z we see that
al,{—-m)=aw,{—-nm+a(l—u,{—n)
=a(u,{—n)+au—§{n—0)
=a(u,{—n)
=({—n, 1.
Combining (2.7) and (2.8) we find that

Since a is coercive it follows that ¢ =inf (&, n) = 7, so that n = u. Similarly n = v. Hence
n =inf (4, v) = w. But n € U so that n = w. We conclude that n=w. 0O

In the case when M is a real square matrix, it is readily shown from Theorem 2.1.1
below that if a is coercive and satisfies Condition S then a satisfies Condition Z. We do
not know whether this is true in general.

We now give two examples of spaces and operators fitting into the above frame-
work.

(2.8)

2.1. Examplel. Let X =Y = X*=Y*=R"; M = (m;) an n X n real matrix; and
p=(p:), q=1(q:), n-vectors. Let P be the set of vectors in R" with nonnegative
components, so that P is closed and P* =P.
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P has the additional important property that it has nonempty interior.

Clearly, p is strictly positive iff p; >0 for all i.

It is readily seen that Condition Z is satisfied iff m; =0 for i #j (that is, M is a
Z-matrix).

THEOREM 2.1.1. Condition S is satisfied iff every row of M has at most one strictly
positive coefficient, that is M T is pre-Leontief (Cottle and Veinott (1972, p. 244)).

Proof. We first observe that M " is pre-Leontief iff each row k of the inequality
Mu =r can be written in the form

(*) CusZnc+ Y duj,
ji=1
where d; =0 for all j; ¢, =0; and where the dependence upon k of ¢, and d; has been
suppressed.
First let us assume that M” is pre-Leontief and that Mu=r, Mv =r. Then
inequality (*) holds for u, and a similar inequality holds for v. Since d; =0 we have that if
w =inf (u, v) then

csws = inf (csuy, C50s)

zn+ ¥ diinf (u, v;)=n+ Y dw,
j=1 j=1
so that Condition S is satisfied.

Now let us assume that Condition S holds but that M” is not pre-Leontief. Then
there is a row k of M with at least two positive coefficients, m;, and my, say. Thus, the
kth row of the inequality Mu =r takes the form

Myss = N — Myl — ), Ml
j=1
ilvés,r
and a similar inequality holds for v. Set u, = 1/my, u, = —1/my,, vs = 2us, v, = 2u,, and
u; = v; = 0 otherwise. Finally, set w =inf (4, v) and

n n
rj =min [ X mjuy, > mitvz],
=1 I=1

for all j. Then Mu =r, and Mv =r. But,

n

n
Y MW = Ml + Mo+ Y, MG,
=1 i=1

jEs,t

=rk—1a

so that the inequality Mw = r does not hold. 0O
Remark. Cottle and Veinott (1972, Corollary 2, p. 245) show that M " is pre-
Leontief iff the set

X7 ={ueR":Mu=r,uz0}

has a least element for each 7 such that X; is nonempty. This leads to an alternate proof
of Theorem 2.1.1.

In conclusion, we note that if the problems in Example 2 below are discretized, the
resulting finite difference or finite element matrices usually satisfy Conditions S and Z.
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2.2. Example 2. Let X = H{ (Q), where Q is a bounded domain (open connected
set) in R", and H¢ (Q) is the Sobolev space of once-differentiable functions vanishing
on 3Q (Adams (1975)). Then Y =X*=H '(Q). Let M be the linear self-adjoint
operator, '

d d
@21 M) = -3 (4,05 0),  reo,

at,~ at;
with coeflicients a;;(¢) which are continuously differentiable, where the indices i and j
are summed from 1 to n. It is assumed that —M is uniformly elliptic, so that

(2.2.2) Ya(&Ezalel?,  teq,

for all £ =(&)e R", and some constant a > 0.

Every x € H) hasa representation as a measurable function x(¢), and any two such
representations of x differ only on a set of measure zero. We write x =0 if x(£)=0 a.e.
(almost everywhere). P ={x € X:x =0} is clearly convex.

To show that P is closed, let {x,.} be a sequence of points in P which converges to
x € Hy. Then x,,(7) converges to x(¢) in L*()), from which it follows that x,,(£) > x (¢) a.e.
Hence, x(¢) =0 a.e. so that x e P.

Let x € Ho(Q). Then x =0 in the sense of H'(Q) if there exists a sequence {@m} of
functions ¢,, € C'(}) which satisfy ¢,,(1)=0 in Q and which converge to x in H Q)
(Lewy and Stampacchia (1969, p. 155)). If x =0 in the sense of H'(Q) then it follows
immediately that x(¢) = 0 a.e. Conversely, let x € Hg (Q) satisfy x(¢) =0 a.e. If £ denotes
the extension of x to R" obtained by setting £(¢) = 0 for ¢t ), we know that £ € Hg (R")
(Adams (1975, p. 57)). The averaged functions £, are smooth and nonnegative, and
they converge to £ in H'(R") (Adams (1975, p. 52)). If @i = £4|Q then ¢, > x in Q, and
we can conclude that x =0 in the sense of H'((2). We have thus shown that if x € H{ (Q)
then x =0 in the sense of H'(Q) iff x(f)=0 a.e. This is of importance to us because
Stampacchia and his colleagues use =0 in the sense of H'(Q).

H} is a vector lattice: if x, yeH o then the functions

(2.2.3) sup (x, y)() =sup (x(t), (1), teQ,

inf (x, y)(¢) =inf (x(¢), y(¢)), te,
are representations of elements in Hg. (Lewy and Stampacchia (1969, p. 169) prove
that H '(Q) is a vector lattice, and their proof can be readily adapted to the present case.)
Another very useful property of H o is that if x e Hy and F is a measurable subset
of Q) on which x(¢) is constant then (Lewy and Stampacchia (1969, p. 169)),

(2.2.4) I lgrad x(1)|* dt =0.

As defined in (2.2.1), the operator M can only be applied to functions u which are
twice differentiable. Let a: Hy X Hj > R ' be the symmetric coercive bilinear operator
defined by

ou dv

(2.2.5) alu, v) =Y, L a)) 22 4y

We extend the domain of definition of M by regarding M as the mapping from X = H
to its dual space X* = H ' defined by

(2.2.6) (v, Mu)=a(u,v) forallu, veHs.
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The standard theory of elliptic operators allows us to assert that M is uniquely defined
by (2.2.6) and that M is a homeomorphism of X = Hy onto X*=H "' (Lions and
Magenes (1972, p. 207)).

THEOREM 2.2.1. M satisfies Conditions S and Z.

Proof. To prove Condition Z, let u, v € P and inf (4, v) =0. Let 4 vanishon F < Q)
and v vanish on G < (). Then, using (2.2.4), we conclude that

ou Jv
a(u,v)= a;(t) — —dt,
(u, v) ZL ’()at,-at,-
ou av ou av
= a,~~t———-dt+j a;(t)——dt=0
Z.L ’()ati ot G-F ’()at,» at;

so that Condition Z is satisfied.
Stampacchia (1965, p. 205) proves that Condition S is satisfied. [

3. The linear program, the dual linear program, and the least element
problem. With the notation of § 2, the linear program (LP) is:

(3.1 (LP) Minimize (x,p) subjectto Mx+q=0.

xeP

The dual program (LDF) which is (formally) dual to LP is:

(3.2) (LDF)  Maximize (—gq,y*) subjectto —M*y*+p=0,
where
(3.3) P¥ ={y*ec Y*.y*=0},

={y*e Y*:(u*, y*)=0 for all u*e P*}.
If x is a solution of LP and y* is a solution of LDF then,
(3.4) (x, p)—=(=q, y*) ={x, -M*y* + p) +(Mx +q, y*) 20,

so that the value of LP is always greater than or equal to the value of LDF. In particular,
if (x, p)+{(q, y*)=0 for some feasible x and y* then x and y* are optimal. It may,
however, occur that the two values are never equal, in which case there is a duality gap.
Since X is reflexive we know (Dunford and Schwartz (1966, p. 66)) that there is an
isometric isomorphism « which maps X onto X** = Y* and which is defined by

(3.5) (x, x*)=(x*, kx).
Let

(3.6) y*=«y,

where y € X (not Y), so that

3.7) (=4, y") =y, -

We assert that y*=0 iff y € P. First assume that y € P. Then, for any u*e P*
(y, u*)=0, so that y* = 0. On the other hand, suppose that y* =0 but that yg P. Then,
since the singleton {y} is compact and the cone P ={x € X : x =0} is closed and convex,
these two sets can be separated (Dunford and Schwartz (1966, p. 417)). That is, there
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exists a linear functional f€ Y and constants £ >0 and ¢ such that
(x,f)=c ifxeP,
y,H=c—e

Using the properties of P we conclude that ¢ =0, so that f € P* and (y, f)=—¢. But
(y, fY=(f, y*)=0, and we have a contradiction.
Finally, for any u € X,

(u, M*y*y=(Mu, y*), (definition of M*)
=(Mu, «y), (equation (3.6)),

(3.8)
=(y, Mu), (definition of )
=(u, My),
where we define the linear operator M: X > X*=Y by
(3.9) a(u, v)=(v, Mu) =(u, Muv).

Thus, — M*y*+p € P* iff —My +p € P*.
Summing up, we see that y* satisfies LDF iff y* = xy where y solves:

(LD) Maximize (—y,q) subjectto —My+p=0,

yeX y ;0,

and we will take this to be the dual of LP in our further work.

Since X is partially ordered, we may also consider the least element problem (LE):
Find x € P such that Mx +q =0 and x = u for every u € P satisfying Mu +q =0. LE has
at most one solution, for if x; and x, were two solutions we would have x; = x, and
x2 = x; which implies that x; = x,.

In the special case X = R", there exists a very satisfactory theory for LP and LD,
and Mangasarian (1976) used this as the starting point for his study of the relationship
between LP and LC (the linear complementarity problem). LE has also been studied
in the finite dimensional case (Cottle and Veinott (1972)).

The case when X is infinite dimensional is much more difficult. It is usually
assumed, for example by Ekeland and Temam (1974, p. 66), that the Arrow-Hurwicz
constraint qualification is satisfied, namely that there exists u € P such that Mu +q is an
interior point of P*. An example of Craven (1977, p. 331) illustrates the difficulties
which can arise when P* does not have any interior points and when M is not an open
map. Dempster (1975) develops a general framework for the analysis of LP and LD.

In the present paper we prove the existence of solutions to LP and LE by using the
theory of variational inequalities. We do not prove the existence of a solution to LD,
although in § 6 we give an example in which LD does have a solution.

4. The linear complementarity problem, the variational inequality, and the uni-
lateral minimization problem. The linear complementarity problem (LC) is as follows:
Find x € P such that

4.1) (LO) Mx +q=0, (x, Mx +q)=0.
The variational inequality (V1) is: Find x € P such that
4.2) (\%)) alx,v—x)+{v—x,q)=0,

for all v e P.
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If a is symmetric then the unilateral minimization problem (or quadratic pro-
gramming problem) (UM) is: Find x € P such that

4.3) (UM) Jx)=J(u) forallueP
where
(4.4) J(w)=a(u, u)+2(q, u).

The basic result on variational inequalities is due to Stampacchia (1964): if a is
coercive then there exists a unique solution to VI.

The connection between VI and UM was also observed by Stampacchia (1964): if a
is symmetric and coercive, then VI is equivalent to UM.

The relationship between VI and LC was noted independently by a number of
workers including Lions and Stampacchia (1967, p. 172), Karamardian (1971), Moré
(1971). The basic result is (Cottle (1976, Prop. 1, p. 181)):

THEOREM 4.1. LC is equivalent to VI.

5. The relationship between the linear program, the least element problem, and
the linear complementarity problem.

THEOREM 5.1. If a is coercive and satisfies Condition Z, then LE has a solution,
namely the unique solution of VI.

Proof. The proof is a modification of proof of Stampacchia (1965, p. 151) who
implicitly used Condition Z in the special form: if u, v € P and inf (4, v) =0 then
a(u,v)=0.

Let u be the unique solution of VI so that u € P and

a(u,v—u)+(v—u,q)=0

forallveP.

In particular, choosing v = u + w for any w € P we conclude that Mu +q =0.

Now let w be any element such that w € P and Mw +q =0. We assert that w = u.
To see this, let {=min (4, w)e X, so that w—¢=0 and u—¢=0. Furthermore,
inf(w—=¢ u—¢)=inf (w, u)—¢=0.

Then

au—¢Lu—-=[a {—uw)+{—u q)l—[alu, {—u)+{{—u, q)],
é[a({’ {_u)+(§_u’ Q>],

because u satisfies VI. But

all,{—uw)+{{—uq)=aw—{u—-{)+[a(w, {—u)+{—u q)],

=0,

because the first term on the right is nonpositive by Condition Z and the second term is
nonpositive since Mw+q =0 and { —u =0.
Combining the above inequalities we see that a(u —¢, u—¢)=0. Remembering
that a is coercive we conclude that u = {. Thus, w = ¢ = u so that u is a solution of LE.
THEOREM 5.2.
(i) If p is positive and x solves LE then x solves LP.
(ii) If a satisfies Condition S and p is strictly positive, then LP has at most one
solution.
(iii) If a satisfies Condition S, p is strictly positive, and x solves LP then x solves LE.
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Proof. (i) is obvious. To prove (ii), let x; and x, be two solutions of LP. By
Condition S, ¢ =inf (x4, x,) € P satisfies M{+q =0 and ({, p)=(x1, p). Since x is
optimal, ({, p) = (x1, p) and we conclude that ¢ = x;. Similarly, { = x,, so that x; = x,.

To prove (iii), let u € P satisfy Mu + q =0. Set { =inf (i, x). Then M{+q =0 and
(¢, p)=(x, p) so that { = x. Hence, u Zx and x solves LE. [

Remembering that if a is coercive and a satisfies Condition Z then a satisfies
Condition S (Theorem 2.1) we find the following:

THEOREM 5.3. If a is coercive and satisfies Condition Z, and if p is strictly positive,
then LP, LE, VI, and LC all have the same unique solution.

THEOREM 5.4, Assume that x solves VI, that y solves LD, that (x, p)+(y, q)=0,
that a is coercive and satisfies Condition Z, and that p +q = 0.

Then y = x.

Proof. Set w =inf (x, y). Then

ax—w,x—w)=al(x—y,x—w)+a(y—w,x—w),
Salx—y, x—w),
since y—w=0,x—w=0, and inf (y —w, x —w) =0. But,
ax=y,x—w)=alx,x—w)—a(y,x—w)
=a(x,x—-w)—a(lx—w,y)
=a(x,x—w)+{x—w, —1\7Iy>

=la(x,x—w)+x—w,@)]—-(x—w,p+q)+{(x —w, ~My+p).

The first term on the right is negative because x solves VI. The second term is negative
because p +q € P* and x — w € P. The third term is zero because the equality

0=(x, p)+(y, ) =(x, —My + p)+(y, Mx +q)

implies that (x, —My + p) =0 and hence, since 0= w = x, that (w, —My + p) = 0.
Combining the above, we conclude that a(x —w, x —w)=0 so that x =w. Then
y=Zw=inf(x,y)=x. O
It may be observed that if x solves LP, y solves LD, (x, p)+(y, q)=0, and y = x,
then we have that

0=, Mx+q)=(y, Mx+q)=0;
that is, x solves LC.

6. A one-dimensional problem. We consider a special case of Example 2 (§ 2.2):
X =H;(0,2),

2

min (x, p) = I 1x(t) dt subjectto x(t)=O0Oa.e., and
0

6.1)
Mx+q=—-i(t)+(t—1)=0,

with the corresponding dual problem

2
max (y, —q) = —J’ (t—1)y(t) dt subjectto y(t)=O0a.e.,

0

6.2) .
~My+p=y(t)+1=0.
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The inequality —X +(# — 1) 20 is interpreted in the sense that
2

6.3) (0. My +)= | 3060+t D] dr20,
for all nonnegative ¢ € H(0,2), and the inequality j+1=0 is interpreted in the
same way.

This problem was chosen because it is a simple problem with the same general
structure as the problem for a cavitating journal bearing which is discussed in the next
section.

There is a straightforward procedure for obtaining possible solutions of such
one-dimensional problems; these solutions can then be varied a posteriori. We
assume that x(¢)>0 for 0<t<r and x(¢)=0 for r=¢=2, where = is an unknown
constant corresponding to the free boundary (the point ¢ = 7). If x also satisfies LC then
(x, =%+ (t—1))=0, so that —x(¢)+(¢— 1) =0 for 0=¢=1. The general solution of the
equation —¥+(t—1)=01is

(6.4) x(1)=A+Bt+&(t—1)>.
Using the conditions x(0) = x(7) = 0 to determine the constants A and B we find
(6.5) x(t)=t(t—7)[-3+t+7]/6.

- To determine = we note that the condition —x + (¢ ~1)=0 implies that for all
smooth nonnegative ¢ € H{ (0, 2),
2
(o, Mr+a)= [ Lig+(t— 1)) dr

0

- 2
=J' [x¢+(t—l)¢]dt+j (t=Deadt
0 T

T

(6.6) = spls+ |

0

[=Xe+(t—1)¢] dt+J (t—1)edt

2
=)€(T—)¢(T)+I (t—1)pd:t

0.

This is only possible if 7 =1 (so that t—~1=0 for €[, 2]) and #(r~)=0. But, x (1) =0
for t=1 and x(7) =0 so x(r—)=0. We conclude that x(7—)=x(r+)=%(7)=0. The
condition x(7) = 0 leads to an algebraic equation for 7, namely,

*(r)=7[-3+27]/6=0;

thus, =35 and

_3y
6.7) x(t)={t(t /6, g

0,

is our trial solution.

Using (6.6) and (6.7) we see that x is such that x =0, —X+(t—1)=0, and
(x, Mx +q)=0, so that x is a solution of LC. Invoking Theorems 4.1 and 5.3, we
conclude that x is the unique solution of LP.

We now assume that 0 = (x, p)+(y, q). Since {x, y + 1) =0, it follows that y (1) + 1 =
0 when x(¢) >0, that is, when 0 <t < 7. On the other hand, since (y, =X +(t—1)) =0, it
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follows that y(¢z) =0 when —x +(t—1)>0, that is, when 7 <t<2. We conclude that
y(t)+1=0for 0=t=3and y(t) =0 for 3=t =2. Solving this boundary value problem
we obtain

6.8) y(6)= {t[—2t+3]/4, g

0,

The condition y =0 is seen to be satisfied.
Direct computation yields

2 2

x@ di=t=— [ =Dy di=—(y,a)

0

©9) wp)=

0

The solutions x(¢) and y(¢) are plotted in Figure 6.1. We note that y = x as proved
in Theorem 5.4.
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]
[]
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12 ]
]
]
]
H
3

=]
[SEN

i 1 3 2
FI1G. 6.1. x(¢) and y(t).

It is possible to give two justifications for the free boundary condition x(7) =0.
Firstly, if x € H, 2(0, 1), as is often the case, then % (¢) is continuous so that X () = X(7+) =
0. Secondly, a reasonable interpretation of the condition —x(7)+ (7 —1) =0 is that

. x(r+At)—x(t—Ap)
lim — +
At—>0 2At
Since x (7 +At) =0 and x(r —0) =0, it follows that x(r —0) =0.

(r—1)=0.

7. Lubrication cavitation of journal bearings. A large number of physical prob-
lems can be formulated as linear complementarity problems in which a differential
equation (ordinary or partial) must be solved subject to the inequality constraint that
the solution be nonnegative; roughly speaking, at any point the solution must either be
zero or satisfy the differential equation (Cryer (1977), (1979), Duvaut and Lions
(1972)). The reformulation of such linear complementarity problems as linear pro-
grams has two advantages: (i) it suggests alternative methods of solving the problems;
and (ii) it sometimes provides a physically meaningful interpretation. As an example of
such linear complementarity problems we consider here the problem of a cavitating
journal bearing.

A journal bearing consists of a circular cylinder (the journal) which is rotating
inside a support structure (the bearing). The narrow gap between the journal and the
bearing is filled with a thin film of lubricating fluid. Various geometries are possible. In
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Fig. 7.1 we show a partial journal bearing of finite length. The term ‘partial’ refers to the
fact that the journal is not completely enclosed within the bearing, and is partially
exposed to the atmosphere.

F1G. 7.1. A partial journal bearing.

Itis required to determine the pressure x of the lubricant, and the load W borne by
the bearing. Because the gap between the journal and the bearing is very narrow, the
simplifications of lubrication theory can be applied. In particular, it is assumed that the
pressure does not vary across the gap, so that the problem becomes a two-dimensional
problem in the rectangular domain ) = ABCDEF in the 6z-plane (Fig. 7.2).

N
D C
vapor x=0 Q
>
iquid -
sy
E e >
- Q. z
~
- ~
~ -
- _ Py
F A

F1G. 7.2. The domain ().
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The lubricant flows in from a reservoir along the entry edge AF and flows out
through the ends ABC and DEF as well as through the exit edge CD. At all these points
the lubricant is in contact with the atmosphere, and if the pressure is normalized so that
atmospheric pressure is zero, then the boundary conditions are that x = 0 on 9Q). That is,

(7.1) xeX=H(Q).

The lubricant occurs in both liquid and gaseous phases. It is assumed that the
lubricant vaporizes when the pressure is zero, so that the inequality x =0 must be
satisfied everywhere. If the pressure is greater than zero then the lubricant is in the
liquid phase and satisfies the simplified form of the Navier-Stokes equations known as
Reynolds’ equation. After introducing dimensionless variables, the equation takes the
form (Pinkus and Sternlicht (1961)):

o 38x) 28<36x) dh
. =-——(RPE)-2 (P E)+Z =,
(7.2) Mx+q ae(h 0) "% 5\"az) e ="

where a is a positive constant, and where h = h(6) is a given function which is
proportional to the width of the gap.

On the free boundary I', the interface between the liquid and gaseous phases, the
boundary conditions are

(7.3) x=0, ax/on =0, onT,

where 3/dn denotes the normal derivative.

In the engineering literature (Pinkus and Sternlicht (1961)) the problem is
formulated mathematically as a classical free boundary problem: Find x and I' such
that x satisfies (7.2) subject to the boundary conditions (7.1), and (7.3). However, in a
large number of papers in the engineering literature, beginning with the work of
Christopherson (1941), numerical approximations have been obtained in a completely
different way: equation (7.2) is replaced by finite differences, and the resulting system of
algebraic equations is solved as a finite-dimensional linear complementarity problem
(Cryer (1971)) which may be considered as a discretization of the infinite-dimensional
linear complementarity problem

(7.4) x=0, Mx+q=0, (x,Mx+q)=0.

We may thus take (7.4) as the starting point for a mathematical analysis of the problem.
The problem is a special case of Example 2 (§ 2.2), and it follows from Theorem 5.1 that
there exists a unique solution x € Hg (Q) of LE, VI, and LC.

In the engineering literature, there has been some discussion of an appropriate
variational principle for the problem (Christopherson (1957)). The formulation as a
variational inequality leads to two useful variational principles:

(1) Since a is symmetric, the problem is equivalent to the unilateral minimization
problem

inf J(v) =a(v, v)+2{v, q).

v=0

(2) For any strictly positive function p(6, z), the problem is equivalent to the linear
programming problem

min (x, p)= L x(6, z)p(0, z) do dz,
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subject to x =0, Mx +q =0. In particular, if —7/2 <6 <6p <m/2 (see Figs. 7.1 and
7.2), then p =cos 6 >0 and (x, p) is the load W borne by the bearing in the vertical
direction (Fig. 7.1). That is, the solution x minimizes the vertical load.

After completing this paper, we became aware of the work of McAllister and
Rohde (1976) and Cimatti (1977) where the journal bearing problem is also considered
using variational inequalities.
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whom they had many helpful discussions. The authors also appreciate the helpful
comments of the referee.

Note added in proof. Further references on variational inequalities include: H.
BRrEzis (1972), Problémes unilateraux, J. Math. Pures Appl., 51, pp. 1-168. U. Mosco
(1969), Convergence of convex sets and solutions of variational inequalities, Advances in
Math. 3, pp. 510-585.
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NECESSARY CONDITIONS FOR OPTIMALITY OF ELLIPTIC SYSTEMS
WITH POSITIVITY CONSTRAINTS ON THE STATE*

P. MICHELT

Abstract. Recently, necessary conditions for optimality were established in the case of nonlinear elliptic
multi-dimensional systems with integral constraints [P. Michel, Condition nécessaire d’optimalité pour des
systémes d’équations elliptiques non linéaires, Quatriemes journées de contrdle (Metz, 18-21 Mai 1976),
polycopié Université de Metz, 1976]. Here this problem is solved in the case of additional constraints of
positivity of the state’s components on measurable sets.

Introduction. The study of necessary conditions for optimality of partial differen-
tial systems was a long time limited to the case without constraints on the state [3], [7],
[1]. Recently, these limitations were partially removed: in [2] there is a statement in the
case of integral constraints (and it seems correct only for inequality constraints); in [5]
and [6], there are necessary conditions, respectively for elliptic and parabolic systems,
in the case of nonlinear equations, finite-dimensional state and integral constraints.

The present study sets the necessary conditions in the case of additional positivity
constraints, like y(x) =0 on a given measurable set; such constraints are useful in the
applications.

1. Problem statement. Let us consider the following optimal control problem.
Problem (P): minimize the cost functional

J go(y(x), x) dx
(9}

for y € V and u an admissible control such that:

1) for 1=l=mo: Ai(u) - y(x)+fi(y(x), u(x), x)=0a.e.in Q,
forlsk=m:y.(x)=0a.e. in 3Q;

2) u(x)eU(x) a.e.in Q,

3) for 1=i=i,:f, g(y(x), x)dx =0,
forip+1=i=i; :]Q gily(x), x)dx=0;

4) forl=k=m:y(x)=0a.e. in Q,

where Q is an open bounded subset of R”; d{) denotes the boundary of Q; U is a
topological space and for each x € Q, U(x) isasubsetof U;for 1=k =m, fi(l=]=m,)
and g;(0=i=1,) are real-valued functions respectively defined on R™ X U X () and on
R™ x Q, which are of class C' with respect to the first variable, i.e., such that for each
v € U and almost every x € (), the functions

z->fi(z,v,x) and z-g(z, x)

are of class C' in R™.
For 1=k =m, Q) is a measurable subset of ).
For 1=1[=m,, the elliptic operator A,(u) is defined by:
m n n a a)’k m
®) AWy =% T T (anlr u00) TE®) + ¥ bulr, uC)yex)
j =

k=1i=1j=10X;

* Received by the editors November 17, 1978, and in revised form March 5, 1979.
T Université de Paris I, C.M.E. (Panthéon 219), 75231 Paris CEDEX 05, France.
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with realvalued functions aijx and by, defined on QX U. The state y=(yy, ", Ym)
belongs to the space V = H§(Q)™, H (€ denoting the Sobolev space

d
{z eL%Q)'é;Ze L¥Q) (1=i=n)andz=0o0n aQ}.
y € V is a solution of (1) iff it satisfies: for 1 =1 = m, and for ¢ € H} ()

o k,Zu L At (x, u(x)) Tyk 52 dx +% L bia(x, u(x))yre dx

+ J fily(x), u(x), x)e(x) dx =0.
Q
Let y € V be fixed, and q, r and s be positive integers such that

1
(7) q>2; lg__l. p=—d . 4

’

q 2 n q-1 ~ q-2

An admissible control u is a measurable function from Q) into U which verifies (2).
A regular control is an admissible control which verifies: there exist C,(x) € L*(€)) and
d, =0 such that

u(x)eU(x) a.e.in(,
aijkl(x’ u(x )) € LOO(Q) Vl’ j, k’ lr

(8) bi(x, u(x)eL*(Q) Vk, |,
fi(y(x), u(x), x)eL"(Q) VI,
afy

——(z u(x), x)| = Cu(x)+dy|z|*%, Vk I VzeR™
S denotes the set of regular controls.

2. Assumptions. Let & be a regular control and j be a function in V which satisfy
conditions (1), (2), (3), (4).

Assumption 1. There exist C(x)e L'(Q) and d =0 such that, for 0=i =i, zeR",
and lsk=m

) ~ a8;

—(z, x)) =C(x)+d|z|* "

Assumption 2. For every measurable function (z(x), v(x)) from Q into R™ X U, all
the functions:

flz(), 00, 1) and L(z(x), v(x), ),
Az

gi(z(x),x) and %(Z(x),v(x),x),
9Zy

aiim(x, v(x)) and  by(x, v(x))

are measurable.
Notation 1. For xeQ, ve U(x) and Y = (yo, y1,* -+, ya) € ®R™)""" let h(x, v, Y)
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be the point Z =(zo, - -, z,) € (R™)""" whose components are, for 1 == m,

Zol =fl()’0, v, x)+kzl bkl(xa U))’Ok,

m

za= Y Z aii(x, v)yy V1I=i=n

k=1j=1

n+1

Assumption 3. For almost all xeQ and for every Ye(R™)"", the set
h(x, U(x), Y) is a closed convex set; for any measurable functions Y(x) and Z(x)
verifying Z(x) € h(x, U(x), Y(x)) a.e., there exists a measurable function v(x)e U(x)
such that Z(x)=h(x, v(x), Y(x)) a.e.

Notation 2. V, denotes the space H ().

Assumption 4. For each y’ belonging to the dual space Vi of Vo, there exists at
least one solution y € V of the linear system:

m

forl=l=mo:A(iF) - y(x)+ Z f( y(x), @(x), X)ye(x)—y; =0.

Notation 3. For xe Q,veU and p=(p1, -+, Pm,) € Vo, One sets
(10)  H(p, v, x) =lefz()7(x), v, x)pz(x)+2 bri(x, v)yi (x)pu(x)

+ Y agalx, v) (x) "‘"( ).

ikl 9x;

’"0

Assumption 5. For each p € H{ (Q)
inf H(p,v,x)= mf H(p,u(x),x)a.e.in (Q;

veU(x)

the infimum on S is taken according to the order on L' ().

Remarks. The usual assumptions (see for example [2], [7]) involve these
assumptions. The convexity assumption 3 is the only nonstandard assumption:
generally U (x) is a fixed finite-dimensional convex set, all the functions are assumed to
be differentiable with respect to the control, and the conclusion is the maximum of
(0H/av)(p, i(x), x) - v; to obtain the maximum of the Hamiltonian H, one needs then
additional convexity assumptions which are quite stronger than Assumption 3. The
existence of a solution of the linearized system of (1) (Assumption 4) is satisfied in the
usual case m,= m with the coercevity conditions.

3. Necessary conditions of optimality.
Notation 4. The adjoint operators of A(u) and (3f/3z)(y(x), u(x), x) are respec-
tively defined by their components, for 1=k =m:

(11) (AW)* plh= Z aa (al,k:(x, u(x)) -*-)+Z bia(x, u(x))pi(x),
(12 (Zgeo, uw, 0% p) =3 L300, ute), op0):
0z k 10Zk

THEOREM. Let (y, i) be an optimal solution of problem (P) with ii a regular control,
and Assumptions 1 to 5 be satisfied. Then there exist real numbers o; (0=i=i;) and
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p € Vo such that:
(1) pand a; (0=i =i,) are not all zero;
(2) for 0=i=iy, a; is nonnegative,
B) fori=i=iy, a; [0 gi(y(x), x) dx =0;
(4) the function y € V' whose components are

13 =A@ o+ (L300, 00,20 p) + % w2y, 2)
satisfies the properties for | =k =m

(14) Ve Y =0,

(15) yeHo(Q)andy(x)=0o0n Q >y - y=0.

(5) the Hamiltonian H(p, v, x) defined by (10) attains, for almost every x in Q, its
minimum on the set U (x) at i (x).

Remark. For Q; = & (1 =k =m), one obtains the result of [5]: yy =0and p is a
solution of the adjoint of the linearized system of (1). To illustrate the fourth conclusion,
let us consider the regular case where the functions y, may be identified with elements
of L*(Q) (that is if p € H3(Q)™); then one gets

Ve y= L Yi(x)y(x) dx,

and with the denseness of H(Q) in L*(Q), one obtains:
Y (x)=0 a.e.inQ,
ve(x)=0 a.e.in Q—Qy,
v(x)=0 a.e.in{x e Q; yu(x)>0}.

The first part of the proof of the theorem. This is identical with the proof in the case
without permanent constraints [5]. One sets, for a family A = (A,,),.cs of scalar measur-
able functions A,(x) in €,

IAl=% % (Au() @i (e, wx))lee+ A ()b (x, u(x))||c:

u ijk,l

A )T (), ux), 0)ller + A () Cu()llLs + dullru (0)llz=).

In the space E of the families A which satisfy: ||| < oo, ||-|| is a norm, and with this
norm, E is a Banach space. M denotes the closed convex subset of the A which verify:
VueS A, (x)=0 a.e., and Y A,(x)=1 a.e.; S becomes a subset of M by the cor-
respondence which associates to uge S the family (A,,(x) =1 a.e., and Vu # uo, A,(x) =
0 a.e.); A denotes the family associated to 7.

The same arguments as in [6] show that (7, A) is an optimal solution on V x M for
the problem obtained by substituting in problem (p) the system {for 1=/=
mo, Fi(y, A) = 0} to the system (1), where F,(y, A) is defined by

(16) F(y, A) =Y A()[A(u) - y(x) + fily(x), u(x), x)].

LEMMA 1. The functions F, are defined in V X E, with value in the dual of H o(Q);
they are strongly differentiable at (j, A) with differential

AN FGR0N=FGO+A@ v+ %(y(x), a(x), )y
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Proof. The proof is in [5, Lemma 3.4].

LEMMA 2. For 0=i =iy, the functions | g(y(x), x) dx are strongly differentiable at
y with differential

as) b0 = | 3 2 (500, mpet) d

Proof. The proof is in [5, Lemma 3.5].
Second part of the proof of the theorem. For 1= k = m, the function

-1, if O, is negligible,
ess supg, (—y(x)), ifnot,

(19) m)=|

is defined from L*(Q) into RU{+00}; it is convex and lower semicontinuous: the set

{(a, y) e RX L*(2); hi(y) = a} is a closed convex set. And the condition (4) of problem
(P) is equivalent to

(20) forlsk=m: h(y)=0.

All the results of [4] remain valid in the case of functions which are sums of strongly
differentiable functions and of lower semicontinuous convex functions, if some of the
one-dimensional components of the convex functions are valued in RU {+00}: there is
no modification of the notations, the statements and the proofs, which are all indepen-
dent of the possible infinite value.

The arguments of [6] show that (X, §) is an optimal solution of the problem
obtained by substitution in problem (p) of (1) by {for 1 =/ =m,: Fi(y, A) =0} and of (4)
by (20).

It follows from Assumption 4 that the differential of (Fi, - - -, Fi,,) at (¥, A)is a
surjection from V X M onto Vg, and the regularity assumption (3.4 of [4]) is satisfied:
the proof is the same as that in [6, Prop. 5.1]. According to [4, Theorem 3.5] there exist
real numbers «;(0=i=i,) and Bx(1=k =m), and p, belonging to the bidual of
H(Q)(1=1=my), which are not all zero, such that:

21) for0=i=iy: «;=0; andforl=k=m: pBr=0,
(22) forl=i=i,: a,-j g(y(x),x)dx=0;andfor1=k=m: Bh.(:)=0,
Q

and for each (y, A) € V X M verifying ly — 7| =1 and |A —A|=1:
(23)  Yaili(y ")7)+§.Bk[hk(}’k)"'hk(}7k)]+zlpl “Fi(7: ) (y=5A=1)=0.

The p; are identical to elements of H o(Q). Conclusions 2 and 3 of the theorem
result from (21) and (22). The «; and p; are not all zero: otherwise the 8, would be also
zero (from (22) and (23)), which is impossible. For A = A, ||y, — y«||= 1 and y, = y,(r # k),
one obtains, with inequality (23) and notation (13).

(24) Y * (Vi = Ji) + Bi[ A (yi) — hi (1)1 = 0.

If hi(3:)#0, then B, =0 (from (22)) and consequently yi =0. If Ax(3:)=0,
relation (24) gives v * 7+ =0 and vy - yx =0 for y, =ty), <1 and ¢>1: vy, verifies
relation (14); and for y, (x) =0 a.e. in Qy, hx(yr) =0and yx - yx = 0: thisis obtained with
tyr +(1—1)Jr, 0<t <1 such that t||yk —}7k” =1.
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To obtain the last conclusion, let us consider u € S and any measurable subset P of

Q; for y =y and the family A € M:

Au(x)=t, ifxeP, and A,(x)=0 ifx£P,

Aa(x)=1—t ifxeP, and Az(x)=1 ifxgP,

A,=0 forv#u and v#a
inequality (23) is

([ (H a0, 0~ Hp, 50, x) dx 20

this inequality holds for any measurable subset P of () and consequently
H(p,u(x),x)=H(p, u(x),x) a.e.in{.

The last conclusion results from Assumption 5. The proof of the theorem is
complete.

Assumption 6. For each y’e V', there exists at least one solution p € V; of the
linear system

A@* p+ L), a0, 0% p=y'
ya

COROLLARY. Let (y, @) be an optimal solution of problem (p), with i a regular
control, and assumptions 1 to 6 be satisfied. Then there exista; e R(0=i=i;),p€ Voand
4 € Vo such that

(1) p, 4 and a;(0=i=1i,) are not all zero;

(2) for 0=i=io, a; is nonnegative ;

(3) for 1=isip a;fqg([Fx), x)dx=0;

(4) pis a solution of

9 . agi, _
A@* 5+ L300, a0, 0% 5+3 B (5 x), 1) =0;
0z i a9z
(5) g satisfies the relations
. of _ _ A -
(a@* a4+ L5, ate), 2 3) - 5 =05
and for each y € V such that y(x)=0 a.e. on Qr(1=k=m)
. of _ _ .
<A(ﬁ)* g +5£(y(x), a(x), x)* - q) ~y=z0.

(6) The Hamiltonian H(p + 4, v, x) attains its minimum on U (x) at i(x), a.e. in ().
Proof. For y = (y1, " * * , Ym), there exists § € V, such that

A@* - i+ L300, 70, 0" 4=

Setting p = p — g, we see that the corollary is the transcription of the theorem’s results.

4. Extensions. The method which has been used, works in more general cases.
With additional terms in the operator A(u) like

Y. Cia(x, u(x)) %"'i(dikl(xa u(x))yr(x))
ik X; 0X;
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the single difference is the corresponding Assumptions 6 and 3. If the control appears in
the integrals (cost function and constraints):

| 6@, ut, x) dx
one need conditions

'ﬂg—i(z, u(x), x)

aZk

Sa,(x)+Bulz|*!

with a, € L'(Q), in the definition (8) of regular controls, and convexity conditions
(Assumption 3) for the modified function h(x, v, Y)=(Z, £), where Z is defined by
Notation 1 and £ R""" is defined by its components

for0=i=i;: & =gi(yo, v, x).
For parabolic systems and measurable subsets E; of 0, T[ X , constraints like
ye(t, x)=0 a.e.in E;
are equivalent to

ess sup (—yk (1, x)) =0;

the same method applies and one obtains the corresponding modified results of [6].
One important and easy generalization is possible to the case of constraints like:
ay1 y1 ay2
il X, X)y* s Vm s 9"'7—x"—_~x9."’
ei(x 3y, 2, - 20, 22 )
Ym
X,

(x)) =0 a.e.on{);

where ¢; is measurable with respect to x and lower semi-continuous and convex with
respect to the other variables.
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ADDENDUM: A NOTE ON THE LACK OF EXACT CONTROLLABILITY
FOR MILD SOLUTIONS IN BANACH SPACES*

ROBERTO TRIGGIANIt

The main result—Theorem 1.2—of [1], concerning the lack of exact controllability
in finite time for the system

S(t)xo+ I S(t—7)Bu(r) dr,
0

holds true within the class of locally L,-controls for all p > 1, but not for p = 1 as claimed
in [1]. Actually, lack of exact controllability over the finite interval [0, T] is guaranteed
even within the class of controls which are locally L,, p > 1, just near T.

As pointed out in [2], a slip has occurred in the inequality at the bottom of page 408
of [1] and, for p>1, we remedy it by the Hoélder inequality as follows (we use the
notation of [1]):

T

T
loa-uil=|| ST -0Bu at| =M. e“IBI | xir-.ollutol ar
T—e¢ 0

=M, e*|Ble"||d], >0 ase->0

where y is the characteristic function of [T — ¢, T] and

T 1/p
Il ={[ M a} ", 1pera= p>1

Hence Q, being the uniform limit of compact operators, is indeed compact as an
operator from L,[[0, T], U], p>1, into X.

However, for p = 1 and B onto X, the operator Q is not compact. In fact, we shall
show that, in this case, the image under Q of a finite sphere in L,[[0, T'], U]is dense in
the unit sphere of X. Let v be a unit vector in X. By strong continuity of S(¢), given § >0,
there is £ >0 such that

sup ||IS(T—1t)v—vl||<8.
0=t=T-¢
There exists « in U such that Bu = v. By a version of the open mapping theorem, 3,
Lemma 9, p. 194] as v runs over the unit sphere of X, the corresponding vectors u can
be taken in a finite sphere of U of radius, say, r. Define a control u(¢) by: u(¢)=0 for
0=t=T-eand u(t)=u/e for T—e <t=T. Then
T

il = | (ol e =l =7

and

T
J S(T—-t)Bu(t) dt—v

T
%I IS(T =)o — o] de <. QED.
T—¢

We finally remark that, as pointed out in [4, top paragraph, p. 481], when B is onto
X and S(¢) is a group, exact controllability on any [0, T'] does hold. In fact a controller

* This Journal, 15 (1977), pp. 407-411. Received by the editors March 16, 1979.
T Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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u(t) defined by Bu(t)=S(¢t— T)x,/T (which is continuous in ¢) steers the origin to the
desired final state x; over [0, T].
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THE “BANG-BANG” PRINCIPLE FOR THE TIME-OPTIMAL PROBLEM
IN BOUNDARY CONTROL OF THE HEAT EQUATION*

E. J. P. GEORG SCHMIDTY

Abstract. Following previous work by H. O. Fattorini, J. Henry and the present author it is proved that
the time-optimal controls associated with arbitrary reachable target temperature distributions in boundary
control for the heat equation (with bounds on the admissible controls) are “bang-bang”.

1. Introduction. In this paper the ‘‘bang-bang” property of time optimal controls is
proved in the boundary control problem for the heat equation with arbitrary reachable
target, under a mild assumption on the bound to which the controls are subjected
(satisfied, for example, if that bound is not the smallest one under which the target is
reachable). This property was first proved by Fattorini[3], for target functions satisfying
a deep (and not in general easily verifiable) sufficient condition due, in its general form,
to Russell [9]. Subsequently Schmidt in a paper [10] submitted to this journal in 1977,
and currently under revision, proved it for stationary (or steady state) targets. Recently
Henry [7], working in the context of distributed controls, presented an argument,
containing essentially new ideas, to prove the general result; unfortunately the proof
appears to contain a serious gap. This paper draws on ideas occurring in all the work
cited above; in particular we follow Henry in defining a norm on the (invariant)
reachable set to obtain a Banach space. Instead of applying the separation argument
which yields the ‘‘bang-bang” principle in that space, as Henry tries to do, we work in a
certain subspace, using an idea which we had applied previously to stationary targets.
We could have used a subspace employed by Fattorini, but instead work with the
subspace generated by states reachable from arbitrary initial states with 0 control, thus
bypassing the use of deep results from the theory of moments.

2. The heat equation and its solution. Let () be a bounded domain in R", whose
boundary 4Q is a C* manifold. Let A denote the Laplacian in R", 3/d» denote
differentiation in the direction of the outward pointing normal » to d{), a be a
nonnegative constant and B “=" a(d/dv)+1. We consider the following initial
boundary value problem, which describes the evolution of the temperature u(x, ¢) at
point x and time ¢ when the ambient temperature at the boundary is f(x, ¢) and the
initial temperature distribution is uy(x),

(;—L:(x, )=Au(x,t) forxeQ,t>0,

@ Bu(x,t)=f(x,t) forx €oQ, t>0,

u(x, 0) = uy(x) for x € Q).

Let H denote the state space L,({2) (with inner product (-, +) and norm ||-|), and L,
denote the space of controls L (8 x(0,0)) (with norm ||-||). In [3] Fattorini
introduced a notion of weak solution for the case a = 0 which can easily be generalized
to the case a > 0. Combining his methods with those of Glashoff and Weck [6] who
studied the latter case, one can show that for each uo€ H and f € L., (1) has a unique

* Received by the editors September 13, 1978.
+ Department of Mathematics, McGill University, Montreal, Quebec, Canada H3C 3G1. This work was
supported by the National Research Council of Canada under Grant A7271.
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weak solution with a lot of relevant properties which will be summarized in Theorem 1
below.

We recall first that the self-adjoint operator obtained when the Laplacian is defined
on a suitable domain of functions satisfying the boundary condition Bu(x)=0 has a

complete orthonormal system {¢,}%-; of eigenfunctions corresponding to negative
eigenvalues {—A.}%~1 arranged in decreasing order:

(2) Aqak = —)(k(pk in Q, B(pk =0 ond.

Moreover, asymptotically,
3) A ~CE>"

where C is a certain positive constant, and the eigenfunctions belong to C*(Q)), and
satisfy estimates

4) sup |D'gi(x)|= Ck™,

xef)

where D" is any partial derivative of order r and C, and m, are suitable positive
constants. For more details and proofs see Agmon [1].

Finally, before stating the theorem, we define a family of translation operators J; in
Lo by

Ll =f(s+t) ifs=0,

0 for0=r=ls|,
f(s+1t) fort>|s|,

®)

[f1) = { if s <0.

THEOREM 1. Foreach ug€ Hand f € L there exists a unique weak solution u(x, t) to
(1); this function belongs to L,(Q % (0, T)) for each finite T >0, and also to C*(Q %
(0, 00)). For each t >0, u(- , t)€ H and moreover can be represented as

u(-, )=V +S.f,

where

(@) {Vi}lzo is a strongly continuous semi-group of linear contractions on H ;

() S.: Lo~ H is continuous from the weak™-topology of L« to the norm topology
on H,

(c) foreachty, t;=0 one has

(6) St1+t2f= VvtzStlf'*‘ St2Jt1f;

(@) if uo(x) and f(x, t) are essentially bounded below by m (or above by M) the
same is true for u(x, t);

(e) (M) Vic+S.c=c
(where c is to be interpreted as the constant function);

® © IS Al =1 Vel llo) =l lloll

where ||fll is to be interpreted as a constant function on ;

(g ) Vo= :21 e " (uo, Pr)Px;
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W (10) sr= 5 [[ [ 610170, as, s

where ¢3%(v) is equal to i (y)/a if a >0, and —d¢/ov if a =0, and where dS,
denotes an element of area of ().

We comment only on the proof of (f). From the maximum principle (d) it follows
from

Nl =£x, = fllo

that also

_[St“f“oo](x) =[Sflx)= [St“f”oo](x)a

and hence using also the obvious property (e) (which like the maximum principle (d)
depends on the fact that the constant a in B appears where it does) implies that

{[Srf](x)l = [Sr”f”oo](x) = "f"oo -[ Vt"f"w](x),

from which the estimate (8) follows at once.
3. Properties of the reachable set. We define, for each upe H, t>0and L < L
(11) R, (uo; L)={v € H: there exists f € L with v = Viuo+S,f}.

It is well known that R,(uo, L) is always dense in H (a nice proof is given in MacCamy,
Mizel and Seidman [8]). It is also known that the function 0 always belongs to
R,(uo, Lo). This property, known as null controllability, was proved for general
domains by Russell in [9], but can also be deduced from null controllability for balls
(established by more elementary means in Fattorini and Russell [5]) using an extension
argument suggested by Seidman in [12]. An immediate consequence, in fact a refor-
mulation of the property of null controllability, is

(12) Vt(H) < St(Loo), for each ¢t >0.

From this fact one obtains a simple proof of the invariance of the reachable set which
was proved by Henry in [7] using a previous result of Fattorini [2], and which is also
proved in Seidman [13].

THEOREM 2. R,(u¢; L) is the same set for all up€e H and t>0.

Proof. Note first that an immediate consequence of (12) is the fact that
R/ (u¢; Lo) = R,(0; L), so we only have to prove that R (0; Lo) = R,(0; L) where
s <t. Given S,f € R,(0; L) it follows from (6) and (12) that

S.f = VSi—sf +S:(Ji=sf)
= Ss[fl + (Jt-sf)]

for some f; € Lo, so that S,f € R;(0; L) and R,(0; L) < Rs(0; L.). Conversely, given
S.f € R;(0; L) one can deduce from (6) that S;f = S,(J;—.f) € R:(0; L»); hence also
R;(0; L) = R/(0; Loo).

Now let R denote the set R,(0; L). Since R is the range of S, for each >0, one
can define on R norms

(13) lolle = inf {l fllo : f € Leo, S.f = 0}

In this way one obtains a Banach space (R, || ||;) isometrically isomorphic to the quotient
space Lo/N(S;) (where N (S,) is the null space of ;). These norms are in fact equivalent
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since, if s <, the identity S,f = S,(J,_.f) implies that
(14) loll = llolls

so that the closed graph theorem implies the equivalence of the two norms. For the sake
of definiteness we define ||v||lz =||v];. The injection I: R - H is continuous; for each
f € L such that v = S, f one has

loll = 151 £l = 1811l 5 o 0| flleos

where B(L«, H) denotes the bounded, linear operators from Lo, to H and || |z is
the operator norm. Hence ||v|| =S|l 5c.m)llv] |z Since R is dense in H, the adjoint map
I*: H->R*is 1-1.

4. The ‘“bang-bang” property of time optimal controls. Let L, =
{feLo:|fllo=M}. Given uy, u;€ H such that u; € R,(uo, Lys) for some t>0, the
time-optimal control problem is to find f, € Lys such that

uy =V, uo+S., fy, wheret,=inf{t>0: u; € R,(uo; Ln)}.

The existence of such a control f, is standard (and follows easily from the properties of
Vi and S, described in Theorem 1). The “bang-bang” property of fy is that f, is an
extreme point of Ly in Lo; in other words that f,(x, ) = +M almost everywhere on
3€) X (0, t4). The precise statement of the theorem, and its proof, involves the subspace
X of R which is obtained as the closure in R of U ,~o V,(H).

THEOREM 3. Given uge H and u,€ R. Suppose u, € R,(uo, Lps) for some t>0,
where

(15) M >distg (41, X) =inf {u;— vl :v € X}.

Then there exists a nontrivial solution w(x, t) to the adjoint heat equation

ow
(16) _5_[_()6’ t)+Aw(x’ )=0 fO?’xGQ,tG(O, t*)’

Bw(x,t)=0 for xeaQ, te(0, ty)

such that the function w’(x, t), defined on the boundary by wl(x, t)=(w(x, t))/aifa>0
and by w’(x, t) = —(0w/dv)(x, t) if a =0, does not vanish on any set of positive measure,
and such that the time optimal control f, is given by

17 fulx, ) =M sgn w’(x,t) for xeQ,te(0,t,).

We precede the proof of this theorem by three lemmas.

LEMMA 1. Let uy € R, and suppose M > distg (u1, x). Then for each t > 0 there exists
vi€x and g, € Lo such that u, = v,+S.g, and ||gl, <M.

Proof. From the hypothesis and the definition of X it follows that there exists v € X
with |lu; —v||r <M. By the definition of ||:|z =||-|l;, there exists g€ Lo such that
u,—v=_5,g with ||gllo<M. Now, if t=1, S;g=5,(J;-.g) and so u;=0v+S,(J1_.g8);
while, if <1, S:1g=Vi(S1-g)+S.(J1-.g) and so in this case u;=
[v+ Vi(S1-g)]+ S:(J1-.2). In both cases the assertion holds.

LEMMA 2. Let V, x : H - X denote the operator V, regarded as a map of H into X.

(a) V,.xis a bounded, linear operator.

(b) Suppose € X* and | # 0; there exists €°> 0 such that

Vex*#0 foreache <e°.
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Proof. The boundedness of V, x follows from the closed graph theorem, using the
continuity of the operator V;: H » H and of the immersion /: R »> H.

Suppose now that (b) does not hold. Then there exists a sequence &, | 0 such that
V..x*l=0. For each t>0 one then has, with ¢,<t, V,x=V, xV, . and hence
taking adjoints, V x*I=V,_. *V, x*I=0so that V, x*I =0 for each > 0. Thus for
anyueH

(‘/I,X*l’ u)=<la ‘/t,Xu)zoa

and by definition of X it follows that / = 0, a contradiction. (Note: here (/, v) denotes the
actionof /e X*onveX.)

The final lemma is of interest in itself.

LEMMA 3. Suppose u, € R and that there exists f € Lo with ||fllo<M such that
uy = Viuo+ S.f. Then for & >0 sufficiently small one can find f. € Lo with ||fllo <M such
that uy = V,_ uo+ Si—fe.

Proof. Using the semi-group property of {V.},=o and (6) one has

U= V:—suo + St—e (Jef) + ‘/t—E(VsuO - uO) + Vt—e (Sef)

Let 0 <8 <3(M —||fllo). We show that for ¢ sufficiently small, one can find f; . and 5. in
Ls such that

‘/t—e(VeuO - uO) = St—efl,ea

and

‘/t—e(ssf) = St—efZ,e-

Then, letting f, =J.f+f1.+f>. one has the desired result. Note first that, setting
we = V.uo— uoor S, f it follows from the strong continuity of the semi group { V,},=0 and
from (8) that ||w.||—> 0 as £ > 0. Now since V,x = V, xV,—, when s <t one has

| Vxllaax) =1 Vixlaaoll Vi-sllaem = | Vexllpax)-

Hence by the equivalence of the norms ||+ ||, and in particular by (14) it follows that for
e<t/2

IVicexWelli—e = VicexWelly2
= C” ‘/t—e,st ”R

= Ol Vi—exlleaxllwell = Cll V2 xlsaxollwell;

thus for ¢ sufficiently small |V,—. W.|.—- <8. Applying this estimate to the two
alternatives for w,, and using the definition of ||-||—. one obtains f; . and f,..

We now come to the

Proof of Theorem 3. By Lemma 1 we can write u; = v1+S,,g: with ||g1]o <M and
v1€ X. Then

(18) C ={v e X: there exists f€ Ly with v =S, (f—&1)}

is a closed convex setin X. Since 0 =S, (g1 — g1) and g; € Las one has 0 € C. Moreover 0
lies in the interior of C; for the norm equivalence |v||,,=Cllv[r implies that if
ol < C~'[M —||gillo] =6 one can find k€ L, such that v =S, h, in which case v =
S, (f—g1) withf=g,+heLy,sothatveC

Since uy =V, uo+S., fx=0v1+S5,81 one has that v, — V, uo=5,,(fx—g1); since
fx€La and v, — V, uo€ X it follows that v; — V, uo € C. For the separation argument
which proves the “‘bang-bang” property of f, it remains to prove that v;— V, up is a
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boundary point of C. Suppose v, — V,_uis not aboundary point; then, since 0 lies in the
interior of C, there exists » with 0<r<1 such that r (v, — V..uo) € C. Thus, by the
definition of C, there exists f in La with 01—V, uo=rS, (f—g1). Letting fi=
rf+(1—r)g1 one has v1— V, uo= S, (fi — g1) where now, since ||g1llo <M also || f1ll <
M. Thus u; =v1+8,,81= V. uo+S., f1 with ||fi]o <M. By Lemma 3 this implies that
ty #inf {t: u; € R.(uo; Lar)}, a contradiction which implies that v, — V, uo is indeed a
boundary point.

Since C is a convex set with nonempty interior in X, and since vi— V, uo=
S, (fx+—g1) is a boundary point there exists / € X* with / # 0 such that for each ve C

(S, (fx—g1)—v)=0.

We choose elements v of C having a particular form. Let x, denote the characteristic

function of 0Q X (0, t4 —¢), with £ >0. Then for each fe Lag, fo = (1 —xo )« + X f €L
and

St*(fe —g1)=S:*(f*“81)+5:*[Xe(f—f*)]

belongs to X since both S, (fx—g1) and S, [x.(f—fx)]1= VeS.,—c[xe(f —f«x)]do. Hence
v=_,(f.—81)eC, and thus

(19) S xe(fs—=NHD=( S, (fx—81)— S, (fe —g1)) =0,
for each f e Lys and € > 0. We need to transform this inequality. Fix ¢ >0 and consider
(I, S, ,h) for any heL, with essential support in dQ2X(0,t,—¢). Since S, h=
Ve/2.xSt,—/2h one has

(I, S .h) = (Sty—e/2* Ve x2*1, h).

If £/2 < &0, the critical constant corresponding to / in Lemma 2, v, = V, 5 x*I #0. It is
then easy to verify, using the representation (10), and the estimates (3) and (4) which
justify the application of Fubini’s theorem, that

wsam=]" [ Wit iy, s)ds, s,
0 a0

where
2 2
we (x, 5) = kZ e ST (u k)i (x)
=1

is a nonvanishing solution of the adjoint heat equation on QX (0, t,—¢) and the
boundary function w2 (x, s) is obtained from w, (x, s) as in the statement of Theorem 3.
Easy estimates also guarantee that wi(y, s)e L,(dQ X (0, t,,—¢)). Using the arbitrari-
ness of & it follows that, if e; <&z, w,,(y, ) = w,(y, s) for s <ty —e,. Thus finally, we
obtain a nonzero solution of (16) such that, for any h € Lo with support in 9Q) X
(0, t,—¢) for some £ >0,

(1, S, hy = J' : I w(y, )h(y, s) dS, ds.
0 Q)

Hence (18) yields

20) |7 w0 s LAty )= Flv, ) S, ds 20,

for each f € Ly, and for each £ > 0. It was proved by Fattorini [3] in the case that Q) is
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analytic and by Schmidt and Weck [11] in the case that 6Q is C™, that when w is a
nontrivial solution of (16) the boundary function w’(y, s) cannot vanish on a set of
positive measure. Thus (17) is an immediate consequence of (20). This completes the
proof of Theorem 3.

Remarks. 1. The condition M >distg (u1, X) is difficult to verify in general. It is
however, automatically satisfied if M > inf {M € (0, ) : u; € R,(uo, L) for some t > 0}.

2. The time optimal problem can also be posed for controls restricted to L,, ar =
{feLo:m=f(x,t)=M a.e.}. In this case one can use identity (7) to replace u;, up and
fe BY ur—M+m)/2, uo— (M +m)/2, fo— (M +m)/2 respectively, thus concluding
that fi(x, t) = (M +m)/2+sgn [w’(x, ) (M —m)/2.

3. Henry [7] considered the case of distributed controls (in which the control is by
means of an inhomogeneity in the equation rather than in the boundary condition); the
argument used in this paper carries over with only slight modifications.
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FEEDBACK STABILIZATION OF DISTRIBUTED PARAMETER
SYSTEMS BY A FUNCTIONAL OBSERVER*

NOBUO FUIJIIt

Abstract. Feedback stabilization of unstable parabolic equations is of great interest. The fact that it is not
necessarily possible to stabilize the equations by means of static feedback schemes when both observation
and control can be realized only through the boundary is illustratively shown by a simple example. In view of
this, a functional observer of Luenberger type is derived and then utilized in order to stabilize unstable
parabolic equations for which observation of the state and control can be carried out only through the
boundary.

1. Introduction. The investigation of feedback stabilization of distributed
parameter systems has received attention in these years. For parabolic equations there
are investigations by Y. Sakawa and T. Matsushita [1], [2] and T. Nambu [3]. For
hyperbolic equations Y. Sakawa [4] and M. Slemrod [5] considered feedback stabiliza-
tion using the invariance principle of J. K. Hale [6] and J. P. LaSalle [7].

As for parabolic equations, stabilization of the systems by means of interior
output-interior input scheme are treated in [1], of interior output-boundary input
scheme in [2]; T. Nambu, instead, considered stabilization by boundary output-interior
input. Apparently, stabilization by boundary output-boundary input can be treated in
the same manner as that in [1] if the eigenfunctions of the eigenvalue problem
associated with the parabolic equation form an orthogonal system in the space of
functions square integrable over the boundary. But unfortunately this is in general not
the case.

To clarify the situation, now examine a simple example.

Example 1. Consider one dimensional heat equation:

J 0
(1.1) —u=—b—2‘+au, 0<x<l1, t>0,
Jat  ox
u
5;=g(x)f(t), xe{0,1}, >0,
(1.2)
g(0)=-1, g(1)=0,
(1.3) u(x, 0) = uop(x), 0<x<l1,

where a is some constant and 9/9n denotes outer normal differentiation on the
boundary. Let the boundary observation law be

h(t) = (u(x, 1), w(x))s = mu(0, ) +n2u(l, 1), (1, n2: real).
A closed loop system is composed by setting

(1.4) f@) = h(r)=n1u(0, ) +n2u(l, 1).

* Received by the editors November 3, 1978, and in revised form February 28, 1979.
+ Department of Control Engineering, Faculty of Engineering Science, Osaka University, Toyonaka,
Osaka, Japan.
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Eigenvalues and the corresponding eigenfunctions of the eigenvalue problem

2
A¢=a—3§+a¢, 0<x<l,
(L.5) ox
%_o,  xelo,1)
on

are given by

Am=a—(m—-1>x2
(1.6)
@, =cos (m—1)mx, m=1,2,---.

The multiplicity of each eigenvalue is clearly equal to one. Open loop system (1.1)—(1.3)
is unstable provided a > 0.

It is obvious that the eigenfunctions do not form an orthogonal system over S;
clearly, for any nontrivial w(x) (i.e., for nontrivial pair of 71, 17,), there cannot exist an
integer N such that

(1.7) W(x), pm(x))s=m1+(=1)"""m=0, m=N.

Since the stabilization method of [1] tacitly requires that (1.7) hold for some integer N, it
does not work for the system. In addition to this fact, it is possible to prove: if a >4,
the closed loop system defined by (1.1)-(1.4) is unstable whatever 11 and > may be. The
proof is obtained with an easy but tedious examination of the roots of a transcendental
equation with the help of diagrams; hence, it is omitted.

Thus alternative methods are required to be developed in order to stabilize
parabolic equations for which only boundary observations and boundary controls are
available.

In this paper, we shall present the feedback stabilization scheme with a functional
observer of Luenberger type for parabolic systems. In § 2, the functional observer will
be constructed. In § 3, the feedback stabilization problem will be solved

Throughout this paper, A denotes, as usual, Laplacian operator in Euclidean
n-space and 9/dn stands for outer normal differentiation on the boundary. Also we shall
often designate different constants by the same letter K if we are not interested in their
magnitudes. If there is no confusion column or row vector (g, - -+, gx) will often be
abbreviated as g without any suffix etc. Similarly, the scalar product of two vectors, say g
and f, will simply be denoted by gf if its meaning is obvious from the context.

2. Functional observer. In actual systems, it is often the case that information of
the system can be obtained only through the boundary. Hence, it is required to estimate
system’s behavior, based on the information, by means of an appropriate machine.

In this section, we shall construct a functional observer for parabolic equations
making use of the information obtained through sensors on the boundary.

Let D be a bounded domain in n-dimensional Euclidean space and S be its
sufficiently smooth boundary. Consider a parabolic initial boundary value problem:

d
(2.1) 5—?=Au+q(x)u, xeD, t>0,

2.2) g—s+0'(x)u = ¥ g(x)fi() (abbreviated as=g(x)f(1)), xeS, >0,
i=1

(2.3) ulx,0)=uo(x), xeD.
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Here u is called a state variable and f;(¢) are control inputs; thus, inputs are exerted on
the system through the boundary. Suppose that the real valued gq(x) is Holder
continuous with exponent « in D (=D U S), real valued o-(x), g(x) are continuous on S
and f(¢) is continuous for ¢ = 0. Assume, furthermore, that the function uo(x) is defined
and continuously differentiable in an open set which contains D.

Let observation laws be defined by

(2'4) hk(t) = (u(x, t)r Wk(x))57 k= 17 2, T, lr

where wy(x) are continuous on $ and (-, - )s denotes, as usual, the inner product in
L,(S) the space of functions square integrable over S. Using observations h,(¢), let us
construct a functional observer whose outputs asymptotically approach to the values of
functionals defined by

(2'5) Yk(t)=(u(X, t), pk(x))a k=1a' R A

where p; (x) belong to L,(D) and ( -, -) denotes the inner product in L,(D). In view of
the linearity of (2.1)—(2.3), we can decompose a solution of them as

(2.6) ulx, ) =ui(x, t)+us(x, t).

Here ui(x, t) stands for the solution for f(¢)=0 and us(x, t) for us(x)=0. As is well
known, u; can be expressed by

@7 mn =3 % ayeMey
i=1j=1
Here A; are eigenvalues of the eigenvalue problem:
A¢=A¢+q¢, xeD,

9 o(x)p=0, xeS,
on

(2.8)

¢;; are corresponding eigenfunctions, m;, the multiplicity of A; and a;; are defined by
(2~9) ai]'=(u07 ¢i]'), i=1a 27' oy ]'=17' o, Mg
Hence, outputs A, (¢) can be written as

hi(8) = (u1(x, 1), wi(x))s + (ua(x, t), wi(x))s

M ™ =) m;

(2.10) =Y ¥ a; el\‘t((,bij, Wist X X aije)\it((ﬁij, Wi)s
i=1j=1 i=M+1

+(uz(x, 1), we(x))s, k=1,---1

Let us consider the second term of the right hand side of (2.10) which will be denoted by
di(t). Using Schwarz inequality we can easily obtain

o 1/2
|dic (1) = eAM”t( Y X iAi|2V|aij e()"'—'\““)'|2>

i=M+1 j
0 . 2\1/2
( Z Zi(d’mwz’:’)si) , k=1,"‘,l,
i=M+1 j |/\i|

where v(>0) is some constaint. If »>1/2 and ¢t =¢,>0, the series expansion of the
right hand side converges and bounded, where ¢, is some fixed time. Thus, it follows that

(2.11) ldc ()| =K e, e, |d(t)|=Ke'M+,
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As for the third term of the right hand side of (2.10), we can obtain the following:
LEMMA. On the above assumptions, there exists functions T, (t), which are continu-
ous in t >0, such that

(2.12) (us(x, 1), wi(x))s = L T, (t—s)f(s) ds, k=1,---,1,

hold.
In view of this lemma, &, (¢) can be represented as

M m t
213) k@=L 5 ayeM (@ s+ i)+ | Tule=s)(s) ds.
i=1j= [0}
Now let us introduce N-dimensional vector X by
X =col (Xlla T )lep Tt ,XMmM),
X'ij=(u(x,t)9¢if)) i=19"')M j=1)...,mi9

where N =YM, m,. From (2.1)-(2.3) and with the help of Green’s formula it follows
that

aX_d = y
—d;——- dr (u(x, t), ¢u) (Au +qu’ ¢U)
(2.14) =Ai(u, ¢) +§. (81> Bij)sfic(1),
)(ii(o)=aii’ i=1"":M j=19'."m"’
or
(2.15) ngX_*_ Gf (1), X(0)=col (ay1, -, AMimpg)s

dt

where N X Nmatrix A and N X m matrix G are defined by

A=diag(/\1,"',/\1,"',)t,‘,"',A,',"‘,AM),
m;

G=(G17 e )Gk)' tt 9Gm)N><m
G =col (g, dij)s * * * » (8k» Prmag)s)» k=1,---,m.
From (2.14) we can obtain
(2.16) aye =Xy~ MY (g b)shils) ds.
(4] k

Substituting (2.16) into (2.13) we can obtain

i=1j=1

he(t)= % i [(d’u’, wi)s Xij — (i, Wi)s L ehit? %(gh, &ii)sfu(s) ds]

+di(t)+ L T (t—s)f(s) ds.
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If we define / X N matrix W by

W,
W= E Iy Wk =T1ow ((¢117 wk)37 T, (¢me Wk)S)» k = 19 Ty, 17
w;
and [ X m matrix H (¢) by
Hy,;, -+ Hnm
H()= : )
}ﬂl e Iﬂm

M m;
H(t)=Tun(t)— X Ef (bij wi)s e (gn, dij)s

i=1j=1

Then, we obtain

h(t)= WX+d(t)+J”H(t—s)f(s) ds
2.17) °
=WX+d(t)+H *f.

Here, of course, d(t) =col (dq(¢), - - -, di(¢t)) and - * - denotes the convolution.
Now we are in place to construct a functional observer according to D. G.
Luenberger [10]. Assume that p,(x) in (2.5) are expressed by

(2.18) pn(x)= ‘=§1 gl (Prs Bij)iss h=1,---,r,

with some integer p(>0). For any given u>0 choose M such that M=p and
Am+1<—u hold. Define [/ X m; matrices W, by

(Pi, wi)s -+ (Pim»> W1)s
W, = : , i=1,---,M.
(b, wis =+ (Bim» Wi)s
Furthermore, consider an N-dimensional lumped parameter system defined by
dz

i Fz(t)+Bh(t)+ Cf(t)+ DH = f(t), z(0) = zo,

2.19
219 y(t) =Pz,

where F, B, C, D and P are constant matrices of appropriate sizes. Our aim is to

choose F, B, C, D and P in order that output y(¢) asymptotically approaches y(¢)

given by (2.5). In this connection, we can easily obtain the following proposition.
PROPOSITION 1. Assume that the conditions | Z maxi<;<a m; and

(2.20) rank ﬁ/} =m = 1, e ’M

hold. Then, we can find matrices F, B, C, D and P such that the output y(t) of (2.19)
satisfies
(2.21) [y () —y@I=Ke™

with some constant K, which may depend on X (0) and zo, and the system (2.19) is
asymptotically stable.
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Proof. From (2.15), (2.17) and (2.19), it follows readily
d
(2.22) Et_(X —2)=(A-BW)X -Fz+(G—-C)f(t)—(B+D)H * f—Bd(t).

In view of (2.20), (W, A) is an observable pair [1]; hence, we can design matrix B such
that matrix A — BW has eigenvalues whose real parts are smaller than —u. Fix such B.
Define F, C and D by

(2.23) F=A-BW, C=0G, D =-B,

then we can reduce (2.22) to
%(X——z) =F(X—2z)+Bd(t).

From (2.11) and the choice of F, it follows readily
(2.24) X —z|l=Ke™,
where constant K may depend on X (0) and z,. Define r X N matrix P by

(p1, d11) (P1, Dram)
P= .

(pr» ¢11) * .' * (pr, ¢MmM)

then, in view of (2.18), y(¢) can be rewritten as
y(t)=PX.

From this and (2.24) it follows readily that (2.21) holds. This completes the proof.

Remark 1. The functional observer constructed contains the convolutional opera-
tion; hence, strictly speaking, it is not a finite dimensional system. The author believes
that it is impossible to construct a purely finite dimensional observer if the inputs to the
system are present and are exerted through the boundary. Our observer is, however,
not so meaningless in that the convolution term can be calculated with the aid of an
analog or a digital computer. Thus, in practice, the observation of functionals will result
in discrete time manner.

Note that the observer reduces to a very finite dimensional system if the inputs are
absent.

Now the proof of the lemma is left.

Proof of Lemma. As was shown in[11], for arbitrary T'(>0), u»(x, t) in (2.6) can be
represented as

t
(2.25) u2=j J Ux, y; t—s)¥(y, s)dS, ds, o<t<T,
0Ys
where U(x, y; t —s) is a fundamental solution of the parabolic operator and

(2.26) Y(x, t)=—2g(x)f(t) -2 21 L M (x, y; t—s)g(y)f(s) dS, ds,

3
Mx(x,y;t—s)=25—;U(x,y;t—S),
(2.27) ,
Mk+1(x,y;t—s)=_‘- JMl(x,f;t—a)Mk(f,y;o—S) dSe do.
s Y8
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For the moment fix T Let » be a constant which satisfies3<v<1and 1—a/2<v<1.
Then we can obtain the following estimate [11]:

1 1
t—s)" |x—y|

1 1
IMic1(x, y; £ =) §K(t_s)y+k(u—1) =y TRy

|U(x,y;t—s)|§K( — 0=s<t=T, x,yeD,

k=0,1,:--,ko—2,
My (x, y; t—5)| =K,

|Ki(r—s)" "k

M + Y, — g B
M (3, ys 1= = Ko 70y

k=1,2, ",

0=s<t=T, X,y €S,
where K, K, and K; are some constants and k, is the smallest integer which satisfies
n+l1-2v—a+ki2-2v—a)=0, v+ko(v—1)=0.
Using these estimates we can easily obtain the following:

t KTI—V—k(V_1)<<x), k<k _1’
28 | LIMk(x,y;r—s)g(wf(t)l ds, ds =| °
0

KT<®, k =k0’
t 1 (KlT)(l-—V)k+1
2. J I k(X y;t— =KKy— <+,
(229 | sleo «(ey; 1=5)g(f ()] dS, ds = KKo- TR
k=1,2,---.

Here we used [11, Lemma 1, § 2, Chap. 5]. Thus the series expansion in (2.26) is
absolutely convergent. Furthermore, in view of [11, Lemma 1, § 3, Chap. 1], it
follows that the each term in the expansion is continuous with respect to x € S and
te[0, T]; hence, ¢(x, t) is continuous on S %[0, T].

Next let us consider functionals (u,(x, t), wi(x))s which can be expressed by

230)  (ualx, 1), we(x))s = L W (x) dS. j L Ulx, y; t— )y, s) dS, ds,

where w denotes the complex conjugate of w. Estimate (2.28) and expression (2.26)
enable us to rewrite (2.30) into the form:

(ua(x, 1), wic(x))s = ~2 j ds L L B (OU G, v; 1 —$)g(y)f(s) dS, dS.

(2.31) 2 s L LdSy S (x)U(x, y; t—5)

0

(£ I LM(y, £ 5= T)R(E)f(r) dSedr).

j=1

The first term on the right hand side can be rewritten as

I Tea(t—)f(s) ds,
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where

(2.32) Tk,1<t-s>=~2Hwk<x>U<x,y;t—s)g<y)dsydsx, k=1,--,]1,
SIS

are continuous with respect to ¢, s, 0=s <t = T. As for second term, we can obtain the
following estimates for k =1,2,---,[:

J dsj deJ dSyJ d‘rJ‘ dSe| Wi (x)U (x, y; t—s)M;(y, &; s —7)g (&) f(7)]
o Js s o s

(2.33) .
K’I‘, ] ék(b
< 1 T(l-—u)(h+1)+1

= h+1
KKK M1-v)h+D)+D) (1-v)h+1D)+1

j=kot+h h=1,2,---.

Here we used estimates (2.28), (2.29) and [11, Lemma 1, § 2, Chap. 5]. The series
expansion in (2.31), hence, is absolutely convergent and the second term of the right
hand side of (2.31) can be expressed by

L Tealt —)f(s) ds,
with

ool

(234) Tialt—9)= Y j erLLdsx dS, dS, W (DU (x, y; t— )M (y, & 7~ g (&),

i=1
k=1,2,---,1L
Again, T} »(t —s) are concluded to be continuous with respectto ¢, s, 0 =s <t =T with

the help of the same argument as that for (x, t).
Since T is arbitrary in the above discussion we can, finally, obtain for t =0

(2.35) (ualx, 1), wi(x))s = It T, (t—s)f(s) ds, k=1,2,-++,1,
where
(2.36) T (t) = Ti1(2) + Ty 2(2)

are continuous with respect to ¢ > 0. The proof is thereby completed.

3. Stabilization. In this section we shall consider a stabilization problem of
parabolic equations for which only boundary input and boundary output can be utilized.
To solve the problem, use is made of the functional observer derived in the previous
section. Finally, we shall apply the theory to the system considered in Example 1.

Consider again the parabolic initial boundary value problem described by (2.1)-
(2.3) and the observer given by (2.19), where input 4 () of it is given by (2.4). In order to
construct a closed loop system, let the boundary input f(¢), which is the same as that in
(2.19), be the output y(¢) of the observer, i.e.,

3.1 f@&=y(@).
Thus we obtain a closed loop system described by

2—?=Au+q(x)u, xeD, >0,
(3.2)
u(x, 0)=u0(x)7 xeD7
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(3.3) g—z+a(x)u —¢()5(1),  xeS, 1>0,

(3.4) (D) = (x, 0, we(®))s, k=1, 1

(3.5) —Z—‘E=Fz(t)+Bh(t)+C)7(t)+DH*)7(t), z(0) = zo,
(3.6) y(t)= Pz.

Let us seek a set of sufficient conditions which ensures the exponentially asymp-
totic stability of the parabolic equation and, in this context, determine matrices F, B, C,
D and P.

Let u be an arbitrary positive constant and, in what follows, fix it. Define matrices
G,' by

. (81, bir)s -+ (&m> di1)s
G = : ,  i=1,2,--
(81, Pimps ** (8m> Pimy)s,

Now, for controllers g;(x) and observers wi(x), let the following assumptions hold.
Assumption 1. The conditions

(37) rank é,.:-_-mi, i=1,---, M,

hold where M is an integer such that Apr <—p.
Assumption 2. The conditions

(3.8) rank Wi=m, i=1,---,M,

hold where, of course, W; are defined in the previous section.
Based on Assumption 1, it is possible to choose functions p;, - * *, p,n € L2(D) such
that all the eigenvalue of the eigenvalue problem

Au=Au+q(x)u, xeD,

§‘1+a<x)u= Y g0, px),  xeS,
n i=1

satisfy Re A <—u[1], [4]. Further p;(x) can be chosen in the form

M m
(3.9) pi(x)= kzl 2: (oi Pr)brjy  i=1,---,m.
Z14=
For such a set of functions, define m X n matrix P by
(Pl, ¢11) - (Pl, ¢MmM)
(3.10) P= . . .
(pm, ¢11) e (pmr ¢MmM)

On the other hand, in view of Assumption 2 and the discussion in the previous section,
we can find matrix B such that the real parts of the eigenvalues s; of matrix F, which is
defined by

(3.11) F=A-BW,
satisfy
(3.12) Re s;<—u, i=1,---,N.
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Let matrices C and D be such that
(3.13) C=0G, D =-B,;

thus, matrices F, B, C, D and P are all determined. From the choice of the matrices, it is
obvious that equation (3.5) is exponentially stable and the system defined by (3.5) and
(3.6) is a functional observer for functionals y;(¢) given by

(3'14) y:(t) = (u(x9 t)9 pi(x))a i= 1a e, M.

Let 8:(¢) denote the difference of y;(¢) and y;(?), i.e.,

(3.15) yi(t)=yi(t)+8:(), i=1,---,m

Then it follows, in view of the proof of Proposition 1, that

(3.16) |8:(t)| = Ke™, I%Si(t)'éKe_“', i=1,---,m,

for t>0. From the above consideration, finally, it follows that the closed loop system

described by (3.2)—(3.6) is equivalent to the parabolic initial boundary value problem

(3.17) ‘;—’:=Au+q(x)u, xeD, t>0,

(3.18) g—s+o-(x)=‘§1g,‘(x)(u(x,t),p,‘(x))+'§1g,-(x)6,'(t), xeS, >0,

(3.19) u(x, 0) = up(x), xeD,

and the system (3.5), (3.6).

Now we can easily establish the following proposition.

PROPOSITION 2. Suppose that g;(x)(i=1, - - -, m) and o(x) are twice continuously
differentiable on S. Then, with Assumptions 1 and 2, the solution of the initial boundary
value problem (3.17)-(3.19) satisfies

(3.20) lu(-,D|=Ke™

for some constant K.
Proof. The proof is straightforward. Let g (x)(k =1, - - -, m) be arbitrary twice
continuously differentiable functions on S. Introduce m functions ¢, by the relation

(3.21) U = ;1 8i(&x> pi)s + 8k — &k
which, obviously, are twice continuously differentiable on S. Then, as is well known,

there exist m functions ¢ (x), which are defined and twice continuously differentiable
on D, such that

(322) aa—(ff=l//k, ¢k=g~k, XES, k=1,'--,m.
Consider function ®(x, t) defined by

®(x, 1) = kﬁ b ()8 ().
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In view of this and (3.22), it follows readily

P
(3.23) P o(x)®=Y gi(P(x, 1), pi(x))s+X gi(x)6;(t), x€S.
Let us seek the solution of (3.17)-(3.19) in the form
(3.24) u(x, t)=o(x, t)+d(x, t).
Using (3.23), we can reduce the initial boundary value problem to
(3.25) %=Av +q(x)v—%+A¢>+q<D, xeD, t>0,
(3.26) Lo =La)wa)s xS, 1>0,
(3.27) v(x, 0) = uo(x)—®(x, 0), xeD.

The forcing term on the right-hand side of (3.25) clearly satisfies
o _
||~;+A<I>+qd>||§Ke e

because of the definition of ® and (3.16). From these and the choice of p; the assertion of
the proposition follows. This completes the proof.

Let us apply the theory developed to the system given in Example 1.

Example 2. Consider again the control system (1.1)-(1.3) with a = 5x>%. Thus
unstable eigenvalues 57>, 47 and 7 appear. Let observation k(¢) be given by

h(t) = (u(x, 1), w(x))s = u(0, 1).

For the sake of simplicity, let u in Proposition 2 be 37°; hence, number M above
can be taken to be three (As=—4m>< —w). From the choice of t~he consrol and
observation laws and the fact that m; =1(i =1, 2, - - ), it follows that G; and W, above
are scalars and given by

~

G=-1, W=1, i=12,---.
Thus Assumptions 1 and 2 are automatically satisfied; moreover, the system is
controllable and observable [8], [9]. Note also that
A =diag (57°, 47>, 7%, W=row(l,1,1),
G=col(-1,-1,-1).

The functional observer can easily be constructed as follows:
(i) Determine matrix B such that the eigenvalues of A—BW are
{~47*, =57, —67°}. This is accomplished by setting

495 3
B =col (———77'2, —24072, —§7T2).
2 2
(ii) According to the procedure given in [1], we can design an interior sensor p(x)
such that the eigenvalues A; of closed loop system (1.1), (1.2) together with f(¢) = (u, p)
satisfy Re A; = —47%(i=1,2,- ). Assucha p(x), we can take, for example,

4 35
plx)= %wz— 24072 cos (7x) +7772 cos (27x).



STABILIZATION OF DISTRIBUTED SYSTEMS 119

(iii) The solution u»(¢, x) for (1.1)—(1.3) with ue(x) =0 is expressed by

us(x, t) = —J: ex—p(\/i?—t;it;—m(;zio exp ( —%))f(s) ds;

i.e., T(¢) in (2.12) is given by

2 +00 2
T() = —il’fT’t’” y exp(—n?—).
T n=—00

Thus H(t) (a scalar in this case) is derived as

5m%) * 2
H(t)=—E§LW—) D exp(—3—>+exp(swzt)+exp(4w2t)+exp(772t).
Vat e t

(iv) Finally, set
F=A-BW, C=G, D=-B,
P=row (3°n?, —2407%, 3 ?).

Thus the functional observer is constructed and the resulting closed loop system is
represented by

2
Ju ou
—=—+au, 0<x<1, t>0,
Jat  ox

u(x, 0) = uo(x), 0<x<l1,

2Ii=g(x)y(t), xef{0,1}, ¢>0,

n

Z—j=Fz(r)+Bh(r)+Cy(t)+DH * y(1), z(0) = zo,
h(t)=u(0, 1),

y(t) = Pz(¢).

In view of Proposition 2, the solution u(x, ¢) of this system satisfies (3.20); i.e., the
stabilization of the heat equation is accomplished.

4. Concluding remarks. The example givenin § 1 shows, when the observation and
the control are possible only through the boundary, that the controllability or the
observability of the parabolic equation does not necessarily enable us to design a static
feedback scheme for stabilization in contrast with the case where either the observation
or the control can be carried out in the interior. To overcome this difficulty, a functional
observer of Luenberger type is constructed (§ 2) and utilized (§ 3) in order to stabilize
the parabolic equation. Our observer, however, contains convolutional operations;
hence, our stabilization scheme is not purely finite dimensional.

The possibility of the stabilization by means of a dynamic compensator in the
feedback path is left for future investigations.

Acknowledgment. The author wishes to express his sincere thanks to Professor Y.
Sakawa and Dr. T. Nambu for their encouragements and helpful discussions. The
author thanks the reviewer for his critical reading of the manuscript and helpful
comments.
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ON THE ESTIMATION OF THE PARAMETER
OF AN OPTIMAL INTERPOLATOR WHEN THE CLASS OF
INTERPOLATORS IS RESTRICTED*

PAUL V. KABAILAt AND GRAHAM C. GOODWIN%

Abstract. It is usual in time series analysis and control theory to assume that there is a close connection
between the structure of the system and the structure of the class of interpolators or control laws under study.
Moreover, in practice, restrictive assumptions are often made about the system since this leads ab initio to a
simple structure for the optimal interpolator or optimal control law. This paper is concerned with an
alternative viewpoint in which attention is focused on the determination of optimal interpolators and control
laws from a restricted class when broad assumptions are made about the system. In particular, consistency and
asymptotic normality results are developed for estimates of the parameter of an optimal interpolator when the
class of interpolators is restricted. Results relevant to the choice of interpolator structure are also established.

1. Introduction. In this paper we will be concerned with the problem of estimating
certain specific properties of a system by analyzing data collected from that system. We
shall be particularly concerned with sets of properties that we term ‘‘noncomprehen-
sive”. By this we mean that exact knowledge of these properties is, in general,
insufficient to specify all those properties that are usually considered to be of possible
interest. For example, consider a weakly stationary stochastic process {x,}. The proper-
ties that are usually considered to be of possible interest are the covariances
{+ y-1, Yo, v1, - * *}. A specific property is the value of 8 (denoted 8*) which mini-
mizes the mean-square prediction error for predictors of the form £, = Bx,—1. In fact
B* =—v1/v0. Note, however, that this property is ‘‘noncomprehensive” since it gives
insufficient information to specify all those properties of the system that are usually
considered to be of possible interest i.e. the covariances {: - v_1, y0, y1," * '} A
principal advantage in considering non-comprehensive properties is that statistics
relating to such properties may usually be analyzed under very weak assumptions on the
system generating the data.

Clearly, the philosophy of considering noncomprehensive properties can be
applied to such problems as the estimation of the parameters of an optimal control law.
The problem then considered is the choice of the best control law from within a
restricted class of control laws. However, we confine our considerations to the
examination of the limiting properties of certain estimators of the parameters of an
optimal interpolator from within a restricted class. Our reasons for considering inter-
polation are twofold. First, prediction, which is a special form of interpolation, is
germane to stochastic control. For example, consider an economic system when the
effect of control actions of an individual are negligible. Then an individual’s choice of
the best control law from a restricted class of control laws can be based on the choice of
the best predictor from an appropriate restricted class of predictors. When the control
actions affect the properties of the system then the situation becomes more complicated
and recursive analysis is required. Second, we shall avoid the additional problems
associated with recursive algorithms by concentrating on interpolation. Furthermore,
the considerations of linear, time-invariant interpolators allows us to apply the power-
ful techniques of harmonic analysis.

* Received by the editors November 22, 1977, and in revised form January 21, 1979. This work was
supported in part by the Australian Research Grants Committee.

T Division of Mathematics and Statistics, CSIRO, Melbourne, Australia.

1 Department of Electrical Engineering, University of Newcastle, New South Wales, Australia.
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The basic philosophy of analyzing estimation of the parameters of an optimal
predictor from within a restricted class has appeared in a number of recent reports e.g.
[1]to [6]. This work should be contrasted with the work of Mann and Wald [7], Whittle
[9] to [11], Walker [12] and Hannan [13] on “finite parameter” models for purely
nondeterministic time-series in which the spectral density is considered to be the system
property of interest. These latter papers analyze the performances of certain estimates
of the spectral density under a variety of assumptions. Our concern is to determine some
of the limiting properties of estimators of optimal interpolators from a restricted class
under weaker assumptions on the system generating the data.

2. A class of interpolators and predictors. Interpolation is the estimation of the
value of some sequence {x,} at t =n, i.e. x,, by a function of {x,|t # n}. Prediction is a
special case of interpolation in which x,, is estimated by a function of {x,|t <n}.

Here we consider a class of linear time-invariant interpolators of the form

(2.1 ==Y hu(0)xn-u

u#0

where 6 denotes a parameter vector belonging to some compact subset ® of a metric
space /I with distance measure d( -, - ). The sequence {h,(8)} has the value 1 at u =0
for all 6 € ®. The interpolation error is W,,(6) = x, — X, = 24 hu(0)X n—.

We consider three types of processes:

Process Type 1. Consider the sequence {x,(w)eR:neZ,wcsome set (1}
and let x,(w)=0 for ¢<0 independently of w. Assume that v, =
lim,.o(1/n) ¥/_; x:(@)x,4m(w) exists for each m € Z and for each w € Q' = Q where
O~ is considered to be an unimportant set. It can be readily shown that

1 n
Y =1m — Y X, (@)X em(w) forzeZ,weQ;
1

n->00 p ;=

For process type 1, the mean square interpolation error is defined to be:
1 n
o’(6)=lim — ¥ W)
n—>oo n t=1

Process Type 2. Suppose {x,(w) €R: t € Z, w € Q} is a stochastic process defined on a
probability space (Q, S, P) for which E{x?(w)}<oo for each t€Z and that y, =
lim,oe (1/n) Y, E{xX,+m} exists for each m € Z.

It is also supposed that

n

a.s
= Y XXphm = Ym
n =1

i.e. for all w € Q' where P(QA—Q')=0.
It can be readily shown that
Y E{xis:Xiiz2m} forzelZ.

.1
Vm = lim —
n 1

n

For process type 2, the mean square interpolation error is defined to be:
1 n
o*(6) = lim ~ % E{w(6)}.
n->oo =1

Process Type 3. Suppose {x,(w)eR: t€Z, w € ()} is a weakly stationary stochastic
process defined on a probability space ({2, S, P).
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Let

Ym = E{xXi+m} foreachmeZ.
Further suppose that

n a.s

- Z XXt+m > VYm
=1
i.e. for all w € Q) where P(Q—Q')=0.
For process Type 3, the mean square interpolation error is defined to be
a?(6) = E{w? (6)}.

Note, by Herglotz Theorem [22, p. 281], that for each of the above three processes,
there exists a bounded nondecreasing function F(A) such that

(2.2) VYm = r e™ dF(\).

A frequency domain expression for o-(6) based on F(\) is given below:
LEMMma 2.1.

(2.3) a’(0)= I: h(A, 6) dF ()
where
h(A, 6)= %hu(o) e,
Provided

(a) for process 1,2,3

h,(8)=0 for all u such that |lu|>M¢cZ;

or
(b) for process 1
% |h,(0)| <0,  h (0)=0 foru<MeZ
and
’% él x,_u(w)x,_v(w)| <k independently of u, v forw e, ne N;
or

(c) for process 3

l[ﬂ h(A, 6) dF(\)<0  or Y |hu(6)|<oo.

Proof. (a) The proof is by calculation.
(b)

1 n 1 n s n—M s
; Z Zlhuxt—ulZlhvxr—v|§; Z Zhu( Z xv><w'
t=1 u v

t=1 u v=
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Hence for each fixed n, the series (1/n) Y., ¥, huXi—u ¥, hoX.—y is absolutely
convergent. Hence the order of summation may be rearranged to
Yuhu Y, ho(1/n) Yioy xi—uXi—y. Next define £y = h,(1/0) 37—, Xi—uXi—p. Now | fo| < k|h,|
and k Y, |h,| <o by hypothesis. Hence by the dominated convergence theorem for a
counting measure [17, p. 273] lim,, Y, fu =Y, huY.—» Consequently

o2(6) =1i£n% » ( ) hux,_,,)z

t=1

= Z hu Z hv'Yu—v
=ShSh | eNaEQ)

= I" h(A, 6) dF (L) [16, p. 64].

(c) For the proof see Doob [14, p. 500]. O
An alternative expression for o*(8) is given below:
LEMMA 2.2. Suppose o> (8) =["_h(A, 8) dF(A) <oo. Then

(2.4) a*(0) =Y a,(8)vs

where

(2.5) a,(8) = 1 j h(A, 6) e™ dr
27 ).

provided

(@  Yla(6)<oo;
or

(b) F(A) is absolutely continuous with f(A) the Radon—-Nikodym derivative of
F(\) and fQA), h(A, 8)e L.

Proof. (a) For the proof see [15, Prop. 4.3.7].

(b) The proof follows from Parseval’s Theorem for L, functions. 0

THEOREM 2.1. (a) If ©® is a compact subset of the metric space M with distance
measure d(-,-) and if h(A, 8) is continuous in (A, 0)e Z =[—m, m]X 0, then a(6) is
continuous in 6 € 9.

(b) Y, |as(8)| <o is a sufficient condition for h(A, 8) to be continuous in A € [—, 7).

Proof. (a) Since h(A, 6) is continuous in (A, ) € Z and since Z is compact, i (A, 6)
is uniformly continuous on Z. In other words, for any £ > 0 there exists an 7 >0 such
that d(6, 6') < implies that |h(A, 8) —h(A, 6")|<e. Hence

w

20)-0* @)= ]Ik, 0)- R, ) dF )

ésj dF(A) ford(6,6")<n

= €%Yo0.

Consequently, a*(0) is continuous in 6.
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(b) The proof follows from the Weierstrass M test and uniform convergence. [

Remark 2.1. To emphasize the fact that we are dealing with interpolators from
within a restricted class we discuss one point of departure from the ““classical’ case in
which the property of prime interest is the spectral density. It is well known [8, p. 33]
that in the case of systems described by pth order autoregressive models, that the best
k-step-ahead linear predictor of order p can be obtained by concatenating k of the best
1-step-ahead linear predictors of order p. This is not, in general, true in the situation we
consider. An example illustrating the distinction is given in Appendix A.

3. An estimator for o%(0). Suppose that we wish to estimate o*(6) on the basis of a

finite sample x1, - - - x,,. A possible estimate is
(3.1 S, (6) =I h(A, 0)I,(A) dA
where I,(A) is the periodogram and is given by
1 n 12
IL.(A) &— Z Xe elM
217” t=1
3.2)
_ L "il C.e™
277 s=—n+1 ¢ ’
C; is the sample covariance, i.e.
1 n—s
VA=Y XXy,  0Ss<n;
n =1

c.,4cC, 0=s<n.

Substituting (3.2) into (3.1) we obtain

n—1

(3.3) S.(0)= ¥ a(0)C.
s=—n+1

A comparison of (3.3) and (2.4) motivates S, (#) as an estimator of () for it is
supposed that C, converges to vy, and that a(8)- 0 as |s| > 0.

We denote by b, any value of 6 minimizing a2(8). [Note we do not, for the
moment, necessarily assume that S, (#) is minimized at a single value].

Remark 3.1. The theory described in this paper goes through, essentially
unaltered, for other estimators of o*(8). For example, we could consider

502275 hor, )10
where Aj=—7+(2w/n)j,j=0,---(n—1) or
SuO2T Y h(, O)L()

where A\j=—7w+(w/n)j, j=0,--- (2n-—1).

Also, it is possible to broaden the class of processes somewhat, e.g. to include cases
where v,, depends upon the realization or where the sample covariances are replaced by
sample correlations as in [24].

For simplicity of exposition we will not consider these extensions. Details are given
in [19].
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4. The limiting behaviour of 0,. We consider the class of interpolators and the
processes introduced in § 2. The key assumptions are:

(S1) 6 €O a nonempty compact subset of a metric space;

(S2) h(A, 0) is continuous in (A, ) e[—m, w]XO=Z;

(S3) Equations (2.3) and (2.4) are valid, i.e.

=] hr,0) dFO) =Y a0}y, <.
LEMMA 4.1. For processes 1, 2, 3 and subject to assumptions (S1), (S2), (S3),
lim, S,.(6) = a(6) uniformly in 6€® for each we'. Thus, for example if Z,=
SUpseo |S,(0)— ()| then lim, Z,(w) =0 for each w € (V.
Proof. Fix w € (). Let q,»(A, 8) be the Cesaro sum of the Fourier series of 4(A, 6)
taken to M terms i.e.

4t 02 5 ayo)1-) o

n=—M M
Also let
50)=[8.0) [ i 01,0) |
120 =| [ awn 0L = [ aner, 0) aF ),
510 =| [ a0, 0 aF0)-o6)|.

Our interest in these quantities is motivated by the fact that
1S.(6) = *(8)| = J1(6) +T2(6) +T5(6).

Now given £, >0, we may fix M so large that |h(A, ) —qar(A, )| < &1 uniformly in
(A, 6) € Z since the Cesaro sum converges uniformly in (A, §) € Z.

Now
HO= [ 110, 0)-au(, OILA) i
§81 J In(A) d/\ =81C0.
Similarly
13(0) §81‘)’0.
Also

10)=] 3 c-pmo(1-2)

2 = o s T Vs)Qs ) M

Since Z is a compact set and h(A, 8) is continuous on that set, we may define

K =maxg,gez |h(A, 8)|<co. This implies that independently of 6€®, |a,(0)|=K.

Hence J,(0)=K Yot /|G — 4.

Now suppose that we are given £ >0. Fix M so large that £;v,<&/6. Hence for

no€ N.. sufficiently large J1(6)+J3(8) <3e1y0<e/2 for all n =n, independently of
0 € ©. Hence J,(0) +J2(0) + J3(6) < e for n Zmax (ng, n,) uniformly in 6 € 0. 0
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THEOREM 4.1. For processes type 1,2, 3 and subject to assumptions (S1), (S2), ( §3),
if ®q denotes the set of 8’s minimizing o(6) (the minimum is denoted 0*(6,)) and 6, is
any minimizing value of S, (0), then

lim d(6,, ®)) =0 forweY,

lim S, (8,) = 0%(80) forwe(.

Proof. Fix w € (). First note that ®, is nonempty, since ® is compact and a*(9) is
continuous (Theorem 2.1).

Then from Lemma 4.1, given € >0 there exists an n such that for all n =n,
1S, (8) —a*(8)|< e for all 6 € ®. Hence

Uz(én) —e= Sn(én) = Sn(00) < 02(00) +e
which implies that a?(6,) < a*(80)+2¢. Consequently lim,, a?(8,) = a2(8,). Now
1S, (8,) =2 (80)| =18, (B,) — 72 (B)| +|0*(6,) — 72 (80)-

The first term tends to zero by Lemma 4.1 and we have just shown the second tends to
zero also. Hence lim, S, (8,) = o*(6,) and the second part of the theorem is proved.

For convenience denote d ((3,,, 6o) by y,. We now claim lim,, y,, = 0. This is proved
by contradiction.

Suppose y, does not converge to zero, then there exists an £ > 0 such that there is a
subsequence of {n} denoted {n;} for which y,, > ¢ for all i € N.. Consider the closed set
C < O of 8’s for which d (6, @0) =z ¢. Clearly C is compact. Hence {n;} has a subsequence
denoted {n;} for Wthh {0n,} converges, to 0* e C. Obviously, 6*¢0,. Hence
lim; o (0,,,) a’(6%)> *(6o). But lim, o (0,,,) o(6,). This contradiction establishes
the first part of the theorem. O

5. Limiting behaviour of 0., under weaker assumptions. For processes 2, 3 it has
been assumed that (1/n) ¥/, XX+, — v leading to the almost sure “consistency”’
results obtained in § 4. Here we consider,

Process Type 2', 3'": As for processes type 2, 3 respectively excepting that

1 r Prob

— Y XXern > Ym.
n =1

The following theorem allows us to convert the almost sure convergence results
obtained in § 4 to in probability convergence results for processes type 2', 3'.
THEOREM 5.1. Suppose that under a certain set of conditions (call these condition C).

. a.s. .
1

ai 2 al fori=1,2,--- implies b,— b.

Then under conditions C

i Prob i . . . Prob
a,— a' fori=1,2--- implies b,— b.

Prob
Proof [19]. The theorem follows from the well known fact that x,, — x if and only
if every subsequence of the x;’s contains a further subsequence which converges to x
almost surely. [
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Theorems 4.1 and 5.1 can be combined to yield:

THEOREM 5.2. For processes type 2', 3' am{ subject to assumptions (S1), (S2), (S3), if
@, denotes the set of 6’s minimizing o>(8) and 6, denotes any minimizing value of S, (6),
then

. a Prob a Prob 2
glelg] d(0m 0)_> Oa Sn (on)__) o (00)

6. Limiting distributions relevant to 0,. To obtain more detailed information
about the way in which 6, converges we specialise to a consideration of a process {x.}
which satisfies the following assumptions.

Al: x,=Y,l.e—. where l[p=1and [, =0 for u <O0.

A2: E{e,|#.,-1}=0 as. for all n where %, is the o-field generated by
{em En—1,"" .}'

A3: E{e2|F_1}=0">0as.

A4: Suppose there exists a random variable X with E{X*} <o such that P{|e,|>
u}=cP{X|> u} for some 0<c¢ <o and all , all u=0.

Bl: ¥, /2 <o,

B2: ¥, uls<co.

It is obvious that Assumptions A2 and A3 imply that E{e,e,.} = 028, Since
B2 = B1, Assumptions A1, A2, A3 and B2 imply that {x,} has an absolutely continuous
spectral distribution (see, for example, [14, p. 499]). We denote the spectral density by
f(A). Note that y, = ¥ lulu+n. Under Assumptions A1, A2, A3 and B1, Hannan and

n Prob .
Heyde [18] have proved that (1/n) ,_; XX;+m—> ym- Consequently a process satis-

fying A1, A2, A3 and B2 is necessarily a Type 3’ process.

Consider the class of interpolators introduced in § 2. The mean-square inter-
polation error is given by *(8) = [ h(A, 8)f(A) dA. Let us now introduce the following
assumptions on the class of interpolators:

C1: Suppose ./ is R” and © is a compact subset of %”. Hence 6 =[6, - - -, 6,]". It
is also supposed that the @, defined in § 4 consists of a single element € ® —bd ©.
Here bd ® denotes the boundary of the set ©.

C2: h(A, ) is continuous in (A, ) € Z. There exists a neighborhood of 6, denoted
Ny in which h(A, ) is a twice differentiable function of the 8; whose second derivatives
w.r.t. 6; are continuous in (A, 8) for 6 € Ny.

Let (A, 8) denote 9k (A, 6)/36; and h"(A, 8) denote 3°h(A, 6)/d6; 36;. Clearly
assumptions C1 and C2 imply that o->(6) may be differentiated under the integral sign so
that

(6.1) J'" RO, 00)f(A) dA =0.

—ar

Now Theorem 5.2 implies that under Assumptions A1, A2, A3, B1, C1 and C2,
A o A A Prol
d(Bry 8)—= 0, $,(6) == 52(80).

THEOREM 6.1. Suppose Assumptions Al, A2, A3, A4, B2, C1 and C2 hold. Let
b= (¢;), ®=(¢;) where

stan [ KO0, 00K 0, 0P 0) da,

¢y = [T RPN, 60)f(A) dA.
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dist

Now provided ® is nonsingular n v 2(5,, —69) — N(O, CI>'1¢<I>”1).

A Prob
Proof. Since 6,,—— #6,, the limiting distribution can be obtained on the assumption
that 6, € No. Now by the mean value theorem

0=5(60)+ %, (Bui=00.)S'"(6%)
where 6% =, +(1—A)8, and 0<A < 1. Hence
6.2) S (=S ODHRGus = 00k = 1S (00,
The proof is divided into two parts:

Part a. The proof that S ) kind ¢;; is given in Appendix B.

Part b. We prove that the limiting distribution of n 260 gy (1=i= p)is N (0, ¥)
as follows

(6.3) n'’?87(6o)=n'"? J R (A, 60)I, (1) dA.
Now let us define I(A, £) £ (1/27n)|X—, e.e™|*. As proved by Hannan [13] we may
replace consideration of the expression (6.3) by

(6.4) n'’? j I, &)f MR (A, 6,) dA.
But (6.1) implies that expression (6.4) may be replaced by

w2 7 - )
" L{m,e) — Ele}f(/\)h (A, 80) dA.

As shown in [13] this type of expression can be reduced to the consideration of an
expression which is asymptotically normal by a result of Hannan and Heyde [18].

Finally, n/2(8, — 60)—— N(0, ® "W® ") from (6.2) and [16, pp. 254-255]. O

COROLLARY 6.1. Under the conditions that make Theorem 6.1 valid n[az(én)—
0-2(00)] is in the limit distributed as %de)y where y is distributed as N (0, & D). Let it
be remarked that E{3yT ®y}=3tr{ Ysd™'}.

Proof. By the mean value theorem

T

o(6,) =260 +5 ¥ (é,.,i—eo,i)@,,-—oo,j)j R, 6F)F(N) dA
1 T

Lj= —

where 6F =)t00+(1—)\)é,,, 0< A <1. Hence

nlo(8,)—o>(60)]
(6.5)

m

p A A .y
=3y n‘/2(0n,,~—eo,i)n1/2(0n,f—eo,f)j RN, 6F)F(1) dA.
iLj=1 T

The result now follows from Theorem 6.1. [

COROLLARY 6.2. Under the conditions for the validity of Theorem 6.1 n[S,(6,)—
S.(6, )] is in the limit distributed as 3y " ®y where y is distributed as N (0, ® 'Pd ). Letit
be remarked that E{3y T ®y} =3 tr {ys®'}.
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Proof. By the mean value theorem

A p A A .
Sn(80)=Su(0:)+2 X (60.=6,:)(80,=0n)SH" (67)

Lj=

where 6} =10, +(1 —)\)én, 0<A <1. Consequently

N p a a ”
n[8.(80)—S.(8.)1= ¥ n'*(60—0ni)n l/2(‘90,,' —6,))S(67).

iLj=1

Prob

The result now follows from Theorem 6.1 and the fact that $ (9% )—— ¢y 0O

7. Additional limiting distributions relevant to 4,. In § 6 the limiting distributions
relevant to én were developed under fairly weak assumptions on {x,}. To obtain more
results assumptions additional to those of § 6 need to be introduced. Here we assume
Al, A2, A3 as in the last section plus we introduce

A5: E{erem}=E{e2}E{em} for n>m.

A6: Efen}=us<c0. Define ks = pus—30".

B3: ¥, u|l,| <o (note that B3 = B2, see Theorem C.1 of Appendix C).

Let it be remarked firstly that the above set of assumptions on the process is more
stringent than the set of assumptions A1, A2, A3, A4 and B2 of the previous section.

Clearly, Assumptions Al, A2, A3, AS and A6 are satisfied by {¢,} a sequence of
independent random variables with E{e,}=0, E{e2}=0>>0 and E{es}=us<0.
However, Assumptions Al, A2, A3, A5 and A6 are weaker.

Assumptions A2 and A3 have been chosen because they imply that powerful
convergence and central limit results hold. Assumptions A2, A3, A5 and A6, together,
have been chosen because expressions of the form E{e;}, E{e:¢;} and E{e;;ee:} have
the values that would have been ascribed to them had the ¢,’s been a sequence of
independent random variables with E{e,} =0, E{e?}=0>>0and E{e{} = s <. (See
Lemma C.1 of Appendix C.)

Assumption B3 implies that ). |ty,| <0, see Theorem C.1 of Appendix C. The
condition ¥ |#y,| <o implies that not only is f(-) continuous but it is also differentiable
everywhere with a bounded derivative for A €[—, ]. (See, again, Theorem C.1 of
Appendix C.)

In addition to Assumptions C1 and C2 on the class of interpolators introduced in
the previous section we also require:

C3: h'(A, 6) is such that ¥, |’ (6)| < o for each 6 € Ny,

In Appendix C are proved a number of results pertaining to quantities related to
S.(6).

It will be supposed throughout this section that Assumptions A1, A2, A3, A5, A6,

B3, C1, C2 and C3 hold. The results developed in Appendix C will now be used to prove
several theorems.

THEOREM 7.1. For ® nonsingular n"’?(S,(6,) — a*(6,)) 2 N(O, 8) where

5447 J " [h (A, 80)f(M)T dAr +§(02(00))2.

Also 8 =2 (2+ x4/ )% (60))’.
Proof. By the mean value theorem

A p A a "
5.(00)=S8.(6.)+3 ¥ (60— 0,:)(00,;—6,,)S(65)

Lj=1
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where 65 =60+ (1 —A)é,., o<A <.
Consequently

~12
n p o n .
Y 160~ 6,10 1/2(00,,‘ —6,))S (0%).

1 [84(8) = Su(00)) = ——5— ¥

A dis
By Theorem 6.1 n'*, ~00)——1> N©O, d 'yd). Also, the proof of Theorem 6.1

.. Pro
includes a proof of the fact that S (%) b &y

1/2 A 1/2 PrOb
Hence n"'“S,(6,) =n"'"S,(6o) + «, where k,—— 0. Also by Result C3.
n'2E{S,(60)} = n""*a*(60)+ ho where lim h, = 0.

Hence

Prob

n'[8,(6,) — 0 (80)]=n""*[S,(60) — E{Sa(60)}] + m, where m,—> 0
Hence by a result of Cramer [16, § 20.6] the limiting distribution of n 28 (6,)—
?(80)] is the same as that of n'/?[S,(6o)—E{S.(60)}]. Now by Theorem C.4 of

dis
Appendix C n'/2[S,(60)~ E{S(60)}]— N(0, 8).
If o%(8o) is constrained to equal {7 _h(X, 80)f(A) dA then a calculus of variations
argument proves that the constrained minimum value of § is (2 + x4/ a*(a*(6y)* O

CoROLLARY 7.1. nV/2[S,(6,) — o%(6,)]—> N(0, 8) where 5 is defined as in the
statement of Theorem 7.1.
A A A A rob
Proof. n 1/Z(Sn(on) - 0_2(0n)) —hn 1/2(Sn(0n) - 0'2(00)) =n 1/2(02(00) - 0_2(0'1))_?___’ 0

by Corollary 6.1. The result now follows from Theorem 7.1. [
THEOREM 7.2. For ® nonsingular

) —a? is
nl/Z[Sn(og) (; (00)] dist N(O, B)
n— Vo
where
BA[ 8 Vqu‘]
ey dT'wd !

where v =(v;) and v; =4 [7_h(A, 00)h” (A, 60)f(A) dA.
Proof. As in the proof of Theorem 7.1

n 1/Z[Sn(é‘n) - 02(00)] =n 1/2[Sn(00) - E{Sn (00)}] +m,

Prob
where m, — 0. Thus, when finding the limiting distribution we need only consider

n'?[S.(86) — E{S.(60)}].

Also, by Result C.3, n'?E{S (60)} = k,, where lim,, k,, = 0. Hence, when finding
the limiting distribution of n'’2876,) we may instead consider n'2[SY (6,)—
E{S) (60)}].
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As a preliminary we will consider the limiting distribution of

S (80) — E{S(60)}

(7.1) a2 S(nl)(eo)“‘E{S(nl)(eo)} _

17 (80) — E{S\” (60)}
By Theorem C.4 the vector (7.1) has a limiting distribution N (0, A) where
A4 [5 VT]
v ¢l

Now recall equation (6.2) viz.
p o ,- .
Y =SV (05)Hn " *(Bui — 00,0t =n"">S.) (80).
i=1

Hence the limiting distribution of

50 (60) ~ E{S (80}
1/2 0n,1 _. 00, 1

A

on,p —6 0,p

is N(0, B) where

II>

) pT@! ]

B [d 'y D D!

a

8. Limit results for two different interpolator classes on the basis of the same data.
The methodology of §§ 6 and 7 can be used to examine the following kind of situation
which has no analogue in the classical case (i.e. when the property of interest is the
spectral density.)

From the outset we restrict our attention to processes of the type 3'. Suppose we are
concerned with two classes of interpolators:

(1) £ ==Y h.(0)x,—, where {h,(0)}is a sequence of reals for which /() = 1 for
all # € ® a subset of R°.

(2) £, ==Y, m,(¢)x,_, where {m,(¢)}; is a sequence of reals for which mo(¢) = 1
for all ¢ € ® a subset of 7. In other words, ¢ =[¢1, -+, Pq]".

The mean-square interpolation error for the first class of interpolators has already
been defined by

a(6) 4 J ’ h(A, 0)f(1) dA.

-

The mean-square interpolation error for the second class of interpolators is
denoted 5%(¢) and is defined by

zm eiw\ 2
u

u

S ma o0 d; mO, @2

The estimator of o*(8) we will consider is S, (8) which has already been defined.
The estimator of 8(¢) we will consider is V,,(¢) defined by

T n—1
V@)t [ Lomagrin= T g6

r=—n+
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where

1 i iAr
Br(fﬁ)é‘z-;J' m(A, @) e” dA.

Also, let q?n denote a value of ¢ which minimizes V,,(¢). The following assump-
tions concerning m (A, ¢) will be referred to in this section. They are clearly analogous
to Assumptions C1, C2 and C3 for h(A, 6).

C1": ® is a compact subset of % It is also supposed that 8%(¢) is minimized at a
single value of ¢, denoted ¢y, and that ¢o€ ®—bd .

C2': m(A, @) is continuous in (A, ¢) € [—r, ] X ®. There exists a neighborhood of
¢odenoted M in which m(A, ¢) is a twice differentiable function of the ¢; whose second
derivatives w.r.t. ¢; are continuous in (A, ¢) for ¢ € M.

Let m“ (A, ¢) denote am (A, ¢)/d¢; and m"“”(A, ¢) denote 3°m(A, ¢)/dd; 3;.

C3": m”(, ¢) is such that ¥ |8 (¢)| < 0, ¢ € Mo.

Clearly, Assumptions C1’ and C2' imply that §°(¢) may be differentiated under the
integral sign at ¢o i.e. [T, m®(, ¢o)f(A) dA = 0.

Our motivation for considering two classes of interpolators is that we wish to
develop results pertaining to measurement of the relative performance of two different
interpolation classes based on the one set of data. Of course, S, (6) gives a measure of
the relative performance of different interpolators from the one class for different
values of 6. The theorems in previous sections are therefore concerned with the
question “What can be said about the best member of a particular class of inter-
polators?”” Here we are concerned with the comparison of members of two (or more)
interpolator classes and our theory relates to the question ‘“What can be said about the
best interpolator from several classes of interpolators?”.

THEOREM 8.1. Under Assumptions A1, A2, A3, A4,B2,C1,C2,C1'and C2', and
supposing ®, B, introduced below, are nonsingular then the limiting distribution of

e o ol &)

where A0 'y® !, BEDIOE and CAE'TE ™ and ®=(¢y), =), E=
=), [=(Ty) and Q= (Qy) where ;27 _h'P(A, 60)f(A) dA as before

=2 [ mP0, 0010 dh,

—ar

ke

47rj R0, 80 (A, 60)f2(A) dA,

Il>

llli j

Cy2an [ mO%, 09m®(, 00£20) dn,

ke

Qy2an [ KO, 09mP(, 00F ) da.

Pro A Prob

Proof. By Theorem 5.2 é,,r—b> 8o, ¢, — ¢o. Hence we are able to obtain the

limiting distribution on the assumption that 6, € No, $,, € M,.
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Now by the mean value theorem:

(=89 (00} 2 (6 — 00,0} = n'/2S (60),
i=1

i=

-V @K (Gui = b0k =2V (80)

where
0:,=A100+(1—/\1)0,,, 0<A1<1,

dh=hado+(1-A)b,,  0<Ar<1.

We now proceed in a manner similar to the proof of Theorem 6.1 to prove this
result. [
THEOREM 8.2. Under Assumptions Al, A2, A3, A5, A6,B3,C1,C2,C3,C1',C2/,
C3' the limiting distribution of .
n[(Sn(62) = V(b)) = (0*(60) = 5*(¢h0))]

is N(0, n) where

nan [ Thx, 8- m(r, gOFF0) dr

- 2
4t 09-m, g0l @]

Also, =2+ ks/o*)A* where A2 a*(80) — 8% (o).

Proof. By arguments similar to those presented in the proof of Theorem 7.1 we may
consider n'/*[(S,(680) = V(o)) — E{S.(60) — V. (¢0)}]. Theorem C.4 now implies the
first part of the theorem.

For the second part we note that when A is constrained to equal [~_(h(A, 6o) —
m(A, ¢o))f(A) dA a calculus of variations argument shows that the smallest possible
value of n is 2+ ks/a)A% 0O

Remark 8.1. Note that even when a%(6o) = o(¢bo) (i.e., A= 0) it may still be true
that n>0.

We next investigate the special case h(A, 6p) = m(A, @) for all A €[—m, 7). This may
be considered to be a suitable form of null hypothesis in structure choice problems (see
[19] for a detailed discussion).

THEOREM 8.3. Suppose Assumptions Al, A2, A3, A4, B2, C1, C2, C1', C2' hold
and suppose that ®, Z are nonsingular. Under the hypothesis that h(A, 6o) — m (A, ¢o) for
all A e[—m, 7] the limiting distribution ofn[(S,,(é,,)~ V(b)) — (02(80) — 8%(dbo))] is the
same as the distribution of —3x " ®x +5y" 2y where [xTyT 1" is distributed as

Mo[sr ¢l)

where A, B and C are defined in the statement of Theorem 8.1. The variance of the
limiting distribution is

(CiiCri + CiCj + CyCit ) Eii B

1

T
TMa

1
2

(A;jCu + ByBji + BuBji)®i; B

1

+% P (AjA+ AuAj+ AnAj) P Pr

=1

|
N[—=
E
i Mo
The

Z
I
-
=
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Proof. By the mean value theorem
A p A A e
S (80) =S (6,)+3% ) Zl (60,i = 6,,1)(60,; — On,j)sf;]) %)
i,j=

where 8% =1,00+(1—211)6,, 0<A;<1.
Similarly,

A a A A i
Va(do) = Va(da) +2 X ($0i=bni)(bo, = b)) Vi (6%)
L,]=
where ¢* =A%po+(1=A2)bn, 0<A2<1.
The hypothesis that 4 (A, ) = m(A, 8o) for all A € [—m, 7] immediately implies that
S.(80) = V(o) and o(8o) = 6°(8o), thus

AL(Sn(6,) = Vi(b)) — (02(80) — 5% (o))

8.1) ,Z (Box — Bui)(Bos— but) VL ($7)

n
2 k121

n 2 A o N
—> ¥ (80— 61:)(60,;—0,,/)S.) (6%).
2 =1
But Theorem 8.1 now implies that the limiting distribution of the lh.s. of
equation (8.1) is as stated in the theorem. [

Let it be remarked that the theorem obviously applies in the case that A(-, 6) =
m(-, ¢o)=f(-)"", this being a classical null hypothesis. It is to be stressed, however,
that it has not been assumed that A (-, 6o) = m(-, ¢o) =f(* )~!. It is easily seen that it is
possible to have A (-, 60) = m(-, ¢o) without having A (-, ¢o) =m(+, ¢o) =f(-) .

9. Rapprochment with classical results. By considering assumptions additional to
those made in §§ 2-9 we are able to recover many of the results of the classical theory of
finite parameter models for purely nondeterministic time-series.

Consider any one of the Process Type 1, 2, 3, 2' and 3.

Additional Assumption 1: {x,} is weakly stationary and has an absolutely continu-
ous spectral distribution. Again, the spectral density is denoted by f(-).

Additional Assumption 2: [”_log f(A) dA > —c0.

Introduce now the set {f(-, 8)|6 € ®} which satisfies the following additional
assumptions.

Additional Assumption 3: f(-)=f(-, 8o) for aunique 8, € O (here two functions are
considered equal if they differ at most on the set of A-measure zero).

Additional Assumption 4: f(A, 0)=0 for all (A, 0)e Z, jf,,f()«, 0) dA <o and

7 log f(A, ) dA > —co for each 6 € ®. Now define
¥(6)

m(-,0)2——— foreachfec®

2f(-, 6)
where

m

y(0)2ex; {%J' "Iog 27f(A, 6) d)\}.

Also, let o denote ¢(6,). The next result if well known
THEOREM 9.1. jf,, m(A, 0)f(A) dA is minimized at the single value of 8y € ©. (8, is
sometimes referred to as the ‘“‘true value” and yields f(-, 60) =f(-) a.s.)
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Proof. For the proof see [12]. d

Introduce now the following additional Assumption.

Additional Assumption 5: m(A, 6) is continuous in (A, 8) € Z and © is a compact
subset of a metric space M with distance d (-, *).

THEOREM 9.2. Under Additional Assumptions 1-5, for Process Types 1-3:

lim d(8,, 8,)=0
lim S, (6,) = o*(60), forwe (V.

For Process Types 2' and 3':

Prob

d(én, 00) — 0’

$a(6.) == 0%(8,).

Proof. The proof is an immediate consequence of Theorems 4.1 and 5.2. [

In the next result we specialize to processes of the type 3'.

THEOREM 9.3. Suppose Additional Assumptions 1-5 and Assumptions Al, A2,
A3, A4 and B2 hold and that Assumptions C1 and C2 hold for m(A, 6) replacing
h(A, 6). Let W =(W,;) where

woal j" m®A, §om” (A, 60)
! 477' —r mz(Ar 00)

ai.

a dis _
Now provided W is nonsingular n%6, - 6,) = N, W™).
Proof. The result follows from Theorem 6.1 and the following observations. Since

{7 log m(A, 8) dx =0 for 6 € © and since for 6 € N this can be differentiated under the
integral sign w.r.t. 6;

T ()
I mA0

_. m(A, 6)

and

J’" m@(, 6) _ J’" m®, 6)m” (A, 6)
_. m(A, 0 ), m2(A, 6)

hence ¢s= 20°® and the result now follows from Theorem 6.1. 0O

THEOREM 9.4. Under the conditions required for the validity of Theorem 9.3,
n[a?(6,) — a(80)] is in the limit distributed as 5x T ®x where x is distributed as N (0, W™1).
Let it be remarked that E{zx " ®x} = o-2p.

Proof. The proof is an immediate consequence of Corollary 6.1 and Theorem 9.3.

THEOREM 9.5. Under the conditions required for the validity of Theorem 9.3
n[Sn(80) — Sn(6,)] is in the limit distributed as 3y T ®y where y is distributed as N(0, W™1).
Let it be remarked that E{zy " ®y}=o’p.

Proof. Immediate consequence of Corollary 6.2 and Theorem 9.3. d

THEOREM 9.6. Suppose Additional Assumptions 1-5 and Assumptions Al, A2,
A3, A5, A6 and B3 hold and that Assumptions C1, C2 and C3 hold for m(a, 8)
replacing h(A, 0). Then if W is nonsingular

d\ for 6N,

(8, (6,) — 0*(80)] —> N(0, )
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where
sS4 (2 +§)o’4.

Proof. The proof is a consequence of Theorem 7.1. [0
THEOREM 9.7. Under the conditions required for the validity of Theorem 9.6

n1/2[sn(ér:)_0'2(00)] dist N, B)
6,— 69

where

5 0
B'[o W“l]'

Proof. The result follows from Theorem 7.2 and the following observations. As in
the proof of Theorem 9.3 we note that
o (§)]
m (Ar 00)
————dr =0.
J‘-—'n' m(A’ 00)

Hence »;=0 for j=1,---,p since by assumption f(A) is proportional to
1/m(A, 6o). During the proof of Theorem 9.3 it was also shown that s = 20°® and the
result now follows by Theorem 7.2. 0

10. Conclusions. This paper has developed results pertaining to the estimation of
the parameters in optimal interpolators when the class of interpolators is restricted. The
practical impact of the results is that they allow us to establish asymptotically valid
confidence regions for parameters under weak assumptions on the system. Results
pertaining to the case where two interpolators of different structure are fitted to the one
piece of data have also been presented. These results form a theoretical basis for
interpolator structure choice.

Appendix A. Consider the following type 3 process:
X, =€ +€-1

where {¢,} is an i.i.d. sequence, E(¢,) =0, E(¢?)=1 and E(¢}) = Mg <00,
The best one-step ahead autoregressive predictor of order 1 is

AN
Xt =" Xi—1
Yo
1
=2Xi-1.

Cascading k > 1 such predictors we obtain

However, the appropriate mean square k-step-ahead predictor error is o*(6) =
E{(x: — 0x:-)’} = yo(1 + %) — v (26) which is minimized by 6, =0 for k > 1, giving the
optimal restricted complexity predictor as £, =0 for k > 1.
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Appendix B.
THEOREM B.1. Under the conditions of Theorem 6.1 and using the notation
introduced in the proof of that theorem
Prob

S (0F) — ¢

Proof. Since Z is a compact subset of R” *1and h“’(A, 6) is continuous on this set,
hP(A, 6)is also uniformly continuous. Hence given £ > 0 a neighborhood N; and 6, can
be found such that N; =N, and for which [FP(A, 8)—h™(A, 60)|<e uniformly in
0Ny, A e[—m, 7]

. Prob .. . .
Now since 8 — 6, the limit result may be derived on the assumption that

0% e N;. Now for 6% e N;:

[ noowm®a, 60-r 0, 00 an

—ar

1857 (67)— S (60)| =

= EC().
Prob . . .
Now Cp, — yo and ¢ is arbitrarily small so that

(B.1) 189 (6%) - S (60)— 0.

Let gar(A, 6) denote the Cesaro sum of the Fourier series of hP(A, 6) taken to M
terms i.e.

U —_ v (i) _M isA
QM(A,O)—S=;MQS (0)(1 M)e )

(The derivatives exist by virtue of assumptions C1 and C2 which imply (2.5) can be
differentiated under the integral sign.) Also let

100 =[$P600 [ ahx, 001, 0) dr

>

Re)=|[ " ahtr, 0010 dr [ aheir, 00F0) |

w

7500 =|[ anh, 8070) dr — .

Note [S5” (80) = by| = J1(60) + J2(60) + J3(60). .
Now given &, > 0 we may fix M so large that |h (A, 6) — qar (A, 6)| < &1 uniformly in
(A, 8) € Z since the Cesaro sum converges uniformly in (A, 8) € Z.

1(00= [ V0, 00~ ghe(h, 0)IL,(0) dr

§€1Co.

Slmllarly J3(00) = €1Y0s

J2(60) = .

3 atoo(1-E)c -
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But h(ii)(A, 0) has been assumed to be continuous on a compact set, so
maxg ez |1 (A, 6)| = k <co. Thus independently of 6 € ®, |a\” ()| =k and

M
L(0)=k ¥ ]Cs _'YSI-

s=—M

TO Prob
But C, i—t:) v, 50 that J»(6p) —> 0 (M fixed).
Hence combining these results J1(6y), J2(6o), J3(8) for given € >0, n >0 we can fix
M sufficiently large and find an n(>M) sufficiently large that

P{ls;"”<oo>-¢,-,-|>s}<g.

Combining this with (B.1) yields the desired result. [

Appendix C.

LeEMMA C.1. Under assumptions A2, A3, AS and A6

(a) E{&,’} = 0, E{S,‘b‘j} = 0'26,']'.

(b) E{siejskel} =0 for i>j> k>l

(c) E{elec}=0 fori#k.

(d) E{elejei}=0 fori#j,i#kandj+#k.

(e) Eleiel}=0"fori#j.

Proof. The proof is straightforward using properties of conditional expectations.

THEOREM C.1. Under assumptions Al, to A6 we have the following
implications

(@) Y, ull,| <o implies ¥ ul? <.

(b) ¥, ulz <o implies ¥, y: <.

(¢) Y, ull,]<oco implies ., |ty.| < 0.

(d) ¥, |ty < oo implies Y, |y, < 0.

© X;|vl<co implies ¥, y? <co.

® Y, y? <o implies fA)=(1/27) Y. y. €™ in mean-square where

Vn éj f(A) e dA.

(@) ¥, |y <o implies f(A) is continuous and
1 in
fM)=5—-L e *
T

pointwise.

(h) ¥, |ty:| < oo implies f'(A) is continuous for A € [—r, ).

Proof. (a) Suppose ¥, ull,| <o then clearly |/,| < 1 for u >some N but then /% <|L,].
Hence ¥, ul2 <oo.

(b) Suppose ¥, uls <o then
2

4
(o

Zt "Y:Iz =Zt Z lulu+t

sY (z 13)( §0 13“)0“

v=
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(c) Suppose ¥, u|l,|<co. Now for t>0

§ u|lu+,|§ §1 (u+t)|lu+t|§ §1 u|lu|<00.

u=1 u= u=

Hence

2
o

b tI'Ytl =2 Yt
t =1

Z lulu+t

=2Y Ll ;1 t)l,| <.

(d) and (e) are elementary.

(f) By the Riesz—Fischer theorem ¥, y; <0 => f(A)=Y, vy, ™ in mean-square.

(g) Bythe Weistrass M-test ¥, |y,| <o implies that ¥, y, ™ converges uniformly.
Hence f(A) is continuous and f(A) =Y, y» e™ pointwise.

(h) Suppose ¥, |ty| <. Now if we define

1 izs 1 —ims
g(Z)éEZ vse —EZ yse

then we see that
z 1 ]
g(z)=J k(A)d\r  where k()«)éz—Z(is)yse’“.
o m s

Clearly k(A) is continuous on [—7r, 7). But g(z) = f(z) +constant, f'(z) = g'(z) so
that f'(z) = k(z). Consequently f'(z) is continuous for A €[—m, 77]. 0

RESULT C.1. Under assumptions A1, A2, A3, A5, A6, B3, let ka2 s—30" (k4 is
the fourth cumulant of €,). Then

E{xixixixi} = vi—pYi—1 + Yi—xYi—t + Yi-1¥i—k

(A)
+ a4 Xl avii-nlavie-ilavra—i
1 n—t n—r
ncov(c,c)==— % WieiVivtmimr + Vici—Vitr—j
(B) ni=1j=1
+ka X o avii—nl avjvr—i}
a
In cov (Cb Cr)' éz {}7v70+t—r| + |'Yu—r'Yu+t|
(©) v

+ |K4| Z |lala +rla—ula +r—ov l}

Proof. (A): the proof is almost identical to pp. 466-467 of Anderson [20]. (B)
follows by calculation from (A), and (C) is an immediate consequence of (B). [

ResuLT C.2. Suppose x, =Y., l.e.—, with E{e,} =0, E{e e} = 8 ms E{eeseqe,}=
0,t#s,t#q, t#r, E{e’e’y=c*r#s, E{let}=pas and ¥, |v| <.

. 2 K
limn cov (¢, c))= X {vsvs~r+t+ys-,ys+t}+a—3%yr.
n §=—00
Proof. The proof is essentially as on pp. 467-468 of Anderson [20]. O
THEOREM C.2. Suppose x,=Y, l.e—, with Ele}=0, E{e,em}=0"6nm
E{eseqe,}=0, t#s, t#q, t#r, E{e’el}=0" t#s, E{et}= s and Y. lvl<oo. Let
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Wi(A), Wo(A) be even and bounded with at most a finite number of discontinuities for
A €[—m, 7). Now let

= Y & V= Y B

where
A 1 i iAs 1 i iAr
& =— e Wi(A) dA, B, =— e "Wo(A) dA
27 ). 2 ),
and
a2n'’[T,—E{T,}], b2n'’[V,,—E{V.}]};
then

lim lim E{ab}=4m f Wi Wo(A)F2(A) dA

[T a [ waaw) an
o‘ —IT

Proof. From the definition of a and b

a=n'? g 8:[c.— E{c}],

_nl/z _§ Br[cr—E{Cr}]

hence

E{ab}= ’Zn: § 8,8n cov (c, c,).

t=—mr=—m

By Result C.2

llm E{ab}= Z Z 513{2 {¥sYs—ttr+ Vser¥Vs—ed +—2 P Yﬁ’r]

r=—mit=—m

Now since B_, =3,

llmE{ab} 2 Z Z &B,Z%‘Ys t+r

t=—mr=—m

+_74'Z Z Z SBryeyr

s t=—mr=—m

By Parseval’s theorem
lim lim E{ab} =47 | W,() W07 () d

+—“ I Wi(A)F(A) dA - j WoM)f(A)dr. O

THEOREM C.3. Under Assumptions A1, A2, A3, AS, A6 and supposing Y., |y.| <
(which is implied by Assumption B3 (see Theorem C.1)) n'%c, 0=t=m, are asymp-
totically normally distributed.
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Proof. The proof is in a manner similar to Hannan and Heyde [18], pp. 2062~
2063. O

THEOREM C.4. Suppose Assumptions Al, A2, A3, A5, A6 and B3 hold. Introduce
now g1(A), - - -, g4(A) where each g;(A) is even and for which

. o1 (T B
Slafl<eo; @b [ g)e™an
s R ——

Now define
Si J" gL Q) dA = t_"_inlﬂ aic
Then n*/{[Sh, - -+, 84" —E[SL, - - -, S} is in the limit distributed as N(0, Z) where
Z = (z;) and
a=tr ] awgrw e+ [ g a- [ g a
Proof. Now
WS - ES=n T alle—Ela)]
Now define

Z{nnénl/2 z a{[ct_E{ct}],

t|l=m

Ri,=n"" Y alle—E{c}], m<n-1.

m<|t|<n

By Theorem C.3 the limiting distribution of n'?[c,— E{c,}] 0=t=m is normal.
Also, from Theorem C.2

T

lim lim cov (Z Yons Z wun) =477 I giA)g)f*(A) dr

K ks m
ST gmmman [ g a.
Also
ER,.’s4 ¥ Y |akl|ncovic,ec)
t=m+1 r=m+1
=4 Z Z Ia:.a”z{I'YU+r'Yv+t|+I‘YU—r'Yv+t|
t=m+1 r=m+1 v
|4l
+;__4— Z llala+t a—vla+r—vl by Result C.1.
Now

) © Lo © © P
Y e T errond=s XX lakal|Ty?
t=m+1 r=m+1 v +1 v

t=m+1r=m

= X e ¥ larlXve.
v

t=m+1 r=m+1
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Also

1/2 1/2

Z llala-f-t a—vla-l—r—vl é (Z lzal§+t) (Z li-—vli-f-r——v)
a a b

lIA

M

Consequently lim,, E|R},.|*=0. Therefore by a result of Diananda [20] Z/,, +
R, j=1,---, p each have a limiting distribution which is, respectively, N (0, z;).

Similarly, it can be shown that the limiting distribution of n'/> ¥, B[S} — E{S}],
where By, - - -, B, are arbitrary constants, is N (0, Z?,i=1 BiBiz;;)- By the Cramer—Wold
[12] theorem the limiting joint distributions of n'/’[S,—E{S}}], 1=j=q is
N@©,Z). O

RESULT C.3. Suppose {x.} is weakly stationary with absolutely continuous spectral
distribution and that f(\) has a derivative which is bounded for —m = A = m. Suppose also
that W(A) is any bounded even function with at most a finite number of discontinuities
then

ar

FOW) da + o(l"i ”).

EH" 1,.(A)W(A)dA}=j

—r —

Proof. The result is stated and proved by Granander and Rosenblatt [23]. Their
proof depends essentially on a result due to Fejer [21].
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BOUNDARY CONTROL FOR THE HEAT EQUATION
WITH STEADY-STATE TARGETS*

E. J. P. GEORG SCHMIDTY

Abstract. Let () be a given domain in R", and u(x, f) denote the temperature distribution of ) at time .
The evolution of u(x, t) is governed by an initial boundary value problem for the heat equation; the boundary
value can be regarded as a control function. Within this context, given initial and target temperature
distributions uo(x) and u,(x), traditional questions of control theory—controllability, optimal controllability
and the characterization of optimal controls—have been extensively studied. Here these topics are considered
with particular reference to steady state distributions, that is solutions of the heat equation which do not
depend on time. We show that any u(x) can be controlled exactly to any steady state target u,(x), and that the
corresponding time optimal problem (with bounded controls) has as solution a ‘“bang-bang” control. For
controlling from cov(x) to c;v(x) (where v(x) is a steady state with boundary value g(x), and ¢, and ¢, are
constants) the restricted class of controls of the form 4 (f)g(x) is considered. Controllability results (including a
necessary and sufficient condition for exact controllability within that restricted class of controls) are proved.
Moreover, we show that a certain time-optimal problem, in which the target is a neighborhood of ¢, v(x), has a
unique solution A(f)g(x) with h(r) “bang-bang”. These results apply in particular to the problem of
controlling from ¢g to ¢; using controls dependent on time alone.

1. Introduction. Let Q) be a bounded domain in R" whose boundary 8Q) is a C~
manifold. Let A denote the Laplacian operation on R", 3/dv denote differentiation with
respect to the outward pointing normal » to 9{), a be a nonnegative constant, and
B"="a(3/dv)+ 1. We consider the following initial boundary value problem:

%”t-‘(x, H=Au(r,r) forxeQ, te(0,),

1) Bu(x,t)=f(x,1) for x €9Q), te (0, 00),
u(x, 0) = uop(x) for x € Q.

It can be shown that, given uo in H = L,(Q)) and f in Lo = Lo(0Q %X (0, 00)), (1) has a
unique solution u in a certain weak sense to be specified later. Moreover u(- , t) liesin H
for each ¢ >0.

Let uo€ H be given, and ¢ be a fixed positive time. For any subclass L of L. we
define

R, (uo; L)={u(-, t): there exists f € L with u the corresponding solution of (1)}.

Controllability involves the study of these sets. It is well known that R,(uo, L) is dense
in (but not equal to) H, i.e., that the system (1) is approximately controllable. (See, for
example, [9]). Exact controllability involves identifying elements of R,(uo; L). Certain
rather stringent sufficient conditions for u; to lie in R,(uo; L) have been developed by
Fattorini and Russell (see [3], [4] and [11]); in particular it follows that 0 € R,(u¢, L)
for all >0, a property known as null controllability.

We introduce a class of temperature distributions on ) which generalize the
constant temperature distributions, and share many of their desirable properties.

* Received by the editors September 13, 1978 and in revised form March 12, 1979.

+ Department of Mathematics, McGill University, Montreal, Quebec H3C 3GI, Canada. This research
was supported in part by the National Research Council of Canada Grant A7271 and by an Alexander von
Humboldt Research Fellowship.
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A steady state for the system (1) is a weak solution v € H of
Av(x)=0, forxe (),

(2)
Bu(x)=g(x), forxeadQ,

where g€ Lo(3Q)). From null controllability it follows that each steady state v is
“reachable”, i.e., v € R,(uo; L) for any uo€ H and any ¢ > 0. Steady states have other
desirable features too.

To actually find a control which takes one from a given initial state u, to an
arbitrary reachable target state u; is extremely difficult. However when u; is a steady
state with Bu; = g, the control function f(x, t) = g(x) yields a solution u of (1) with the
property that u (-, t) converges to u; as ¢t > . Thus, given £ > 0, one can explicitly find a
control such that for ¢ sufficiently large ||u(- , t) — uy]| < & (where | - || denotes the norm in
H). This suggests introducing the class of control functions

L& ={f(x,t)=h(t)g(x): h € L.(0, c0)}.

Such control functions were already studied by Glashoff and Weck in [6], but
not in connection with steady states. We obtain a characterization of the closure of
R.(0; L%) in H. We then also use a result of Galchuk [5] to derive a necessary
and sufficient condition for c¢;v to lie in R.(cov; L% ), where L% \=
{f=gheL% :m=h(t)=M a.e.}. These results apply in particular when v =1, in which
case the control function depends on ¢ alone, i.e., the control of the temperature of the
“body” (1 is by means of the ambient temperature A (t), and the aim is to cool (or heat)
the body from ¢, to ¢;. That situation originally motivated this paper.

The paper finally deals with optimal problems related to the above mentioned
controllability results, with special reference to the bang-bang property of optimal
controls.

2. Some facts about the heat equation. We shall need some facts concerning the
spectral theory of the Laplacian. A self-adjoint operator L can be defined in H as the
Laplacian acting on a suitable domain of functions satisfying Bu = 0 on 9Q}. It is well
known (see Agmon [1]) that L has a complete, orthonormal system of eigenfunctions
{@r}en (N the natural numbers) corresponding to negative eigenvalues {—A;}xen:

(3) Agr=—Aipr,  Beor =0.
For the eigenvalues one has the asymptotic estimate
4) Ax ~CK*'" (C a constant).

The eigenfunctions lie in C*()), and, letting D" denote an arbitrary partial derivative
of order r,

(5) ID"er(x)| = CAl,

where C, and m, are positive constants.
Following Fattorini [2] who treated the case a =0, we shall say that a function
u(x, t) which belongs to L,(Q % (0, T)) for each T >0, is a weak solution of (1) if

L LT u(x, t)[i—f(x’ H+Ae(x, t)] dx dt+ L uo(x)e(x, 0) dx
: + LQ LTf(x, N@’(x, 1) dS. dt =0,



HEAT EQUATION BOUNDARY CONTROL 147

where dS, denotes an element of surface area of (), ¢ belongs to the space of test
functions

Dy ={pcCTOOX[0, T):e(x, T)=0, Be(x, t)=0}
and

ale(x, 1) forxea,t>0, ifa>0,

] —
(7) @°(x, 1) = _Z_@(x,,) forx€dQ, t>0, ifa=0.

Combining Fattorini’s results with those of Glashoff and Weck [6], it is not difficult
to prove the following theorem in which the main facts relevant to this paper are
summarized.

THEOREM 2.1. Given ug€ H and f € L there exists a unique weak solution u to (1).
That solution belongs to C”(Q% (0, %)) as well as to L,(Q% (0, T)) for each T >0.
Moreover for each t =0 one has

(8) u(-, )= Vuo+Sf,

where
(@) {Vi}izo is a strongly continuous semigroup of bounded linear operators on H;
(b) S:: Lo~ H is continuous from the weak™-topology on L to H;

()

) Vito= T e " (uo, @) i
with (-, *) the inner product on H
(d)
t
(10) st=3 [ [ ] e ettr.s) as, ds]en
€ 0 Y9

where @5 (y) is equal to oi(y)/a if a >0, and —d¢,/ov if a =0.
() Ifuo(x) and f(x, t) are essentially bounded below by m (or above by M) the same
is true for u(x, t).

3. Steady states for the heat equation.

DEFINITION. Let g be in Lo(8Q). A function u € H is said to be a steady state (for
the heat equation) holdable by g, if it is a weak solution of (2); i.e., if for each ¢ in
{o € C*(Q): Bp =0 on 3O}

(11) Lv(x)mp(x) dx+j

il

g(x)e’(x) dS =0.
Q

Let S be the subspace of H consisting of all such steady states (elliptic theory implies the
existence of steady states corresponding to each g; see Necas [10]).

The role of steady states as targets is illuminated by the next result.

THEOREM 3.1. Let uo € H be given.

(a) Suppose ui € H has the property that for some e >0 there exists f* € Lo and f* >0
such that

lur—(Viuo+S:f=e fort>t.

Then there exists a steady state v with |lu;—v||=e.
(b) Suppose the hypothesis of (a) holds for each € >0 and that sup.=o ||f* |l <.
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Then u, is a steady state.

(c) Suppose there exists fin Lo, such that |uy — (Vo + S.f)| >0 ast > . Thenu, isa
steady state.

Proof. We prove (a). Since u = u® is a weak solution of (1) (with f=f¢), it follows
from (6) that for any p >0, T >0 and ¢ in C*(Q) with Bo =0 on 4,

I I pu(x, t) Aqo(x)dxdt+J [ulx, T)—u(x, T +p)le(x) dx
Q )

T

" Ln j“"f(x, 1¢’(x) dS, dt =0.

T

Let T =¢*, and define

T+p

w)=p [ Cumod, f0=p" | fen

Then

j up(x) Ap(x) dx +J f,,(x)qoa(x) ds,
Q 20
(12)

=p~! I [u(x, T+p)—u(x, T)] dx.
Q

Now, since ||u(: , T + p)|lo = max (|| fll, (- , T)|lw), the right side of (12) converges to 0
as p - 0. Moreover, because | f,|lo = || fll, and
1/2

T+p
(13 ey == (o7 [ e, 0 -wilP ) =e,
T

one can pick a sequence p, 1 o0, such that f, converges weak™® in L.(3Q)) to g; = g1 and
u,, converges weakly in L,(Q) to v = v°. Passing to the limit in (13), and noting (14) one
sees that v is a steady state (holdable by g, with g1/l =||f*|le), and that ||ju; — v[| S e.

That (b) implies (c) is trivial. That (b) follows from (a) is proved by passing to the
limit in

j ue(x)A<p(x)dx=J gi(x)e’(x) dS,,
(9} a0

noting that v°(x) - u; as € > 0, while g} has a weak* convergent subsequence because
g1 llo = sup.=o [|f*llo < 0.

Most of the desirable properties of steady states depend on the following trivial
lemma, which is obtained by setting ¢ = @ = —A% " Agy in (11).

LEMMA 3.2. Let v be a steady state holdable by g. Then

(14) jﬂ o()er(x) dx = A7 jo 2(x)el(x) dS..

4. Controllability results. We prove that

THEOREM 4.1. (a) For any upc H and t >0, S < R,(uo; Leo).

(b) Let u, be a steady state holdable by g. Suppose that m <ess inf g, ess sup g <M.
Then, for any uo€ H, uy € R,(uo; L, vr) for t sufficiently large.

Proof. The trivial proof depends on the less trivial fact that 0€ R,(uo; L). This
property (null controllability) was proved for general Q by Russell in [11], but can also
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be proved following Seidman [14], by more elementary means. Let v be a steady state
holdable by g. To prove v € R,(uo; L) one needs to find f € Lo such that Viug+S,f = v.
Since obviously v = Vv + S,g this requirement on f can be rewritten as V,(uo—v)+
S,(f—g)=0.Since 0 € R,(uo— v, L) such an f can be found, thus proving (a). The proof
of (b) depends on the fact proved by Russell, that for any uoc H and M >0,
0e R,(uo, Lprs) for t sufficiently large. Thus the equation V,(uo—v)+S.(f—g)=0
occurring above can be solved (for ¢ sufficiently large) with f — g arbitrarily small i.e.,
certainly with fe€ L, ar.

We show also some controllability results using the restricted classes of controls L&
and L%, »s defined in the introduction. Before evaluating S,f with f € L5 we introduce
some notation. Let {—u;};en denote the distinct eigenvalues of L in decreasing order,
M,={keN:A =} and Pi=%, 5, (-, @i)pr be the projection operator onto the
eigenspace corresponding to w;. From the representation (10) and Lemma 3.2 it easily
follows that, if f(x, t) = g(x)h(¢).

(15) Sf=% (u, Lt eI (s) ds)P,u,

where v is the steady state corresponding to g.

THEOREM 4.2. Let v be the steady state corresponding to g, and H,=
{ueH:u= Zc,’il cPw}. (H, is a closed subspace of H). Then for any u, € H,, and any
t>0, R,(ug, L%) is dense in H,.

Proof. It is enough to consider the case uo =0, since it follows from (9) that H, is
invariant under {V,},=o. Suppose R,(0; L%) is not dense in H,. Then there exists a
nonzero element Y, c/Piv in H, satisfying the following identity for all & € Lo(0, 0):

t
( Y P, Y ,u,j e Ip(s) dsP,v) =0.
jeN leN 0

Letting h(s) be the characteristic function of [0, r] (with r<t), and noting that
(P, Pw) = 8;||Pwl|, one gets, after integrating and then differentiating with respect to r,
(which is permitted, since, as a consequence of (4), the series converges uniformly for
re[0, t—¢], with any £ >0),

Y cllPolfue ™ =0.
leN

It follows, by a standard argument, that ¢,||Pw|*u; = 0 for each [, so that ¥, c:/Pv =0, 2
contradiction which completes the proof.

We have not been able to resolve the problem of null controllability within H,
using the controls LE. However a deep result of Galchuk [5], for which we give a new
proof and a slight extension in an appendix, does allow us to characterize the situations
in which it is possible to control exactly from uo = cov to u; = c;v with controls in L%, or

g
m,M-
THEOREM 4.3. Let v be a steady state holdable by g, co and c1 be constants. Then

(16) Y wil<oo, whereS={leN:Pv#0},
leS
is a necessary and sufficient condition for the validity of each of the following statements:
(a) civeRcov, L) for each t >0;
(b) if m<co—|ci—col and M>co+|ci—co| then civeR(cov; L) for t
sufficiently large.
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Proof. We prove first the equivalence of (16) and (b). We suppose that (16) holds.
Then, using the representations (9) and (15) the requirement ¢ v = V,(cov) + S.f (with
f(x, t) = g(x)h(2)) is equivalent to

c1=coe ™ +,u,I e M On(s)ds forlin$
0

or, equivalently, to
t

17) ’U"J’ e *“(h(t—s)—co)ds =c1—co forlinsS.
0

Now, since (16) holds, the theorem of Galchuk (Appendix; A.1, part (b)) assures that
for given ¢, and ¢ sufficiently large, the moment problem (17) has a solution satisfying

|h(t—s)—co|=|c1—co| +&.

If £ is sufficiently small this ensures that f e L%, » so that indeed civ € R,(cov; Li ).

Suppose, conversely, that c;v lies in R,(cov; L5, »1), or equivalently that (17) has a
solution. Let ¢ =c1—c¢o, and k(s)=h(t—s)—co for s in (0, ¢) and k(s)=0 for s>t
Then, for each / in S,

J e “k(s)ds=cu;' = cj e " ds.
(4] 0
From this it follows that

J P(s)(k(s)—c)ds=0

0

for each P(s) which is a finite linear combination of real exponential functions e * S
with [ in S. Now k(s)— ¢ does not vanish identically, and lies in Lo(0, c0). Hence the
class of the above exponential ‘“‘polynomials” is not dense in L1 (0, ). From well known
results (see, for example, Schwartz [13]) it follows that (16) holds. The equivalence of
(16) and assertion (a) is proved similarly using Theorem A.1, part (a).

Itis interesting to apply this theorem in the case that v = 1. One can check that (16)
is then satisfied if ) is a ball, but not if it is a parallelopipedon. In the former (but not in
the latter) case one can therefore control exactly from one constant temperature to
another using controls dependent on time alone.

5. Results on optimal controllability. In connection with Theorem 4.1 we have
THEOREM 5.1. Let upe H and u, be a steady state holdable by g. Suppose
m <essinf,con g(x), €ss SUPycan g(x) <M. Then there exists a unique f, € Lo such that

ur= Vi uo+S. fi withty=inf{t:us€ R.(to; L)}

Moreover fy(x, t) = m or M a.e. on 3Q X (0, ty).

We remark that the fact that ¢z, is finite follows from (b) of Theorem 4.1, while the
existence of f, is a consequence of certain continuity properties of V, and S, The
‘‘bang-bang” property of f,, from which the uniqueness also follows, was proved in a
previous version of this paper; that proof has however been generalized (also using
ideas occurring in Fattorini [2] and Henry [7]) in Schmidt [12]; we refer to the latter
paper for proofs and for greater precision in the formulation of the ‘bang-bang”
property.

The final results deal with problems using the restricted control class L5, 5. These
are much more easily proved than the deep Theorem 5.1. They can, unlike the latter
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theorem, be derived by the standard separation argument (used already in Yegorov
[15]) as systematized with great generality by Knowles in [8]. For the sake of complete-
ness we give a different direct proof.

THEOREM 5.2. Let v be a steady state holdable by g, uo and u, belong to H,, t be a
fixed positive number and suppose that

(18) inf{HV,uo+S,f—ulllzfeLf,,,M}=8>0.

Then there exists a unique hy € Lo(0, t) with m = hy(t) =M such that, letting fy(x, t) =
hy(t)g(x), one has

| Vito+ Sifse — ual| = 8.
Moreover, h* takes on only the values m and M, with a finite number of “‘jumps” in each
interval (0, t—¢).
Proof. The existence of a minimizing control fu(x, t) = h,(t)g(x) is standard. Let
Uuo =Y ,cn biPiw, u1 =Y, x ¢iPiw. Then, using the representations (9) and (15) one has, for

f(x, t)=h(t)g(x),
[Vio+Sif —uil = IGZNHPwIIZAI(h)Z

with
t

A(h)=be™ —c+uw I e MK (s) ds.

0

Now h* has to minimize the functional J(h)=Y cn||Pw|*(A/(h))* subject to the
constraint m = h(t) = M. Hence, for any A satisfying the latter constraint, one must have
that

J'(h*)(h —hy) 20,

where J' denotes the Fréchet derivative of the function J. More explicitly the latter
condition is

(19) Y 1PolPA(h)m I e M [h(s) = hy(s)] ds 20.
leN 0

Let ¢ be any constant in (m, M) and

h(s) = (1 X (r,r+e) (s))h*(s) + cX(r,r+e) (S),

where x(..+¢)(s) is the characteristic function of (r, r + ). Substituting 4 in (19), and
letting & | 0, one obtains for a.e. r in (0, ¢) and for ¢ in (m, M)

YIPwIPA (hs)uie ™ ™" (¢ — hy(r) 2 0.
Let

n(r)= Z |IP11)”2A1(h*)/.L1e—“'(l_r).
leN

This cannot vanish on a set having an accumulation point in [0, ¢), for then one would
have ||Pw|*A;(hy) =0, for each [, in which case J (k) = 0, contradicting the assumption
6 > 0. From this fact, together with the inequality »(¢)(c —h*(¢)) =0, the “bang-bang”
property of h, (and hence its uniqueness) follows.

This leads directly to a result on time-optimal control.
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COROLLARY 5.3. Let v be a steady state holdable by g, uo and u, belong to H,. Let
8 >0 be given along with constants m and M such that

ty =inf {¢: there exists f € L% pp with ||Viuo+ S.f — uy|| = 8}

is finite. Then there exists a unique fy(x, t) = hy(t)g(x) in Ly a with |V uo+S., fx—
uq||= 8. The control h, has the ‘“bang-bang” property described in Theorem 5.2.

Proof. The existence of f is standard. The “bang-bang” property is proved by
noting that f, is also a solution of the norm approximation problem in Theorem 5.2 with
t=ty.

Remarks. (1) If u;=c v (c, a constant) it follows from (9) and (15) that, setting
f(x,t)=c1g(x), Viuo+S:f > uy as t > 0. In this case therefore if m <c; <M, ¢, is finite
and the conclusion of the corollary holds.

(2) We have not been able to decide what happens in the case § =0, i.e., when
t, =inf {¢: u; € R,(uo; L5 )} This is related to the question of null controllability in H,
with controls in L% ; null controllability would imply the “bang-bang” property.

Appendix. On the moment problem treated by Galchuk. In [5] Galchuk proved
assertion (b) of the following theorem about the moment problem

(A.1) Ie‘“l‘f(s)ds=p,fl forleN.
0

THEOREM A.1. Let {u;} 1~ be an increasing sequence of positive numbers such that
Yienmi ' <. Then

(a) for each t >0 the moment problem (A.1) has a solution f in L(0, t);

(b) let C>1 be given; then for all t sufficiently large (A.1) has a solution f in
Lo(0, 1), with ||fle=C.

We provide a proof which is considerably shorter and more elementary than that of
Galchuk, at least if certain results on real exponentials due to Schwarz are assumed;
moreover this proof yields (a) which was not proved by Galchuk. The following
proposition is just a special case of a theorem due to Banach and Riesz.

PROPOSITION A.2. The moment problem

(A.2) Jte_“lsf(s) ds =cy,

has a solution f in L+(0, t) if and only if there exists a positive constant C such that for each
{&}ien with only a finite number of nonzero terms (the set of such sequences is denoted by
Sr) one has
(A.3)

Z §,e““’s ds.

leN

> szt‘ = CLI

leN

Moreover if C is the smallest constant for which (A.3) holds one has
C =inf {||fllw: f is a solution of (A.2)}.

Proof. An easy estimate shows that if f is a solution of (A.2) one has (A.3) with
C = fllo-

Conversely, if (A.3) holds, one can define a nonvanishing functional on L4(0, ¢) by
setting F(Yen&e™ ") =Y enciés (Where {&}iene SF), extending that functional by
continuity to the subspace generated by {e¢ “‘},cy and to all of L,(0,¢) by the
Hahn-Banach theorem. That functional has norm bounded by C and can be represen-
ted by a function f € L(0, £) with ||fle = C: f is a solution of (A.2).
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The following result is a refinement of a theorem proved by L. Schwartz in [13];
P. Koosis showed me the proof.

THEOREM A.3. Suppose ¥, .1’ <00. Then for each t >0 there exists a (least)
constant C, >0 such that

(A.4) Lw

t

Y &e ™

leN

Y &e ™| ds

leN

dséC,J'

0

for each {&}ien € Sk moreover C,~> 1 as t > o0,
Proof. The existence of such a constant C, for each ¢ > 0 is proved by Schwartz, but
he does not discuss the asymptotic behavior. We show that C;,~>1 as t>00. Set t =1,
Y &e ™

clearly C;>1. Now
[ 1
ds = I ds —I
0 leN 0

|
=p j ds,
0

where p =1—(1/C)) satisfies 0 < p < 1. Using the identity

I s
n+1 n

one can easily prove inductively that

I

Y e ™

leN

X Ge ' ds

leN

Y Ge ™

leN

Y &e ™

leN

Y &Le ™M ds

leN

Y (Ge)e

leN

o o]

ds ép"J ds.

0

Y &e ™

leN

Y &e ™

leN

Hence it follows that

[ o)
J‘O
so that C,, » 1 as n » 0. Since C, is monotone decreasing one also has C, > 1 as ¢t - c0.

Now we can prove Theorem A.1. To prove the solvability of the moment problem
(A.1) using an estimate of the form (A.3) we note that for {&},cn € SF

n

L ge ™

leN

ds,

ds=(1-p™™" J

0

) u71£:|= J Y Ge ' ds
leN 0 leN
0 t
éJ. Y &e Tt dséC,J Y &Le ™| ds
0 leN 0 lleN

and hence (A.1) has a solution f with | f|l» = C,; thus (a) is proved and (b) follows also
since C;~>1 as t > co.

Remarks. (1) Previously M. von Golitschek has assisted the author in proving that
C, =1+ 0(e ") as t > 00, under the additional hypothesis that u ;.1 —u; = u >0 for all
| and some u.

(2) The problem of finding biorthogonal series {fi}ien(SL&(0,£)) to
{7} en(< L1(0, 1)), i.e., solutions to Iée_“'sfk(s) ds = 8y, can also be solved using
Proposition A.2; estimates for ||fi]l~ are also given by this approach. This provides an
alternative approach to that of Fattorini and Russell (who use the Hilbert space
structure of L,(0, #) to construct biorthogonal functions in that space, for which they
then obtain uniform estimates), but does not yield new results.
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STOCHASTIC REALIZATION AND INVARIANT DIRECTIONS OF THE
MATRIX RICCATI EQUATION*

MICHELE PAVONT

Abstract. Invariant directions of the Riccati difference equation of Kalman filtering are shown to occur in
a large class of prediction problems and to be related to a certain invariant subspace of the transpose of the
feedback matrix. The discrete time stochastic realization problem is studied in its deterministic as well as
probabilistic aspects. In particular a new derivation of the classification of the minimal Markovian represen-
tations of the given process z is presented which is based on a certain backward filter of the innovations. For
each Markovian representation which can be determined from z the space of invariant directions is
decomposed into two subspaces, one on which it is possible to predict the state process without error forward
in time and one on which this can be done backward in time.

Introduction. The aim of this paper is to extend the theory of invariant directions of
the matrix Riccati equation to a large class of filtering problems, to present some new
results on the deterministic and probabilistic aspects of the discrete time stochastic
realization problem and to illustrate the particular features introduced in stochastic
realization by the presence of invariant directions.

Section 1 of the paper is concerned with characterizing invariant vectors for the
usual linear least squares estimation problem in additive white noise. We extend the
previous results on the colored noise problem 8], [14], [29] to our more general setting
and present some new ones. The main result of this part is Theorem 1.6 which provides
different necessary and sufficient conditions for invariance. These conditions are
phrased in terms of the convolution of two weighting patterns, of the optimal control of
the dual problem, of the best one step predictor and of the feedback matrix I'(#) of the
Kalman filter. The latter characterization appears here for the first time. Indeed, the
space of all invariant directions is simply the invariant subspace related to the eigen-
value zero of the transpose of I'(¢) for ¢ larger than a certain value. This interpretation
turns out to be quite useful and enlightening, since I'(+) is the transition matrix of the
estimation error and it is essential in classifying Markovian representations in the
stochastic realization setting (see e.g., Theorem 2.8). Also the fact that invariant vectors
are generalized eigenvectors sheds new light on the proof techniques employed in [8],
[9], [29]. The paper by Clements and B. D. O. Anderson [9], which contains results
closely related to conditions (ii) and (iii) of Theorem 1.6, became available to us right
after the first version of this paper was submitted. The emphasis in [9], however, is
somewhat different from ours in that the authors seek to characterize invariance for a
very general form of the linear quadratic regulator problem, whereas our main interest
lies in the stochastic implications of this phenomenon.

The second part of the paper deals with discrete time stochastic realization theory.
Given a wide sense stationary vector process z with rational spectral density ®, such
that ®(c0) is finite and ®(e') is positive definite for all w, and a Hilbert space H
containing the components of z(¢) for all ¢, consider the problem of determining all
minimal Markovian representations of z (stochastic realizations) driven by a white
noise withcomponents in H. We solve the problem in the following way. First the
second order properties of the stochastic realizations are described. Our results
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integrate those of B. D. O. Anderson [3]-[5], Faurre [11], [12] and Ruckebusch [33],
[34]. In particular, we show that the correspondence in [33, p. 70] between realizations
with square transfer function and real symmetric solutions of a certain algebraic matrix
equation of the Riccati type holds without any assumption on the feedback matrix. Our
analysis on this aspect of the stochastic realization problem parallels in some respects
the continuous time work of Lindquist and Picci [19].

Then we turn to the probabilistic side of the problem which has received consider-
able attention in recent years [1], [2], [18]-[23], [27], [32]{36]. A tool for this study is
provided to us by Theorem 2.5, which establishes a correspondence between the
deterministic as well as stochastic elements of realizations evolving forward and
backward in time. The last two subsections of § 2 are devoted to a new derivation of the
classification of the state processes of stochastic realizations due to Ruckebusch [33]in
discrete time and Lindquist and Picci in continuous time [19]. Our approach makes
essential use of Markovian representations of the innovation process with the estima-
tion error as the state. Ruckebusch has used the error process in finite and infinite
dimensional stochastic realization to derive a number of results [33]-[35], but our idea
of associating it with a stochastic realization of the innovations appears to be new.
Tackling the problem in this way we not only derive the main results in a rather simple
manner, but we also gain insight into their meaning. For instance, the important result
that realizations which can be constructed from only the process z (internal) are in one
to one correspondence with the invariant subspaces of the feedback matrix I',
(Theorem 2.8) can be given a natural explanation in terms of the backward filter of the
innovations (see Remark 2.10). Last, but not least, these stochastic realizations of
the innovation process provide a key to understanding the relationship between the
invariant subspaces of I'y and a certain class of inner functions in terms of which it is
possible to describe the realizations of z [21], [35], [36]. Our results on this subject,
however, will be presented elsewhere.

Section 3 is the natural continuation of §§ 1 and 2 in that it explores how invariant
directions affect the family of stochastic realizations. Indeed the space of invariant
vectors £ is the same for all realizations and is nontrivial if and only if ®(c0) is singular.
The characterization of £ as the invariant subspace of the transpose of I',, relative to
zero is important in establishing the two principal results of § 3. The first is Theorem 3.8
which says, loosely speaking, that in an invariant direction we can either predict or
smooth the state of an internal realization exactly (i.e., without error), showing that .# is
closely related to the germ space of z [23]. The second is Theorem 3.9 which embeds
every internal realization in a chain of internal realizations (totally ordered with respect
to state covariances) whose minimum element has a full set of predictable directions[14]
and whose maximum one has a full set of smoothable directions (Definition 3.7).

The last subsection of § 3 is devoted to comparing two possible approaches to
discrete time stochastic realization based on different factorizations of the covariance
operator. We show that the factorization leading to Markovian representations without
noise in the output [1], [11] considerably narrows, compared with the other approach,
the solution class of the stochastic realization problem when ®(o0) is singular. This
deficiency of the first method makes it advisable to seek Markovian representations of
the type considered in this paper unless nonsingularity of ®(c0) is guaranteed.

It is worthwhile remarking that the assumptions made on the process z in §§ 2 and
3 are mostly for simplicity. Indeed many of the central results can be established, in a
suitably modified form, in the nonstationary case under mild assumptions on z, albeit
the derivation becomes more involved. This explains why we refrain from introducing
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backward realizations and related concepts, like that of smoothable direction, in the
setting of § 1. Our results on this matter will be presented somewhere else.
The scalar case has some interesting features for which we refer the reader to [23].

1. Invariant directions of the matrix Riccati equation.

1.1. Basic notation and formulation of the problem. We use standard vector-
matrix notation, with the following conventions. The unit matrix is denoted by I, the
transpose of a matrix by prime. All vectors without prime are column vectors. /' (R)
indicates the null space of the matrix R. If R is symmetric, R >0 (R =0) means R
positive (nonnegative) definite. If R =0, R'/? is the unique nonnegative square root of
R. The Moore-Penrose pseudoinverse [26] is denoted by #. The trace operator is
indicated by tr. The cone of symmetric, nonnegative definite » X n matrices is denoted
by €,.. The Kronecker symbol is 8. The superscript o identifies ‘“‘optimal.”

Consider the linear stochastic model

(1.1) x(t+1)=Ax(t)+Bw(t),
(1.2) y(t) = Cx(t)+ Dw(t)

with initial condition x(0)=x,, where A, B, C and D are constant matrices of
dimensions n Xn, n Xp, m Xn and m Xp, x, is an n-dimensional zero-mean random
vector, the input w is a p-dimensional zero-mean white noise sequence uncorrelated
with xo, E{xox0}= Po and E{w(s)w(?)'} = I8.

As is well-known, the best linear least-squares estimate X(¢) of x (), given the data
{y(0), - - -, y(r—1)}, is generated recursively by the Kalman filter

(1.3) Fe+D)=AfO+K@)[y()-CE()], £0)=0,
where K (¢) is given by
(1.4) K(t)=(AZ(t)C'+BD')(C(:)C'+ DD")*

and 3(¢) satisfies the Riccati difference equation

S(t+1)=A3(1)A'— (AZ(t)C'+ BD')(C2(t)C'+ DD")*(C3(t)A' + DB')
+BB’,
(1.5)

2(0) = Po.

We shall indicate the solution of (1.5) at time s by 2(s; Po) when we intend to emphasize
the dependence on the initial condition Py. '
DerINITION 1.1 ([8]). The n-dimensional vector a is called an s-invariant direction
of (1.5) if a'2(t; Py) =a'2(s; 0) for all t=s and all Pye %,.
We shall study the problem of characterizing all invariant directions of (1.5).

1.2. Preliminaries. In this section we transcribe some well known results of duality
between estimation and control into a form best suited to our problem. We refer the
reader to [24] for the variational principles underlying this duality.

Since £(¢ + 1) is in the linear span of y(0), - - -, y(¢) there exist matrices U (s, ¢)° for
s=0,:--,tsuchthat £(t+1)= —Zi=0 (U(s, 1)°)'y(s). Such sequence is optimal for the
following dual problem: find U (¢)= (U (0, t), - - -, U(t, t)) which minimizes

(1.6) tr {JIU(OL =tr {Q(=1, ) PoQ (-1, 1) + ‘j‘o Z(s, 1Y Z(s, 1)},
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where
(1.7) Q(—-1,=A'Q(s, )+ C'U(s, 1), Q(t,1)=1,
(1.8) Z(s,t)=B'Q(s,t)+D'U(s, t).
A standard argument yields the closed-loop form of the optimal control
1.9) U(s, 1)°=—K(s)Q(s, 1)°, s=0,---,¢

Consider the linear estimator of x (¢ + 1) given by y(r+1) = —Z:=0 U(s, t)'y(s). Then it
is easily seen that

(1.10) X+ 1) =yt +1) = Q(=1, Yo+ ¥ Z(s, tYw(s).
s=0

Introducing the quantities P(s,t)=E{x(s)[x(t+1)—y(+1)]}, R(s, t)=
E{y(s)[x(¢t+1)—y(¢+1)]'} and applying the operator E{:[x(¢+1)—y(z+1)]} to both
sides of (1.1)—(1.2) we obtain, in view of (1.10), the following adjoint system

(1.11) P(s+1,t)=AP(s,t)+BZ(s, t), P(0,1)=PoQ(—1,1),
(1.12) R(s, t)=CP(s, t)+DZ (s, t).

The terminology is justified by the fact that, setting up the discrete minimum principle
for the dual problem (1.11) are seen to be, with the appropriate normalization, the
adjoint equations. Let us note that

(1.13) R(s,t)=0, s=0,--,¢t

is a necessary and sufficient condition for optimality of the U (¢) sequence. Whenever A
is nonsingular we can rewrite (1.7) in the form

(1.14) Q(s,1)=(A)'Q(s—1,1)—(A)'CU(s, 1), Q@ 1)=L

Hence we have the following input-output relations:

(1.15) Z(s, )= Y TOUs—i,n+B'(AY " 0(-1,1),
i=0

(1.16) R(s,0)= Y TG)Z(s—i, 1)+ CAP,Q(~1, 1),
i=0

where the weighting patterns T(-) and T(-) are defined by

. . (D'-B'(A)'C’, i=0,

(1.17) T(’)_{—B'(A')"""lc', i>0,
(D, i=0,
(1.18) T(’)“{CA"‘lB, i>0.

Combining (1.14) and (1.15) leads us to the Hamiltonian system
( Q(s, 1) )=[ (A~ 0](Q(s—1,t))
P(s+1,1/ LBB' (AN AI\ P(s, 1)
+[ -(AY'Cc
BD'-BB'(A")'C’

(o) =(z)ocro

(1.19) ] U(s, 1),
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Q(s - 1’ t)
P(s, t)

where Q(—1, t) = (A" +Z;=0 (A"'C'U(, t). Itis clear that the wgighting pattern Ty (+)
of the Hamiltonian system is just the convolution of T'(-) and T'(-).

(1.20) R(s,t)=[DB'(A")! C]( )+[DD’—DB'(A')"1C']U(S,t),

(1.21) Tul)=[T * F16)= 3 TG—-DT().

i=0

The matrices Ty (0), - - -, Ty(n —1) will play a central role in establishing neces-
sary and sufficient conditions for invariance.

1.3. Characterization of invariant directions. We study the case where A is
nonsingular. This assumption enables us to derive explicit expressions for the invariant
vectors. (The case where no restriction is placed on A and on the definitness of the
criterion matrices has been recently investigated in [9]). The three following lemmas
extend known results to our more general setting.

LEMMA 1.2. The vector a is an s-invariant direction of (1.5) if and only if

(1.22) acN(Q(t—s,1)° forallt=s—1 and all Pye &,

Proof. Observe that a control U (¢) is optimal for the dual problem if and only if it
minimizes a'J{U(t)]a for all a € R". The result now follows from a straightforward
modification of the argument of Theorem 3 in [29]. O

Notice that optimal quantities in the dual problem depend on the terminal weight
P,. To keep notations simple, we shall refrain from explicitly exhibiting this depen-
dence.

Remark 1.3. The proof of the sufficiency part in Lemma 1.2 relies on the fact that,
under condition (1.22), U(t—i, t)°a is invariant over t=s for i=0,---,s—1.
Moreover, when (1.22) holds, it is easily seen using (1.7)-(1.9) that ae
NUG, DYNN(Z(G, 1)) for i =0, -+, t—s. In particular it follows from (1.10) that
a'x(t+1)=a’ Zi.:,_sﬂ (Z (@i, )°)w(i), where %(t)=x(t)—%(¢) is the estimation error.

The mathematical framework set up in the previous section will be useful in
proving the following result.

LEMMA 1.4. The vector a satisfies (1.22) if and only if

(1.23) a=- é (An'c'a,
where the m-dimensional vectors A1, Ao, * * + , As are such that
(1.24) g_; Tu(Ami=0, j=1,--s
In this case the optimal control satisfies
(1.25) U®)°a=(0,-,0, s, A1)
Proof. Assume that (1.22) holds. In view of the time invariance discussed in
Remark 1.3, wecansetA; = U(t—i+1,t)°afori=1, - -, s. Expression (1.23) can now

be derived using (1.7) recursively. Let us consider the input-output relation of the
Hamiltonian system

R(s0=[DBA)" ClAi(, ) Q-1+ § Tu@UG =01,
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where
AN 0]
BB'(A)™' Al
As observed in Remark 1.3, a € /(Q(—1, )°). Then (1.24) follows from the optimality

conditions (1.13). Conversely suppose a is as in (1.23) with the A;: s satisfying (1.24).
Using (1.9) and, recursively, (1.7), we obtain

|

U(k, t)°a = —K(k)’[(A')‘"" + 'ik (AN 'C'U(k +1i, t)°] a
i=1

which, together with (1.23) yields

s—t+k

Uk a ==K (|~ £ (A)"Cheen
t—k X
+ % (A CTUK+, 0Pa Al

A calculation similar to that found in the proof of Theorem 8 in [29], i.e., using (1.4),
(1.5) repeatedly and condition (1.24), shows that

s—t+k

(1.26) K (k) ;1 (A)'C'A ki = Aemient

which, inserted into the previous expression for U(k, t)°a, enables us to derive
Uk,t)°a=A_x4+1 for k=t—s+1,---,¢t recursively. This and (1.7) yield Q(¢—
s, 1)°a =0, i.e., condition (1.22). Also (1.25) now follows in view of Remark 1.3. This
completes the proof. 0O

A straightforward extension of the proof of Theorem 8 in [29] establishes the
following lemma.

LEMMA 1.5. A vector a is s-invariant for (1.5) if and only if a is as in (1.23) and

1.27) a'#t+1) ==Y Ayt +1—i) forallt=s—1.
i=1

Let I'(¢) denote the feedback matrix A— K (t)C.

THEOREM 1.6. The following statements are equivalent:
(1) a is an s-invariant direction of (1.5).

(ii) a satisfies (1.22).

(ii1) a is as in (1.23) and (1.24) holds.

(iv) ais as in (1.23) and (1.27) holds.

(v) a generates the same s-dimensional cyclic subspace of I'(t)' forallt=s—1 and
all Pye 6, ; this invariant subspace of T'(t)' is associated with the eigenvalue
zero, i.e., (I'(¢))’a =0. Moreover I'(t —s+1)" - - - T'(t))a=0 forallt=s—1.

Proof. The equivalence of (i), (ii), (iii) and (iv) follows directly from Lemmas 1.2,
1.4 and 1.5. Suppose a satisfies (v) and observe that relations (1.7) and (1.9) yield the
expression Q(t—s,t)°=T({—s+1) - --T(¢). By assumption I'(t —s+1)" - - - T'(t)'a =0
and (1.22) follows. Conversely, if we assume (iii), we derive from (1.26) and the last part
of the proof of Lemma 1.4 the relation
s—j . s—j—1 X
NG} _Z (ANC'rivj= Y (A)V'C'Aixjnr

i=1 i=1
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forallt=s—j—1andall Po€ €,,wherej=1,---,s—1and,forj=s—1, theright hand
side is defined to be zero. This establishes (v). O

Condition (v) of this theorem is new. Its importance will completely surface in the
stochastic realization setting.

Remark 1.7 ([8)]). The sets I of s-invariant directions and % = U';’o:l I, of invariant
directions are vector spaces. It follows from the previous theorem that # =U_; L.

Remark 1.8. The dimension of the invariant subspace $ can be easily determined
in the single-output case y(¢) = ¢'x(¢) +d'w(z). It is equal to the minimum between the
rank of the observability matrix [¢ = A'c, - -+, (A")" '¢] and the first index j such that
Ty(j—1)=--+ =Ty(0)=0 and Ty (j)#0. The general case is rather involved. We
shall not pursue here the extension of the results of [29] on this matter.

Let

(1.28) W(z)= i T(i)z'=C(zI-A)'B+D

be the transfer function of (1.1)-(1.2) and

(1.29) Wir(2) = 20 T())z™

the transfer function of the Hamiltonian system. The following characterization of

T (+) will be helpful in the third part of the paper.
THEOREM 1.9. Assume A nonsingular. Then

(1.30) Wu(z)=W(z)W(z ™.
If y in (1.2) is stationary with spectral density ®(z), we also have
(1.31) Wu(z)=d(2).

Proof. Consider Wiz YY=B(z'I-A)'C'+D'=-B'(A) "I-z""x
A hH'c'+p.. Expand the last term in a neighborhood of infinity as follows:

_BI(A/)—I(I_Z——l(Ar)—l)—1C/+D/
(1.32) =D'-B'(A)'C'-B'(AY*C'z '-B'AYC'z?- -

= E Tz ™"
i=0

Take the Cauchy product of the two series in (1.28) and (1.32) to get (1.30). In the case
of a stationary y the well-known spectral factorization formula

(1.33) d(z)=W(E)W(EYY

yields (1.31). O

Notice that the calculations in the previous theorem make sense because the series
in (1.28) and (1.29) converge respectively to W(z) and to Wy (z) in an appropriate
neighborhood of infinity.

Let A(t, s) = E{y(¢)y(s)'} be the covariance operator of the observations. It is a
simple matter, using the expression y(s)=CA "x(s+n)+ Z::(: T(i)w(s +i) which can
be derived from (1.1)-(1.2), to see that the parameters Ty (0), - - -, Ty (n —1) deter-
mine the degree of “smoothness” of A(-, -), i.e., the number of differencing operations
on A(-, *) necessary in each direction to produce a Kronecker delta. This number has
been named in the scalar case relative order of the covariance, see [14] for example. This
fact has its counterpart in the spectral domain in Theorem 1.9.
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1.4. Predictable directions. The invariance properties of invariant directions have
been pointed out by several authors [8], [14]. Indeed, as it is apparent from Theorem
1.6, the space # is invariant over models (1.1)—(1.2) having the same covariance of the
output and the same (up to a change of basis in the state space) pair (A, C). However, if
a is an s-invariant vector for (1.5) the value a'2(s; Po) does depend on the model. A
special case of particular interest is when a € /' (Z(s; Py)).

DEeFINITION 1.10 ([14]). The n-dimensional vector a is called an s-predictable
direction of (1.5) if a'2(¢t; Po) = a'2(s; Py) =0 for all t =s. The two following theorems
extend some results of Gevers [14].

THEOREM 1.11. The vector a is an s-predictable direction of (1.5) if and only if a is as
in (1.23) with the A; satisfying

s—j .
(1.34) Y T(@)A =0, j=1,--,s.
i=0

Proof. If a is s-predictable a'%(t+1) =0 for all t=s — 1. Using (1.10) with optimal
quantities we see that a e /(Q(=1,¢)°) and aeN,_,..., N(Z (i, 1)°) for all t=s—1.
Again time invariance of the optimal control can be shown to hold and, identifying
quantities as in (1.25), we get (1.23) from Q(—1, s —1)°a = 0. Also (1.34) follows from
(1.15). To prove the converse first observe that (1.34) implies (1.24). By Lemma 1.4
a e N/(Q(-1, )°) and (1.25) holds. From (1.15) and (1.10) we conclude that a'x(z + 1) =
Oforall t=s—1, i.e., a is s-predictable. 0

THEOREM 1.12. Let 3(s; Po)>0. Then 2(t; Po) >0 for all t = s if and only if T(0)
has rank m.

Proof. Let A be such that T(0)A =0. Then (A")"'C'A € /'(Z(t; Po)) for all t = 1. To
prove the other half we use induction. Suppose 2(t —1; Py) >0 and a € /' (2(¢; Py)). It
follows from the principle of optimality that

0=a'2(t; Po)a= /\m}izq" {(@A+A'C)Z(t—1; Py)(A'a+C'A)

(1.35)
+(a’'B+A'D)B'a+D’'A)}.

Let A° be the optimal value in (1.35). Since S(r—1; Py)>0 we get a =—(A')"'C'A°,
B'a+D’'A°=0and finally (D'—B'(A")"'C")A°= 0. If T(0) has rank m this implies that
a=0. 0O

Remark 1.13. Theorem 1.12 agrees with the results obtained by Silverman et al.
[25], [30], [38]. In fact, the presence of nontrivial predictable directions of (1.5) implies
that the system (1.1)-(1.2) is not strongly observable [38]. However, it can well happen
that it is completely observable (and controllable). In the third part of the paper we shall
study a set of minimal realizations with a nontrivial invariant and, for some of them,
predictable subspace.

1.5. Discussion. Our study has shown that invariant directions can occur in a more
general situation than just the noise-free measurements case treated in [8], [14], [29].
Conditions (iv) and (v) of Theorem 1.6 provide us with a probabilistic interpretation of
this phenomenon. In an invariant direction the optimal filter depends only on some of
the last observation instead of the whole information available. This fact is strictly
related to the invariant subspace of I'(z)’ corresponding to zero. Moreover, in the case
when vy is stationary with rational spectral density, condition (iii) of Theorem 1.6 with
Theorem 1.9 shows a precise connection between invariant vectors and the spectrum of
y. All of this motivates the stochastic realization approach to the problem taken in § 3.
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Finally we remark that this theory can be extended in a straightforward manner to
the case when the system matrices are time-varying replacing the concept of invariant
direction by that of degenerate direction [14]. A reduction of the order of the Riccati
equation which has to be solved can be achieved along the lines of [8] whenever
invariant (or degenerate) directions exist.

2. Discrete time stochastic realization: General theory.

2.1. Notation and problem formulation. Almost sure equality between random
vectors is simply indicated as equality. If {¢(¢); t € Z} is a second order vector process
defined on the probability space (), &, P) and S a subset of the integers Z, we denote by
Hs(¢) the closed linear hull in L,(Q), &, P) of the components of £(2), t € S. We shall
write H(£), H; (§), H? (£) and H(£(7)) instead of Hz(¢), Hzeziz=n (€), Hizezizzn (§)
and H{,(¢) respectively. Let E{:|Hg(¢)} denote the orthogonal projection operator
onto Hs(¢). We abbreviate ﬁ{' [H (£(2))} as E{- |£(2)}. The process ¢ is called a wide
sense vector Markov process if

E{&(s)H; (9)y=E{&(s)|¢(0)} fors =y,

or equivalently

E{¢(s)|HT (6} = E{¢(s)|£()} fors=ut.

For the sake of brevity we shall use the word ‘““Markov’ instead of the expression ‘‘wide
sense vector Markov.”

We shall be concerned with a wide sense stationary, purely nondeterministic,
m-dimensional stochastic process {z (¢); ¢ € Z}. The process z, defined on the probability
space (), &, P), is assumed to be centered and to have a rational spectral density ® such
that ®(c0) <oo. The finiteness of ®(c0) is essential only in § 3 and is assumed here for
simplicity. The matrix function ®(-) enjoys the following properties: each element of ®
is analytic on the unit circle, ® is discrete para-Hermitian, i.e., ®(z) = ®(z") and
®(e') = 0 Hermitian for all real w. In addition we suppose that z is a minimal process
[31]which, in view of the rationality of its spectral density, is equivalent to ®(e*’) > 0 for
all . This assumption too is made for convenience and can be removed without
impairing the main results of §§ 2 and 3.

In many problems of estimation and optimal control, when given a non-Markov
process z which models the information flow, it is necessary to resort to an auxiliary
x(t)
z(t—1)

are interested in the following two problems.

I. Wide sense stochastic realization problem. Determine, from the knowledge of @,
all quadruplets [A, B, C, D], with dimension of A minimal, such that the process y,
generated by the dynamical system (1.1)—(1.2) driven by an arbitrary normalized white
noise w, has the same spectral density ® as z.

II. Proper stochastic realization problem. Let H be a Hilbert space such that
H(z)cH<L,(Q,%P). Given H and the process z find all quintuplets
[A, B, C, D; w], with dimension of A minimal and w a normalized white noise
satisfying H (w) < H, such that y(¢), generated by (1.1)—(1.2) and z(¢) are equivalent
random vectors for all ¢.

We shall call a solution to problem I a wide sense minimal stochastic realization and
a solution to problem II a proper minimal® stochastic realization. It is immediate that to

Markov process x which makes £(¢) = ( ) a Markov process. More precisely we

! From now on we shall leave the word minimal out. All realizations are to be intended to be minimal
unless the opposite is explicitly stated.
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each proper stochastic realization there corresponds a (unique) wide sense realization.
The converse is false. To attack problem II we shall choose a route passing through the
solution of problem I, with the intent of deriving some new results along the way. It is
good to bear in mind, however, that a direct probabilistic approach to proper stochastic
realization is possible and in a sense more natural [18], [20]-[22], [27], [35], [36].

2.2. Wide sense stochastic realizations. Our preliminaries on problem I are based
on the important work of B. D. O. Anderson [3]-[5] and Faurre [11],[12]. Problem I is
equivalent to the classical spectral factorization problem. Find all minimal stable spectral
factors of @, i.e., all matrices W of real rational functions of minimal McMillan degree
[6] and with all their poles inside the unit circle which satisfy (1.33). Indeed, if
[A, B, C, D] solves problem I, then W(z)=C(zI —A) 'B+D is a stable minimal
spectral factor of ®. Conversely, any such W yields a whole class of wide sense
stochastic realizations. In fact, using one of the algorithms [16], [39], [41] available in
the literature we can compute a minimal [6] realization [A, B, C, D] of W. Then all
minimal realizations of W given by

2.1) [T'AT, T7'B,CT,D], TeGL4gma(R)

solve problem I. In view of this equivalence problem I can be solved as follows. Express
®, by means of partial fractions, as

(2.2) ®(z)=S(z)+S:E7Y,

where S is a positive real® and rational function. Let [F, G, H,J] be a minimal
realization of S. As observed before, several procedures are known to determine
[F, G, H, J] which is unique up to an equivalence such as in (2.1). The following simple
lemma allows us to eliminate J in the sequel.

LEMMA 2.1. Let S be the positive real function satisfying (2.2) and [F, G, H,J] a
minimal realization of S. If dimF=n=1, then F is nonsingular and J+J' =
G'(F')"'H'+ ®(c).

Proof. Taking limits in (2.2) we see that ®(c0) =J +J' +1lim, . G'(z 'I—F') 'H’,
since S(z) = H (zI —F)"' G +J. The conclusion now follows from the finiteness of ®(c0)
and the minimality of [F, G, H,J]. O

To avoid trivialities, we shall assume from now on that z is not a white noise, i.e.,
dim F=n = 1. It follows from Lemma 2.1 and the celebrated positive real lemma (see
e.g., [28]) that the set of all wide sense stochastic realizations is nonempty and given by

(2.3) [A, B, C,D]=[T"'FT, T"(B:, B,)V, HT, (R(P)'/*, 0) V],

where T e GL,(R), V is any p Xp constant orthogonal matrix, B; is n Xm, B, is
n X (p —m) (here p = m is arbitrary), P is n X n, symmetric and positive definite, R (P) is
the nonnegative definite quantity G'(F')"'H'+ ®(c0) — HPH' and (P, B, B) solve the
system

(2.4) P=FPF'+ BB’ +B,B5,
(2.5) G =FPH'+B,R(P)".

2 A real rational function with no pole on the unit circle is said to be (discrete) positive real if it has no
poles outside the unit circle and S(e*)+ S(e” ") = 0 Hermitian for all real w.
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Itis norestriction to choose T =1 and V =1 in (2.3). In fact all other realizations can be
obtained from realizations of the form

(2.6) x(t+1)=Fx()+Biu(t)+ Boo(t), w= (Z)

(2.7) z() = Hx (1) + R(P)"*u(t)

by means of a change of basis and an orthogonal transformation of w. Hence, whenever
convenient, we shall narrow our attention to realizations of the type (2.6)—(2.7). We
shall write 2 for the set of all symmetric, positive definite P which solve (2.4)—(2.5) and
9 for the subset of P consisting of those P such that R(P) is singular. Notice that the
realizations corresponding to elements of 2 are precisely those which have singular
intensity of the noise in the output equation. It can be shown [12] that & is compact,
convex and forms a complete lattice when endowed with the natural partial order
P, =P, if and only if P, — P, =0. There exist a maximal and a minimal element P* and
P, so that P, = P = P* for all P € ?. Moreover the minimality of the process z implies
[13] that P*—P, and R(P,) are positive definite. Hence ?\2 is nonempty. The
following result provides us with some information about the set 2.

PROPOSITION 2.2. The set P\2 is convex. For all Pe P\2, Qe 2 and A € (0, 1] we
have that [AP+(1—=)1)Q)e P\2. The set 2 is contained in the relative boundary of P.

Proof. The first two results follow at once from the fact that for Py, P, 2, A €[0, 1]
we have R(AP;+(1—A)P5) = AR(P;)+(1—A)R(P,). They in turn imply that, if P € P\2
and Q € 2, the segment [P, Q] cannot be extended beyond Q without leaving ?. We
conclude that Q belongs to the relative boundary of . [0

Let us introduce the mapping A:R"™" — R"™" defined by

(2.8) A(P)=—P+FPF'+(G-FPH')R(P)"'(G'— HPF').

The set ?/2 is contained in the domain of A(-). It is possible to extend A(-) to all of P
since the points in 2 constitute removable discontinuities. We can now derive an
important alternative characterization of the set 2.

THEOREM 2.3. Let A(-) be given by (2.8). Then P ={P|P =P’', A(P)=0}.

Proof. Let (P, By, B,) solve (2.5)—(2.6) with P=P' and P>0. Then if P € ?\2, we
getimmediately A(P) = —B,B5.If Pe 2, let {P;};~, be a sequence in #\2 converging to
P. Then A(P;)=0 and it follows that A(P)=1im; A(P;)=0. This shows that <
{P|P = P', A(P)=0}. The other inclusion can be proven by an argument akin to that
used by B. D. O. Anderson [4, p. 140]. O

This result provides a bridge between the theory of positive real functions and the
study of quadratic matrix inequalities and algebraic Riccati equations.

Let us introduce the set Py = {P € P|A(P) = 0}. Clearly %, consists of all P € P for
which B, =0.

Remark 2.4. Since the eigenvalues of F lie in the open unit disc, elementary
Lyapunov theory ensures that to each (B, B,) there corresponds a unique P. The
converse does not hold in general. However, for realizations of the form (2.6)-(2.7), to
each P there corresponds a unique B;. This is immediate from (2.5) for P #\2 and
holds for all P e % since points in 2 appear as removable discontinuities of the map
P-(G—FPH')R(P)""/?. Hence there is a unique wide sense realization of the type
(2.6)-(2.7) corresponding to each P in P,,.

Both problems I and Il seek to find dynamical systems evolving forward in time like
(1.1)—(1.2) which is natural to call forward representations of the process z. Yet, there
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are other representations of interest. There exist situations, for example, in which it is
more useful to consider a backward representation of the form

(2.9) f(t-1)=Ax(t)+Bw(),
(2.10) y(t)=Cx(t)+Dw(s),

where w is a normalized white noise such that w(¢) is orthogonal to H; (%) for all ¢. This
leads us to formulate the backward counterpart of problems I and II.

1. Wide sense backward stochastic realization problem. Determine, from the
knowledge of ®, all quadruplets [A, B, C, D], with dimension of A minimal, such that
the process y, generated by the dynamical system (2.9)-(2.10) driven by an arbitrary
normalized white noise w, has the same spectral density ® as z.

II. Proper backward stochastic realization problem. Given H and z find all quin-
tuplets [A, B, C, D; w], with dimension of A minimal and W a normalized white noise
satisfying H(w)< H, such that y(¢) given by (2.9)-(2.10) and z(¢) are equivalent
random vectors for all ¢.

Solutions to problems I and IT are called wide sense and proper backward stochastic
realizations respectively. We shall now briefly discuss problem 1, while problem 1T will
be implicitly solved in the next three sections in view of Theorem 2.5 below.

Problem I is equivalent to the dual spectral factorization problem considered by
Anderson [3] and Faurre [12] which consists in finding all minimal unstable (i.e., with all
the poles outside the unit circle) spectral factors W(z) of ®(z). It follows from the
para-Hermitian property of ® that this problem is equivalent to the spectral factoriza-
tion problem for ®(-)'. Hence all the results on problem I have a natural counterpart in
the backward setting via the duality relation (F, G, H, ®(c0)) > (F', H', G', ®(c0)'). In
particular all solutions to problem I are characterized by

(2.11) [A,B,C,D1=[T'F'T, T"'(B,, B)V, G'T, (R(P)"*,0) V],
where T and V are as in (2.3), By is n Xm, B, is n X (p —m), P is n X n, symmetric and
positive definite, R(P) = HF ' G + ®(0)' = G'PG and (P, B,, B>) solve the system
(2.12) P=F'PF+B,B| +B,B),
(2.13) H'=F'PG+B,R(P)".

Whenever it is appropriate, we shall restrict ourselves to realizations of the type

(2.14) #(t—=1)=F'7(t)+B1a(t)+ B, (¢), W= (ﬁ>

v
(2.15) z2(1)=G'z(t)+ R(P)"*ia (1),

where P is the state covariance. The set 2 of all symmetric, positive definite solutions to
(2.12)-(2.13) and 2 of all Pe @ such that R(P) is singular enjoy the same kind of
properties as ? and 2 respectively. In particular there exist P, and P* such that
P,=P=P* for all Pe®. It is well known [12], [37] that P ={P '|Pe P}, so that
P,=(P*)"" and P*=(P,)". Indeed, the following result holds.

ProOPOSITION 2.5. The quadruplet [F, B, H,D] with B=(B1,B;) and D=
(R(P)"?, 0) solves problem 1 if and only if [F', B, G', D] solves problem 1 where

(2.16) B=(B,,B,)=—P 'F'B(I-B'P'B)"?
D=(D-HF 'BYI-B'P'B)"?

(2.17) _
=(R(P)"/>*-~HF 'B,,—HF 'B,)I—-B'P"'B)">.
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Proof. The result follows from long but simple calculations using (2.4)—(2.5) and
(2.12)-(2.13). O

This proposition exhibits a correspondence between forward and backward wide
sense realizations and raises the question whether a result of the same type can be
established for proper realizations. We turn to this problem in the beginning of the next
section.

2.3. Proper stochastic realizations. Let us consider a proper stochastic realization
of z [F, B, H, D; w], with state process x and state covariance P. As is well known, the
orthogonal decomposition

x(t+1)=E{x(+DH; ()} +[x(+1)—E{x(t+1)|H; (x)}]
yields (2.6). Similarly the expression
(2.18) x(t) = E{x ()| H o1 ()} +[x (1) = E{x ()| H ;1 (x)}]
leads to a backward model. In fact, the process x is Markov in both directions and
E{x(0)|x(t + 1)} = E{x())x (t) F}E{x (t + Dx (¢ + 1)’} "x (¢ +1)
=PF'P 'x(t+1),
which gives
P 'x(t)=F'P 'x(t+1)—F'P'B[w(t)—B'(F'") 'P"'x(1)]
=F'P 'x(t+1)—P 'F'B[I-B'P"'B][w(t)—B'(F")"'P 'x(1)].

Defining

(2.19) f(O)=P 'x(t+1)

and

(2.20) w(t)=I—B'P'B)"*(w(t)—B'(F'") "P 'x(1)),
we finally obtain

(2.21) f(t—1)=F'%(t)—~P 'F'BI—B'P'B)"*w(1).

It is not difficult to check that w is a normalized white noise such that w(¢) is orthogonal
to H (%) for all ¢. The forward and backward noises are related as follows

(2.22) (I-B'P7'B)"*w(t) = w(t)— E{w(0)|H {1 (x)}.
We also have
z(t)=Hx(t)+ Dw(t)=[G'(F")'P~'—=DB'(F")"'P"'1x(¢t)+ Dw(?)

=G'P 'x(t+1)+[D-G'P'BIw(t)—B'(F) " 'P"'x(1)]

=G'%(t)+[D—HF 'B][I-B'P 'B]"*w ().
Summing up we obtain a strict sense version of Proposition 2.5, analogous to the
continuous time result of Lindquist and Picci [19].

THEOREM 2.5. The quintuplet [F, B, H, D; w] is a proper (forward) stochastic

realization of z with state process x and state covariance P if and only if the quintuplet
[F', B, G', D; w]is a proper backward stochastic realization of z with state process x given

by (2.19) and state covariance P, where w is as in (2.20) and B, D are given by
(2.16)-(2.17).
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Results closely related to this theorem have been presented by Akaike [1, p. 168]
and Ruckebusch [33, p. 32]. However, the first deals with realizations without noise in
the observations, the second does not derive expressions for w, B and D such as (2.20),
(2.16) and (2.17).

So far we have said nothing about existence of proper stochastic realizations. It is
well-known that a necessary and sufficient condition for a purely nondeterministic wide
sense stationary process z to admit finite dimensional stochastic realizations is that its
spectral density is rational and that in such a case there exists a unique realization of the

type (2.6)-(2.7) corresponding to P, (cf. [33] for example). The minimum variance
realization

(2.23) Xy (t+1) = Fx,(t) + Byu,(t),
(2.24) 2(t) = Hx,(£) + R(Py) " *u (1)

is the steady-state Kalman filter, with the steady-state Kalman gain B, given by
(2.25)  By=(FiH'+BD')HSH'+DD') V?=(G - FP,H")R(Py) ",

where [F, B, H, D] is any wide sense realization and X is the unique nonnegative
definite solution to the algebraic Riccati equation

(2.26) S=F3F —(FSH'+BD)HXH'+DD') " (HXF'+DB')+BB'.

The noise wy is called the innovation process and is characterized by the fact that

H, (z)=H, (uy) for all t € Z. Finally, if x is the state process of any proper realization
(2.6)-(2.7), we have

(2.27) x4(t) = E{x ()|H =1 (2)}.

By duality there exists a proper backward stochastic realization corresponding to P,
namely the backward steady-state Kalman filter

(2.28) Fy(t —1) = F'%4(t) + Bty (1),

(2.29) 2(1) = G'%y (1) + R(Py) 12y (1)

Here the backward steady-state Kalman gain B, is given by

(2.30) B,=(F'SG+BD'\GiG+DD')"*=(H'-F'P,G)R(P,)™"?

where [F', B, G', D] is any backward wide sense realization and S is the unique
nonnegative definite solution to the dual algebraic Riccati equation

(231) 2=F3F-(F$G+BD')(G':2G+DD')(G'SF+DB')+BB

The equality H; (z)=H; (iiy) for all teZ characterizes the backward innovation
process U,. The backward filter satisfies

(2.32) %o (t) = E{x()|H {1 (2)},

where ¥ is the state of any proper backward realization (2.14)—(2.15). By Theorem 2.5
there exists a proper stochastic realization corresponding to (2.28)~(2.29) (which, as it
will be apparent in the next section, is unique)

(2.33) x*(t+1) = Fx*(t) + B*u* (),
(2.34) z(¢) = Hx*(t) + R(P*)?u* ()
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with state covariance P*. Then, if x is the state process of any realization,

(2.35) Zo()=(PH) x*(t+1) =P E{x(t+ 1)|H 51 (2)}
and
(2.36) E{x(t)H7 (2)}=P(P*)"'x*(¢).

This justifies our choice of working with P~'x rather than x in the backward setting. In
fact (2.36) is not invariant over 2.

DEerFINITION 2.6 ([19], [33]). A proper stochastic realization of z with state process
x is said to be internal if H(x) < H(z), external otherwise.

Internal realizations are of particular interest since they are the only ones we can
construct from the process z. For example, the minimum and maximum variance
realizations introduced in this section are internal. It should be noted that the existence
of external realizations depends on H. If H = H(z), for instance, all realizations would
be internal.

2.4. Characterization of internal realizations. Let us consider the spectral
representation of z (see e.g. [31]) given by

2() = f ¢ d(w),

where dZ is an orthogonal stochastic measure such that
E{d? () d2 (@)1= 2 g,
2m
(Here t denotes complex conjugation and transposition.) Let W(z)=
H(zI —F)'B;+R(P)"? be asquare (m x m) spectral factor of ®(z). Then the process
u, defined by

(2.37) wo=[ e TWE) d2tw),

is a normalized white noise such that u(¢) € H(z) for all ¢ [31, p. 41] and consequently
[F, By, H, R(P)"/?; u] is an internal realization of z. The following result shows that
W (-) being a square matrix function is also necessary for a realization to be internal.

THEOREM 2.7 ([19], [33]). A proper stochastic realization is internal if and only if its
transfer function is square.

It follows from this theorem and Remark 2.4 that internal realizations of the form
(2.6)—(2.7) are in one to one correspondence with the real symmetric solutions of the
matrix equation A(P)=0. Hence, to characterize further internal realizations, one
could derive the discrete time counterpart of the fundamental results of J. C. Willems
[40] on the algebraic Riccati equation. However, a result akin to the classification of the
solutions of the algebraic Riccati equation can be obtained directly for the state
processes of internal realizations. Notice that once the state x(¢#) of an internal
realization has been determined the input u(f) can be obtained inverting (2.9) as
follows:

u(t)=—R([P) YV?*Hx(t)+ R(P) " ?z(s).

(In the case when R(P) is singular we need to perform an appropriate number of
differencing operations on the output in various directions (cf. [7] for example) before
we can express u in terms of x and z.)

Therefore we turn to the problem of characterizing the state process of internal
realizations.
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Let us introduce the feedback matrix
I,=F-B,R(P,) "’H.

The matrix Iy is asymptotically stable due to the minimality of z [13]. It plays a central
role in stochastic realization theory, as it is clear from what follows. In particular we
have the following important result, whose continuous time counterpart can be found in
[19].

THEOREM 2.8 ([33]). The process x is the state of an internal realization if and only if

(2.38) x(8) =[I = Jx, (1) + x4 (2),

where m is the projection onto an invariant subspace S of Ty along (P*—P,)S*. The
covariance P of x and = are related as follows

(2.39) ms=m(P)=(P—P)(P*—P,)"".

We shall give a new proof of this theorem, by means of an approach which allows us
to characterize also the external realizations in the same framework. Our derivation
hinges on the following simple observation. Let [F, (B1, B,), H, R(P)"*; w] be a
proper stochastic realization of z with state process x and state covariance P. Then
[Ty (By—ByxR(P,) ">*R(P)"?, B,), R(P,) "?H, R(P,) />R (P)"/*; w] is a proper
(nonminimal) stochastic realization of the innovation process u, with state process
x—x4 and state covariance P=P—P,. This can be seen by inverting the filter
(2.23)-(2.24) to get

(2.40) X4 (t4+1) =Tyx,(t) + B,R(Py) ?z (1),
(2.41) uy(t) = =R (Py) V*Hx,(t)+ R(P,) "/*z(¢)

and by using (2.6)—(2.7). If we set x(¢) = x () — x4(¢), we obtain the model

(2.42)  £(1+1)=T4&(t)+ (B~ BLR(Py) > R(P)")u(r)+ Bao(1), W=(z>’

(2.43)  uy(t)=R(Py) ?HZ()+ R(Py) V’R(P)?u(t),

which is a forward stochastic realization of u, since w(t) LH, (X) for all ¢ The
representation (2.42)—(2.43) is not minimal since u, is a white noise and its minimal
realizations have dimension zero. Conversely consider a forward stochastic realization
of u, of the form

(2.44) £t +1) =Ty e(O)+ Bru(t)+ Bov(t), w= (”)

(2.45) uy(t) = R(Py) V’[HE®)+ R(P)u(1)],

where w is a normalized white noise and B is n X m. Observe that w(¢) is orthogonal to
H; (x), where x = £+ xy, since x, (1) € H,_1 (z) = H,_; (uy). We conclude from this that
[F, (B, + B.R (P)V%, B,), H,R (P*)l/ 2R(P)"?; w] is a minimal stochastic realization of
z. We collect these observations in the following

LEMMA 2.9. The map which sends the realization [F, (B, B,), H, R (P)l/ 2. w]to the
realization [Ty, (B1—B4R(Py) "*R(P)"?, B,), R(P,) "/*H, R(P,) "*R(P)"*; w] is
a one to one correspondence between realizations of z of the form (2.6)-(2.7) and
realizations of u, of the form (2.44)—(2.45).

The map in Lemma 2.9 also induces a correspondence between state covariances
which maps Pe ? to P-P,, translating the set # of the amount —P,. The set
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P= P — P, has the zero element as its minimum and the positive definite quantity
P*— P, as its maximum. Notice that the correspondence established in Lemma 2.9 is
simply the correspondence between the two input-output relations

z()= J'_ﬂ e“'W(e™) dw(w)

and
wd)= [ MW @ W) db (w)

where W(z)=H(zI —F) (B4, B,) + R(P)"?, dW is an orthogonal stochastic measure
such that w(t) = ["_e™ dW(w) and W, (z) = H(zI —F) 'B,+ R(P,)"*.

From (2.23)-(2.24) and (2.40)-(2.41) we know that H; (z)=H, (u,) for all ¢
and H(z)=H (uy). Since u, is a white noise we have the following orthogonal
decomposition for the space H(z)

(2.46) H(z)=H 1 (2)®H (uy).
Then, if x is the state process of an internal realization, we have

x(t)= Edx ()|H (2)} = E{x ()| H 1 (2)}+ E{x ()| HT ()},
which implies
(2.47) x(8) = x4:(0) + E{x (6) = x (O HT (u)}
in view of (2.27) and the orthogonality between x,(¢f) and H; (uy). To compute
E{x(t)—x4(t)|H; (uy)} observe first that £(¢) =x(t) —x,(t) is the state process of a
realization of u, of the form (2.41)—(2.42). Secondly, notice that u, is stochastic process
enjoying all the properties of z. Therefore we simply derive relation (2.26) with £ and
uy in place of x and z respectively. This idea of replacing a stochastic process by its
innovations is of course very common in filtering theory and it turns out to be helpful
also in our context.

We shall now derive the backward counterpart of a realization of the type
(2.42)—-(2.43) corresponding to an internal realization. We set B, =0 in (2.42)—(2.43)
and define P =P — P,. An orthogonal decomposition for £(¢) as in (2.18) yields the
identity
(2.48) #(t) = PTLPP#(t+1)+[#(1) - PT, PP (t + 1)].

Observe thatj (1) —ﬁl:;f”ff (t+1) is orthogonal to H,_; (z). Also, using (2.42)—(2.43),
we see that E{£(t)— PT", P*%(t+1)|H 7,1 (uy)} = 0. Hence, using (2.46), we have
Z(0) = PTLP*%(t+1) = E{£(1) - PTL PP 5 (1 + D|us (1)}
= E{E(0)|uy()} = PH'R(Py) ™ uy(0)
and (2.48) becomes

(2.49) £(t) =P P*%(t+1)+ PH'R(P,) " *uy(t)
or
(2.50) P*%(t)=P*Pr, P*2(t+1)+ P*PH'R(P,) " *uy(1).

The output simply reads
(2.51) Uy (t) = OP*R (1 + 1) + uy (1)
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where 0 is the m X n zero matrix. The model (2.50)—(2.51) is the backward counterpart
of (2.42)-(2.43). We stress the fact that all backward realizations of the innovations
which we obtain in this fashion from realizations (2.42)-(2.43) with B, =0 have the
same input noise uy. For ¥ = x* — x,, we obtain the backward filter

(P*—P)  (x*(1) —x4(0) = Th(P* = Py) ' (x*(t + 1) — x, (£ + 1))
+H'R(P) " uy(r).

Using alternatively (2.42) and (2.49) to compute E{% (¢ +1)x(¢)'} we establish the
identity T',,P = PP*T, P which gives

(2.53) PT, = PT, P*P.
Then, using (2.49) and (2.53) we obtain

(2.52)

F0=P ¥ CWHRE) Pul+i)

which, together with (2.52), yields the desired expression
(2.54) x(0) = x4(1) + (P =P (P* = Py) ™ (x*(1) — x4(0)).
Hence x(¢t) € H(x*(t) — x.(¢)) and (2.54) can be written
(1) = EEO]*(1) — x40}
= (P =Py )(P*~ Py) ™ (x*(£) = x4(t))

from which it is seen that 7 (P) = (P — P,)(P* — P*)"l isa projection. Rewriting (2.53) in
the form

(2.59)

Tym(P)=m(P)(P* — Py)P*Tym(P),

we see that 7(P) projects onto an invariant subspace of T'y. Since 7 (P)(P*—P,)=
(P*—P,)m(P) and 7(P) projects along S$* [15, p. 61], we conclude that 7 (P) projects
parallel to (P*— P,)S*. Conversely if 7 projects onto an invariant subspace of I, and
7 (P*—P,)=(P*—P,)7',i.e., w is an admissible projection in Ruckebush’s language, it
is easy to construct first a realization of the innovations and then one (internal) of z
along the same lines as in [33]. This completes the proof of Theorem 2.8. [0

Remark 2.10. Notice that, given the special form of the realization (2.50)—(2.51),
we did not need to invoke any invariance property such as (2.32) of the filter (2.52) to
compute E {£(6)|H (uy)}. The following interpretation for Theorem 2.8 emerged in the
proof. The state process of an internal realization of z is given by the forward filter of z
plus a “piece” of the maximum variance error x*(¢) — x,(¢). This piece must be such as
to conform with the dynamics of x*(¢)— x,(¢) which is determined by the transition
matrix I'y, i.e., it must correspond to an invariant subspace of I',,.

2.5. External realizations. It is clear that a necessary condition for the existence of
external realizations is the presence in H of elements orthogonal to H(z). For the sake
of simplicity we assume that H = H(z) ® H({), where { is an n-dimensional normalized
white noise orthogonal to H(z). As it will be apparent from what follows, this
assumption is the minimum one needed to guarantee the existence of a proper
stochastic realization corresponding to each wide sense stochastic realization.

Let x be the state process of a realization (2.6)—(2.7) and P its covariance. Then the
counterpart of (2.47) is

(2.56) (1) = x4 () + EGE (O HT (us )b+ E{Z(0) H()}
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and (2.48) corresponds to
(2.57)  £(t)=PTP*7(t+ 1)+ PH'R(Py) " *u,(t) + E{Z(t)— PT,P*%(t + 1)|H()}.

Now let us assume that ¢ is chosen in such a way that the condition H,_; (¢) LH (%)
holds and £ and X are stationarily correlated for every realization (2.42)—(2.43). This
assumption is introduced to enable us to treat { in the same way as the innovations. It
will be clear from what follows that indeed this is a natural assumption when trying to

model all realizations using a unique exogenous noise. We can now add to (2.42)—(2.43)
the output

{() = Mz (1) +[{(6) — ME(2)),

where M= E{¢ ~(t))Z gt)'}};# and an argument very similar to that used for the innovations
gives E{£(¢)— PTP*%(t+1)|H ()} = PM'{(¢) so that (2.57) becomes

(2.58) £(t)=PrLP*%(t+ 1)+ PH'R(P,) " ?u,(t) + PM'{ ().
Note that M must satisfy
P =Pr,P*T,P+PH'R(P,) 'HP + PM'MP
and that, as in the internal case, the input noise (uy, ¢) is the same for all realizations.

Let %;(¢) and %z (¢) denote E{% (OIH 7 (uy)} and E{f (O|H (£)} respectively. Then it
follows from (2.58) that

(2.59) F(8) = (P—Py)(P* = Py) ' (x*(1) — x4(2))
and
(2.60) Zp(t)=PTi P*2p(t+1)+PM'{ ().

Using (2.53), (2.56), (2.59) and (2.60) we conclude that
(2.61) X () = x4 (1) + (P = Py)(P* = Py) 7 (x* () — x4(1) + ;;0 (T'M'¢(t+1).

Conversely, given any matrix M such that M'M € 6, let P solve
P'=T,P 'T,+H'R(P,) '"H+M'M.

Then, using (2.61), we construct the state of a stochastic realization of z. All the
realizations with singular P can be obtained through limiting procedures, using realiza-
tions corresponding to unbounded sequences of M'M in the cone %,.

The derivation of the classification of external realizations presented above is quite
similar to the one given in[33, p. 65], but we feel it will give some further insight into the
concepts described there. Moreover it provides a clear stochastic meaning for the
parametric representation of the set 2 derived by Faurre [12, p. 52]in continuous time
and by Germain [13, p. 61] in discrete time. Finally the input processes of external
realizations can be characterized along the same lines as in [19].

3. Discrete time stochastic realization: The singular case.

3.1. Invariant predictable and smoothable subspaces. Problems I and II are called
singular when ®(c0) is singular. It follows from Theorems 1.6 and 1.9 that in the
singular case there exist nontrivial invariant directions for the Riccati equation (1.5)
associated to every solution to problem I. Abusing language we shall say that a vector a
is invariant (predictable) for [A, B, C, D] if it is invariant (predictable) for the cor-
responding equation (1.5).
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PRrROPOSITION 3.1. The space $ of invariant directions is invariant over all wide sense
realizations of z.

Proof. Immediate from Theorems 1.6 and 1.9. [

The following result describes the singular case in a number of different ways.

THEOREM 3.2. The following statements are equivalent:

(1) ®(0) is singular.
(ii) Ty is singular.

(iii) R(P¥) is singular.

(iv) R (P*)l/2 —BL(F")'H' is singular.

Proof. Let yeR™ be in the null space of ®(c0). Then, recalling that
®(c0)=DD'—DB'(F') 'H' where [F, B, H, D] is any wide sense realization, we
obtain from (2.25) BL(F) 'H'y=(H3H'+DD')"*y=R(P,)""*y. Hence vye
N(R(P)*~BL(F)'H') and (F") 'H'y € ¥(T'}). Conversely, if (ii) holds, use the
fact that the eigenvalues of I',. are equal to the zeros of the determinant of W to get (iv)
from which (i) follows trivially. The equivalence between (ii) and (iii) has been proven
by Ruckebusch [33, p. 70]. 0O

COROLLARY 3.3. The set 2 is nonempty if and only if ®(c0) is singular.

Proof. For any P 2 we have R(P*)=R(P). O

This says that the singular case occurs precisely when some of the wide sense
realizations have R(P) singular, in particular when R(P*) is singular. This contrasts
with the continuous time situation where, when the innovation process is full rank, all
the input noises have nonsingular intensity.

Let Ty (i), i=0,1, - - - be as in Theorem 1.9 so that ®(z) =Y., Ti(i)z " for |z|
large enough and T* be the weighting pattern (1.17) corresponding to the minimum
variance realization.

THEOREM 3.4. The following statements are equivalent:

(i) a is an s-invariant direction of the wide sense realization [F, B, H, D].
(i) a=Y;_, (F)"H'\with ;2 Ta(i)A+: =0,j=1,- - -, 5.

(iii) a =Zf=1 (F’)_iHIAi with Zf;f) T*(i))‘iﬂ =0,j=1,---,s.

(iv) a=Y_, (F)'H'A; with a'x,(t)=Y_, Ajz(t—i) for all ¢.

(v) a is a generalized eigenvector of rank s (an eigenvector if s=1) of Tl
corresponding to the eigenvalue zero.

Proof. The equivalence of (ii) and (iv) is immediate. The rest follows at once from
Theorem 1.6, in view of Proposition 3.1 and the fact that the deterministic and
stochastic elements in the minimum variance realization can be obtained as limits of the
corresponding quantities in a transient Kalman filter of the form (1.3). O

COROLLARY 3.5. All the invariant directions of [F, By, H, R(P*)l/ ] are predic-
table.

Proof. It follows directly from Theorem 1.11 and condition (iii) of Theorem 3.4. [

Note that in Theorem 3.4 the space # appears as the invariant subspace of T’
related to the zero eigenvalue. We now introduce the backward counterpart of the
concept of invariant direction. A vector 4 is said to be a dually s-invariant direction of
the dual transient Riccati equation

St-1)=F30)F—-(F'3()G+BD)G'3()G+DD')y (G'S(t)F +DB")+BB',
(3.1)
2(0)=

if a'S(—t; P)= -'i( —s;0) forall t= s and all P& ,. Also let T be given by (1.17) with
[F',B, G, R(P)"*] in place of [A, B, C, D]. Duality now gives the following result.



MATRIX RICCATI EQUATION 175

COROLLARY 3.6. The following statements are equivalent:
(1) a is a dually s-invariant direction of the backward wide sense realization
[F',B,G', D]. .
(i) @=Y_, F'Guiwith ¥;_g Tu(Dpje:=0,j=1,-- - ,s.
(iil) @=Y;_, F~'Gu; with ;20 Tu(Dpj+:=0,j =1, -, .
(iv) @a=Y;_ F 'Gu; with @'z, (t)=3%;_, wiz(¢t+i) forall t.
(v) @ is a generalized eigenvector of rank s (an eigenvector if s=1) of Th=
F'—B,R(P,) V*>G’ corresponding to the eigenvalue zero.
Next we define the dual counterpart of predictability.

DEFINITION 3.7. The n-dimensional vector a is called an s-smoothable direction of
3.1) if

(3.2) a'S(—t; P)=a'S(—-s; P)=0 forall t=s.

The terminology is motivated by the fact that if 4 satisfies (3.2) then, by property
(iv) in Corollary 3.6, we can smooth the state of any proper stochastic realization
corresponding to [F', B, G', D] exactly in direction P~'a. Clearly all the dually
invariant directions of [F’, B, G', R(P,)"/?] are smoothable. Let . indicate the space
of the invariant directions of (3.1) which, by Proposition 3.1 and duality, is invariant
over all backward wide sense realization. Ruckebusch proved that T, =
(P*)"1(P* — P )T (P* - P,) ' P*[33, p. 53]. Therefore it follows from Corollary 3.6
that (P*—P,)(P*)"'$ is the invariant subspace of I'y corresponding to the zero
eigenvalue. Moreover the dimensions of ¢ and # are equal. The following theorem
characterizes the predictable subspace of an internal realization and the smoothable
subspace of the corresponding backward realization. It also shows that the sum of the
dimensions of these two subspaces is constant and equal to dim £.
THEOREM 3.8. Let x be the state process of the internal realization
[F, B, H, R(P)"?; u] and S the invariant subspace of Ty, associated with x in Theorem
2.8, so that x(t)=x,(t)+m(x*(t) — x4(t)) with = given by (2.39). Then, if a=
" (F"Y'H'A; belongs to S*N.F and a =Y., F'Gu, belongs to P*(P*—P,)"'SNJ
we have

(3.3) ax()= 3 Nz(t—i)
i=1
and
(3.4) TP ()= 3 wlzt+i-1).
i=1

Moreover dim (S* N £)+dim (P*(P*—P,) 'S N %) =dim 4.

Proof. Since (P* —P,) 'm(P*—P,) =, and =, projects parallel to (P*—P,)S™,
we have a'm, =0 and a'(P*) 'm =a'(P*)”". Properties (iv) of Theorem 3.4 and
Corollary 3.6 now yield (3.3) and (3.4) respectively. Let k be the smallest positive
integer such that $ =N ((I‘;)"); Theorem 3.4(v) insures the existence of such a k. Then
we have the direct decomposition R" = $ ® R ((Fﬁk)k), where R ((l"ﬁk)k) is the range space
of (l"ﬁk)k, cf. [15, p. 166] for example. Consider also the usual orthogonal decomposition
R" = N ((T,)) @ R((T})*), where N ((Ty)*) = (P*— P,)(P*) ' 4. It follows that dim (S N
#)=dim (SN (P*—P,)(P*) ). To complete the proof, observe that & = (N S)D
(FNSH) and that dim (S N (P* — P,)(P*)™' ) =dim (P*(P*-P,)"'SNF). 0O

It is worthwhile mentioning that a4 "P*)™" in (3.4) has actually the form
Y s HF ™ with Y5 T(k) w— =0 for j=1,---,n, as one can readily verify
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using (2.4)—(2.5) and (2.16)—(2.17) to establish the correspondence between T(-)' and
T(-). Conversely such a vector leads to a smoothable direction in the backward setting.
Hence a predictable-smoothable direction in the forward setting (i.e., a direction in
which the state can be computed from a finite number of observations z) has the form
1 (F"YH'y; withy € /(T), where ¥’ = (Yn—1, Yn-2," ", Yo, Ym - * *» ¥-1)and Tisa
block diagonal matrix, the two diagonal blocks being block triangular Toeplitz matrices.
The upper one has ithrow [T(i—1), T(i—2),---, T(0), 0, - - -, 0] and the lower one
has ith row [T'(i — 1), f’(i—Z), oo, T(0),0,- - -, 0], wherei=1,-- -, n.

The linear hull of the components of x,(¢) and x*(¢) is called the frame space [18]
and denoted by H ?(2). In view of Theorem 2.8, we know that the components of the
state at time ¢ of an internal realization belong to H ,D (z). Let us introduce the subspace
H(z) of HY(2), given by the linear hull of elements of the form a’x,(#) and
a'(P*)"'x*(r), where a varies over . and a over .%. By analogy to the continuous time
case [10], we shall call H,+(z) the germ space, since it contains linear combinations of
differences of the type A,z(s) = z(s)— z(s —r) and of certain other values of the process
z that indicate precisely the degree of ‘“‘smoothness’ of the covariance of z in different
directions. Then Theorem 3.8 shows that dim (X (¢) N H,+(z)) = dim %, where X (¢) is
the space spanned by the components of the state x(¢) of an internal realization. Note
that in contrast to the continuous time situation [18], the inclusion H,~(z) = X (¢) does
not hold. From now on let dim I = ».

THEOREM 3.9. Let [F, By, H, R(P)"?*; u] be an internal realization. Then this
realization can be embedded in a chain of internal realizations [F, B(i), H, R ARG
with state spaces X®),i=0,--,v, such that Po=P,=-.-=
P, (Xo() NH~(2))=H_1(z) and (X, (1) N H ~(z)) <= H{ (2).

Proof.Let S be asin Theorem 3.8and ay, - - -, a, be a basis for S* N .£. Then we can
generate a family S; of invariant subspaces of 'y, i =0, - - -, v, with dim (S; N $) =
v —i, simply eliminating from S*, one at a time, the a; or adding to S* new linearly
independent elements of %, both operations being performed taking due care of the
rank of the generalized eigenvectors which are dropped or added, so that the resulting
subspace is indeed invariant for I'},.. This can be done since # can be decomposed into
cyclic subspaces. Clearly this procedure yields a family of internal realizations which
differ only on the germ space and such that § =S, _,. The state covariances are totally
ordered since, if i <j and x;(?), x;(¢) are the corresponding state processes, x;(t) is equal
to x4(#) in any direction in which it differs from x;(¢). Finally, by construction,
[F, B1(0), H, R(Po)"/*; uo] has a full size predictable subspace and the backward
realization corresponding to [F, Bi(v), H, R (P,)"?; u,] has a full size smoothable
subspace. Thus, the last assertion of the theorem follows. [

Notice that the chain of realizations in Theorem 3.9 is by no means unique.
However the minimum and the maximum realizations are uniquely determined. In the
case when I'y is cyclic, the number of internal realizations is finite and =2" [40; Remark
18]. Our work has shown that 2" (v + 1) is actually an upper bound in the cyclic case.
In fact internal realizations are in one-to-tone correspondence with the invariant
subspaces of I'y and, when Ty, is cyclic, £ is cyclic and the chain of invariant subspaces
constructed in Theorem 3.9 is unique, so that the number of different invariant
subspaces of I is less than or equal to 2" " (v +1).

Let us consider a proper external realization of the form (2.6)-(2.7) and an
invariant direction a = YL (F "Y'H'A, for it which is not predictable. Then two cases can
occur. Either ¥;_; (F') "H'A,,; belongs to N (B,) for j=0, - - - , n —1 or it does not. It
can be seen that in the first case we are in a situation akin to the one for internal
realizations and we can associate to the vector a a smoothable direction in the backward
setting. In the second case, which always occurs if B,B5 >0, a is invariant but the state
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cannot be determined exactly from a finite string of observations and we would need to
have available the process ¢ orthogonal to H(z) and to model external realizations as
done in § 2.5 to be able to calculate the state in » linearly independent directions. For
the sake of brevity, we have avoided here going into details about external realizations.
However, it should be clear from our discussion that the sum of the dimensions of the
predictable and smoothable subspaces associated with an external realization is less
than or equal to v. This fact has the intuitive meaning of indeterminacy introduced by
the presence of the orthogonal component {.

The presence of nontrivial invariant directions allows, as it should be expected, for
a reduction in the dimension of the filtering algorithms available in the literature. For
instance, it is a simple exercise to verify that Faurre’s algorithms to compute P, and P*
[12, p. 56] reduce to solving (n —») X (n —v) matrix equations, the values of P, and
(P*)"! on the subspaces .# and % respectively being known a priori in terms of H, F and
G. A similar reduction can be obtained for the fast algorithms which compute the gain
(1.4) directly (cf. [17] for example), since it is clear that in an invariant direction the
value of the gain can be computed directly in terms of the system matrices.

3.2. Noise free stochastic realization and the singular case. Akaike, in his
important paper [1], deals with Markovian representations of the process z without
noise in the output and only in his concluding remarks discusses representations with
additive noise terms. Indeed, his work was based on some results of Faurre [11] which,
starting from a certain factorization of the covariance matrices, were phrased in terms of
noise-free realizations. In subsequent work [12] Faurre turned to a different factoriza-
tion of the covariance matrices which led naturally to realizations with noise in the
output. The same choice has, since then, been made by a number of authors [13], [22],
[23], [33], but, up to our knowledge, it has never been explained whether the two
approaches are equivalent and, if not, what are the shortcomings of either one. We shall
now show that, precisely in the singular case, the first approach presents a considerable
disadvantage, in that many minimal Markovian realizations are lost. Let us start
considering a minimal factorization (E, ®, V) (i.e., completely controllable and
observable) like the one in [11], namely

(3.5) A=E{z(t+))z(t)}=¥=E'®, j=0,1,2, -

and let dim E = r. On the other hand, since ® is the double side z-transform of A, we
have

I{F‘j—1 .=1,2,3,"',
(3.6) A, ={ G, I

G'(F)'H'+®(0), j=0.
THaeEOREM 3.10. Let k be the dimension of N (®(0)) and assume, without loss of

generality, that ®(0)=[R 0] where R is (m —k)xm. Then (=, ©®, V) is given, up to a
change of basis, by

=on-(2[72 [ ()

where
-~ [F 0]
F‘[o 0

the identity matrix is m-k dimensional and r=n+m —k.
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Proof. 1t is easy to check that the triplet in (3.7) satisfies (3.5). Also (E, ©) is
controllable and (E, ¥) is observable. In fact suppose « =(Zl> with @;€R" and
2
a>eR™ 7 is such that

., ,[F'G G FG --- F'"™™ G
(3.8) (al,az)[ R 0o 0 ... 0 ]—-0.
Then we see that a; must be zero, which forces a5R =0 and finally o, = 0. We conclude
that the controllability matrix in (3.8) is full rank. Similarly the observability matrix is
seen to have rank n +m — k. The conclusion now follows from the uniqueness, up to an
equivalence as in (2.1), of the triplet (£, 0, V). O

Let us assume for the moment that ®(c0) is nonsingular and consider a proper
stochastic realization of z [F, B, H, D, w]. Then we can associate to it the noise free
model

-1
(39) sern=reo+ ) T2 T,
(3.10) z(=[H I}@),
where

( F7x(t+1)
(0= ((D —HF“B)w(t))

and n(t)=w(t+1). This induces a one-to-one correspondence between wide sense
realizations of the form [F, B, H, D] and noise free wide sense realizations of the form
[ﬁ, x, (HI)] which are minimal too in view of Theorem 3.10. If we agree to call
realizations [F, y, (H I);n] with x(n+m)xm internal, then the above correspon-
dence is one-to-one between internal realizations. In particular it maps
[F, By, H, R(P*)l/ % u,] to a realization related to the steady state pure filter, i.e., the
second innovation representation IR, in Gevers terminology [14].

Suppose now that ®(o0) is as in Theorem 3.10 with k > 0. Then it is possible to set
up a correspondence similar to the one in the nonsingular case only for a rather small
subclass of wide sense realizations. More explicitly, let [F, B, H, D; w] be a realization
such that T(O) =D'—B'(F') 'H' hasrank m —k and V an orthogonal matrix such that

[D-HF 'B]V = [g] where S is (m — k) X p, p being the number of columns of B. Then

we have the n +m — k dimensional noise free model

311) eur)=re+[5 P,
G.12) :0=[H (])]¢.

F'x(t+1)
here 0=
where 0 ={" gyy(0)
(3.11)-(3.12) is minimal. This establishes a one-to-one correspondence between
minimal wide sense realizations of z such that 7°(0) has rank m —k and minimal wide

) and n(t) = V'w(¢t+1). The wide sense realization given by

~ I . .
sense realizations of the form [F, X> (H ( O))] It is now apparent that the choice



MATRIX RICCATI EQUATION 179

of seeking noise free representation of z can cost us, in the singular case, the loss of a
considerable number of realizations. Indeed, it is not hard to see that the subset of 2
corresponding to realizations with rank T(0) = m — k lies, as 2, in the relative boundary
of P.

This shows that, in discrete time, the factorization (3.6) and the associated choice of
H_,(z), instead of H; (z), as past space at time ¢, is more convenient, even though it
implies the unpleasant fact that white noise processes have zero dimensional minimal
realizations.
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ASYMPTOTIC STABILITY OF SYSTEMS: RESULTS INVOLVING THE
SYSTEM TOPOLOGY*

R. K. MILLERT AND A. N. MICHEL*?

Abstract. In this paper we answer the following question for a large class of (linear and nonlinear)
dynamical systems. Given is a system with dissipation and given is the associated conservative system.
Suppose the associated conservative system is stable. What properties of the system topology (system
configuration) will ensure that the overall system with dissipation is asymptotically stable?

Both linear and nonlinear (Hamiltonian) systems are treated. For the linear case, necessary and sufficient
conditions for asymptotic stability are established, while for the nonlinear case, sufficient conditions and also
some necessary and sufficient conditions for asymptotic stability are obtained.

It is emphasized that the application of the present results to specific problems will usually not require a
search for appropriate Lyapunov functions. Indeed, a stability analysis by the present method involves the
following two steps:

(a) given a system with dissipation, the stability of its trivial solution (equilibrium) is ascertained by
determining the stability of the associated conservative system, i.e., by determining whether the potential
energy is a minimum at the equilibrium; and

(b) attractivity of the equilibrium of the entire system (with dissipation) is determined from the system
topology (system configuration).

This approach to stability analysis appears to be new. Furthermore, since the present method involves
concepts from control theory (namely, the notion of observability), these results provide further insight into
the mechanisms of stability (and stabilization).

To provide motivation and to demonstrate the applicability of the results, some specific examples are
considered.

1. Introduction. Consider the linear mechanical mass-spring system of Fig. 1
which is governed by the equations

miE +kixi+k(x;—x2)=0,

(1)

m25c'2+k2x2+k(x2-—x1)= 0,

—— X} — X2

k, k ks
AW W AW

T T

F1G. 1.

where x; denotes the displacement of mass m; and ki, k,, k denote linear spring
constants. When the initial state of this conservative system is displaced from its
equilibrium position, the system will remain in motion indefinitely. If linear viscous
damping is added at some or all of the masses and springs, as shown in Fig. 2, then the

* Received by the editors November 28, 1978, and in revised form July 17, 1979. This work was
supported in part by the National Science Foundation under Grant ENG 77-28446 and by the Engineering
Research Institute, lowa State University.
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i Department of Electrical Engineering and Engineering Research Institute, lowa State University,
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governing equations become

(2) ml)'c'1+k1x1+k(x1—x2)+B1x'1+B(x1—)é2)=0,

mg)'c'2+k2x2+k(xz—x1)+B2)é2+B()é2—x1)=0,

A
L A | — Wi/
7T

where B1=0, B, =0, B =0and B, + B,+ B > 0. At afirst glance, it would seem that the
indiscriminate or random addition of such damping terms will stabilize the rest position,
making system (2) asymptotically stable. Indeed, one could argue that since the addition
of a dash pot at even one single location shown in Fig. 2 will reduce the total energy of
the system, eventually all of the energy will be dissipated and the motion of the system
will tend to its equilibrium.

The preceding argument is simple, appealing but unfortunately wrong. While for
most values of the parameters the above conjecture is correct, it is not true when
B,=B,;=0,B>0, ki/mi=k,/m,, for in this case the two masses can be made to move
in synchronism. When this happens, x; — x, is constant, the term B (x; — x,) has no effect
on the motion and no dissipation of energy will occur.

The conservative system (1) and its corresponding damped system (2) are simple
enough to be analyzed by simple inspection. However, in the case of general, highly
complex, possibly nonlinear, stable conservative systems, it is far from trivial to decide
where damping should be added in order to ensure that the rest position will be
asymptotically stable. Similar questions can be asked with respect to adding dissipative
terms in electrical systems, electromechanical systems, and so forth.

In the present paper we establish conditions which answer the questions raised
above for such systems. Although we give results involving several cases, our main
result answers the following question: for a stable and conservative system, what are
appropriate conditions which ensure that an associated damped system will be asymp-
totically stable?

In § 2 we obtain general results for linear systems. These results are applied in § 3
to conservative mechanical systems to obtain a result of Walker and Schmitendorf [9].
The results in § 3 motivate generalizations to nonlinear systems which are presented in
§ 4. All of our nonlinear results concern conservative mechanical systems to which
damping is added. Some related work for nonlinear circuits can be found in Varaiya and
Liu [8]. Our results do not overlap those of [8] but have a similar flavor.

2. General linear systems. We will employ the following frequently used
definition.

DEFINITION 1. Let U and V be matrices of dimensions m X n and n X n, respec-



ASYMPTOTIC STABILITY OF SYSTEMS 183

tively. We say that the pair (U, V) is observable if and only if the matrix

has full rank.
We consider a linear system of differential equations given by

3) x=Ax,

where xeR", teJ =[ty,©), to=0, x =dx/dt, and A is an nXn matrix. We let
x(t; xo, to) denote the solutions of (3) with xo = x(fo; X0, o). We assume that the trivial
solution x =0 of (3) is stable (in the Lyapunov sense (see Hahn [3])) so that there is a
positive definite matrix G(i.e., G > 0) such that the matrix

B=ATG+GA

is negative semidefinite (i.e., B = 0). Thus, there exists a Lyapunov function v: R" > R
with

v(x)=x"Gx,
(4) DU(3)(x) =X TBx,
B=A"G+GA,

where Duvy(x) denotes the derivative of v with respect to ¢ along the solutions of (3).
Our first result is as follows.

THEOREM 1. For system (3) assume a Lyapunov function (4) such that G >0 and
B =0. Then the trivial solution of system (3) is asymptotically stable (in the Lyapunov
sense (see [3])) if and only if the pair (B, A) is observable.

Proof. Suppose that (B, A) is observable and let

N ={x:Bx =0}={x: Dvg(x) =0}.
Let N; be the largest subset of N which is invariant with respect to system (3). (That is,

Ny is the largest subset of N such that xoe N; implies x(t; xo, to) £ x(¢) € N; for all
te R.) Now if x(¢) € Ny, then Bx(t)=0 so that

d
0=-6—i-t(Bx) = Bx = BAx,

0 =%(BAx) =BAx = BA%x,

......................................

Since (B, A) is observable, we must conclude that any trajectory x(¢) in Ny is the rest
state, i.e., Ny = {0}. By the invariance principle (see e.g., [1], [4], [6]) it follows that x =0
is asymptotically stable.
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Conversely, assume that (B, A) is not observable. Then there is a trajectory
x(2) = [exp (Af)]xo, xo # 0, such that Blexp (At)]xo=0. For this trajectory,

%v(x(t))=xT(t)Bx(t) =xT()-0=0,

and so v(x(¢)) =v(x0)>0for all t = 0. Thus, x(¢) can not tend to the origin as t > 0, i.e.,
the trivial solution x = 0 is not asymptotically stable. 0

The method of proof used in Theorem 1 can be modified to establish the following
more general result.

THEOREM 2. For system (3) assume that (4) is true with G >0 and B =0. Define

N ={x:Duvg)(x) =0}
Suppose that there exists a matrix C such that the set
N1 &{x:Cx =0}
equals N, and suppose there exists a matrix D such that
N,2{x:Dx =0}>Nj.

Then the trivial solution of (3) is asymptotically stable if and only if the pair (C, A — D) is
observable.

Proof. First we consider a trajectory x(¢t) € N for —oo <t <co0. Then Cx(t)=0 so
that Dx(¢)=0 and

0=%(Cx) =Cx =CAx = C(A—D)x,

0= %[C(A —D)x]=C(A-D)x = C(A-D)x,

0=C(A-D)" 'x.

Since (C, A — D) is observable, it follows that x(¢) = 0. By the invariance result in [1] it
follows that the equilibrium x =0 is asymptotically stable.

Now suppose that N, © N; and that (C, A — D) is not observable. Then there exists
xo# 0 such that C{exp [(A —D)t]}xo=0. Since N, = N it follows that

%v(x(t)) =xT(Bx()=0,  x(1)2 exp[(A—-D)t]xo

and
v(x(t))=v(x0)>0.
Thus, x(¢) cannot tend to the origin. Also, since N, © N, we have
(1) =(A~-D)x(t)=Ax(t)—0=Ax(1),

i.e., x(¢) solves (3). Thus, the equilibrium of (3) is not asymptotically stable. [

For Theorem 2 there are many possible choices for the matrices C and D. For
example, C = B and either D =0 or D = =B will do. As another example, since B is
symmetric and negative semidefinite, there exists a matrix C such that C*C = —~B. For
this choice of C we may choose D =0, or D ==+C, or D =+B. For a third way of
choosing the matrices C and D, refer to Theorem 3 in the next section.

We note that David Russell [7] has communicated to the authors a version of
Theorem 2 with C*C =—-B and D =0.
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3. Linear Hamiltonian system. The Hamiltonian formulation in mechanics is well

established (see, e.g., [2], [10]). Given a Hamiltonian function H(qi," ", qn,
P1," ', Pn), the Hamiltonian differential equations for conservative systems are

. 8H
q,~=~a—(q1, S Pl s D),
Di

()
=2 )
pz Gq. £11, aqn, pl, ,pn ’
i=1,--,n,orin vector notation,

'_‘_95( ) -_:a_I__I( )
q op q,p), 14 aq a,D),

where the g; denote generalized position coordinates, the p; denote the generalized
momentum coordinates and H represents the total energy of a system. (Using appro-
priate analogies, lossless electrical systems, electro-mechanical systems, etc., can be
represented by (5) as well.) The motions of system (5) are always such that the energy is
conserved, since

d " (0H , oH
—H(q, p)= (_ ji +—— .i)
214 p) ) P +—p

i=1 ap;
n (9H dH oH 9
(.,
i=1\0q; op; 9dp; 0q;

A linear Hamiltonian differential equation is obtained from a quadratic Hamiltonian of
the form

(6) H(q,p)=3q Hiq+3p Hap,

where we can assume, without loss of generality, that the matrices H; and H, are
symmetric. Since in general dH/dt=0, we can use H as a Lyapunov function for (5)
(when the potential energy has a local isolated minimum at the equilibrium (¢”, p¥) =
07,0M)). In particular, in the linear case (6) we ensure stability of the trivial solution
with the assumptions that H; and H, are positive definite.

The linear system of differential equations corresponding to the Hamiltonian (6) is
given by

(7) q=Hp, p=—Hq.
Now if viscous damping is added, then system (7) will be replaced by
(®) 4=Hip, p=—Hq+Kp,

where B, = HbK + K"H, is negative semidefinite. In this case, the derivative of H(q, p)
along the solutions of (8) is given by

D@gH =p"Bp=0.

If in particular we specialize (6) to a simple mechanical system consisting of n rigid

bodies with masses m;, i=1, - - -, n, then (6) will assume the form
9) H(q,p)=3q "Hq+3p"™M'p,
where M =diag[mi, ma, -+, m,] and H=HT (which characterizes the potential

energy term) is determined by the system configuration. For this case (8) assumes the
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form
(10) ¢=M7'p, p=-Hq+KM 'p
which is equivalent to Newton’s law (p = Mq, K =K 7),
MG+Hq—-Kq=0.
The derivative of (9) along the solutions of (10) is easily computed to be
DaoH =p ™ KM 'p.

The next result, which is similar to a result reported in [9], is a direct consequence of
Theorem 2.

THEOREM 3. Consider the Hamiltonian (9) and the system (10) with M =
diag [my, ma, -+, m,]>0, H=H" >0, K = K" =0. Then the trivial solution of (10) is
asymptotically stable if and only if the pair (K, M~ H)) is observable.

Proof. Applying Theorem 2 with

0 M ] [0 0 ] [o 0 ]
= —3 =D =
A [—H el B=lo mokm) € 0 KM™
it is easy to see that for j=0,1, 2,3, - - -, we have
) 0 0
C A _D 2j+1 — [ " ) ]
( ) K(""M 1H)]+1 0

and

i [0 0 ]
ca-D)"= [0 K(~MTHYM'J
Thus, the result follows from Theorem 2. 0O

On the basis of this theorem, we can formulate the following simple rule for
conservative stable systems of the form (10):

Pick a position in the undamped system where it is possible to add damping (e.g.,
dashpot, resistor, etc.). If it is always possible to detect motion at this position whenever
the system is not at rest, then this is a location at which damping, to stabilize the system,
can be added. To cover multi-position cases, the above must be modified, using linear
combinations of motions at allowable damping points.

The above rule is easily seen to work for the example discussed in the introduction.
One can also check the algebra for this example to obtain the results precisely. Indeed,
we have

K=[(—B1—-B) B ]

B (-B,—B)
1 0
M7'H=|m; 1

[(kl +k) -k ]
- k,+ k)L

o m k  (kat+k)
and we consider the following possibilities:

Case 1. detK #0;

Case 2a. det K =0 with B;=B,=0;

Case 2b. det K =0 with B,=B =0;

Case 2¢. det K =0with B,=B =0;
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For case 1, the pair (K, M ~"H) is observable. For case 2a, we have
—tkitk) ko (katk) k.

-1 — my my ma mi
KM H)=B (kitk) k  —(katk) k.
mi my my mi

In order that the pair (K, M ~'H) not be observable, it is necessary and sufficient that the
first row of KM 'H be the negative of the second row, i.e.,

ki+k k kx+k k
+—= +—
mi mo mo m;
or
b_k
mi Yn2'

This is the condition under which it is possible for the two masses to move in
synchronism.

For case 2b it is easy to compute that the condition which ensures that the pair
(K, M"'H) be observable is B>k > 0.

For case 2c the condition which ensures that the pair (K, M ~"H) be observable is
Bk >0.

Applying Theorem 3 we see that the system of Fig. 2 will be asymptotically stable
for all the above cases, except case 2a.

4. Nonlinear Hamiltonian systems. We now extend the results of § 3 to nonlinear
systems. To this end we consider a Hamiltonian of the form

(11) H(g,p)=3p"™M 'p+G(q)
and the associated system (with damping)
(12) ¢=M7'p, p=KM 'p-VG(q),

where G: R" - R is assumed to be continuously differentiable over R" and where VG
denotes the gradient of G. We will find it convenient to associate with (12) an output
equation of the form

. -1 -1 p
(13) y =diag [KM ™", KM ][VG(q)]'

DEFINITION 2. System (12), (13) is called distinguishable (see, e.g., [5, p. 377]) if
whenever (q(z), p(t)) is a solution of (12) with (q(0), p(0)) # (0, 0), then the output
y(£)#0. System (12), (13) is called locally distinguishable if there is an ¢ > 0 such that
when (q(¢), p(¢)) is a solution of (12) and 0 <|p(0)| +|q(0)| < &, then the output y(¢) %0.

We now prove the following result.

THEOREM 4. Consider Hamiltonian (11) and system (12) with M=
diag [mq, ma, - - -, m,]1>0, G positive definite with respect to the origin, and K = K T=o.
Then the trivial solution of system (12) is asymptotically stable if and only if the system
(12), (13) is locally distinguishable.

Proof. Since G is positive definite, we may choose H given by (11) as a Lyapunov
function. The derivative of H with respect to ¢ along the solutions of (12) is given by

DH15(q, p) = pTManM_lp =0
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for all (g, p). Let
N={(q,p):KM 'p=0}

be the null set of DH 15, and let Ny be the largest invariant subset of N. If (q(¢), p(¢t)) isa
solution of (12) with (g(0), p(0))eN; and |q(0)|+|p(0)| sufficiently small, then
KM 'p(t)=0 and

0=KM'p(1)=KM (KM 'p(1)~VG(q(1))) = ~KM 'VG(q(1)).

Since system (12), (13) is locally distinguishable, then p(t) = q(¢) = 0. By the invariance
theorem (see [4]) the trivial solution of (12) is asymptotically stable.

Conversely, assume that system (12), (13) is not locally distinguishable. Then in
any neighborhood % of the origin (0, 0) there is a nontrivial solution (g, p) of (12) which
starts in % and for which the output (13) is identically zero. Thus (g, p) will solve the
stable, conservative Hamiltonian system given by

g=M7"'p, p=-VG(q).

Since G is positive definite and since M = M ™ >0, then H(q(z), p(t)) = H(q(0), p(0)) £
Hy>0and (q(¢), p(t))A#0ast>00. 0

Essentially the same proof works for the next result.

THEOREM 5. Consider Hamiltonian (11) and system (12) with M=
diag [my, my, - - -, m,]>0, with G positive definite (with respect to the origin) for all q,
with G(q) - % as |q| > o (i.e., G is radially unbounded), and with K = KT =0. Then the
trivial solution of (12) is asymptotically stable in the large if and only if (12), (13) is
distinguishable.

In certain cases the distinguishability of the nonlinear system (12), (13) is easily
checked. For example, if G, is the linear part of VG at g =0 so that

VG(q)=Gig+o(q),  lq|>0,
then system (12), (13) can be linearized and we have
G¢=M""p,
(14) p=KM 'p-Gig,
y=[KM'p, KM'Gq].

In this case we obtain the following result.

COROLLARY 1. Assume M =diag[my, ma, -+, m,]>0, VG(q)=Giq+2(q)
near q =0 with G,= GT>0 and K=KT =0. Then the trivial solution of (12) is
asymptotically stable if (K, M~'G) is observable in the sense of Definition 1 (see § 2).

Proof. If (K, M~ 'G,) satisfies the criterion of Definition 1, then system (14) is
observable (see the proof of Theorem 3 and see, e.g., [5]). If system (14) is observable,
then the corresponding nonlinear system (12), (13) must be locally observable (see [5, p.
378]) and hence also distinguishable. Apply now Theorem 4 to complete the proof. U

Remark. Theorems 1-5 can be stated in stronger terms by recalling the facts that
(a) asymptotically stable plus autonomous imply uniformly asymptotically stable, and
(b) asymptotically stable, autonomous and linear imply global exponential stability.

As a final example, consider the system obtained from Fig. 2 by replacing the linear
springs by nonlinear ones. Specifically, replace the linear spring restoring forces
kiu, kov, kw by g1(u), g2(v) and g(w), respectively, where g1: R >R, g,: R~ R, and
g: R - R are assumed to be differentiable. Then linear system (2) will be replaced by the
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nonlinear system

(15) m1i1+g1(x1)+g(X1_X2)+Bl.f1+B(x1—)i'z)=0,
maXz+ g2(x2) — g(x1—x2) + BaXa— B(X1— %2) =0,
where it is assumed that g;, g> and g satisfy the conditions g;(0) = g,(0) = g(0) =0 and
g1(x)>0, g2(x)>0, and g'(x)>0 for all x #0. Once more it will be assumed that
3120, Bz;o, B%O, and Bl+Bz+B >0.
Next, to (15) we adjoin the outputs

y1=BXx;— (B + By)x,

y2=Bx1— (B + B2)X,

y3=[(B+B1)/mi] [g1(x1) + g(x1— x2)]— (B/m>) - [g2(x2) — g (x1—x2)],
ya= —(B/m) - [g1(x1) + g(x1—x2)]-[(B + B2)/m>] - [g2(x2) — g(x1— x2)].

In studying the asymptotic stability of the trivial solution of system (15) we check
when the system (15), (16) is distinguishable. We accomplish this by considering several
cases.

Case 1. B(B1+B3)+B1B,#0. If all y;=0, then by (16), x;=x%,=0. Also,
g1(x1)=—g(x1—x2) = —g2(x2). Since x;g:1(x1)>0 if x; #0 and x,g>(x2) >0 if x,#0,
then x,;=x,=0. Thus (15), (16) is distinguishable in this case and system (15) is
asymptotically stable in the large.

Case 2. B;>0, B=B,=0.If all y;=0, then from (16) we see that X, =0 and so
x1=c; is constant and gi(c1)=—g(c1—x2(t)). Thus x,=co=—g '(—gi(c1))+c;y is
constant. The only constant solution of (15) is the trivial one. Thus, system (15), (16) is
distinguishable in this case and system (15) is asymptotically stable in the large.

Case 3. B,>0, B=B;=0. Using an identical argument as in Case 2, it follows
that system (15), (16) is distinguishable and system (15) is asymptotically stable in the
large in this case.

Case 4. B;=B,=0, B>0. This case is more complicated. If all y;=0, then
)él = )éz and

(16)

(17) [g1(x1) +g(x1—x2))/ m1=[ga(x2) ~ g(x1—x2)}/ m,.

If the two masses can be made to move in synchronism, i.e., if
g1(x)/my = ga(x)/m,

in some interval containing the origin, then (17) is possible with nonzero x; and x, = x;.
Under such conditions, system (15), (16) is not distinguishable and the trivial solution of
(15) is not asymptotically stable.

Conversely, if system (15), (16) is not distinguishable, then %, = x, and (17) is true.
Thus x; —x, =c is constant. Substitute x; =x +¢, xo=x and x =0 into (17). If ¢ #0,
then one side of (17) is positive and the other side is negative. Thus, ¢ must be zero and
g1(x)/m1 = g2(x)/m, for all x in some closed interval I which contains the origin in its
interior. If there is no such interval I, then in this case (Case 4) the system (15), (16) is
distinguishable and the trivial solution of system (15) is asymptotically stable in the
large.

5. Concluding remarks. We re-emphasize that in the present results, the asymp-
totic stability of the equilibrium of a system is ascertained by (a) determining the
stability of the equilibrium of the corresponding conservative system, and (b) determin-
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ing the attractivity of the equilibrium by examining the topological properties (i.e., an
observability condition) of the entire damped system. Step (a) is easily verified for linear
as well as for nonlinear systems. Step (b) is also easily verified for linear systems and for
certain classes of nonlinear systems (e.g., nearly linear systems); however, in general,
the verification of step (b) for nonlinear systems may be quite difficult. In any event, the
present results provide added insight into the mechanisms of stability (and stabilization)
for a large class of dynamical systems.
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THE OPTIMAL STRATEGY IN THE CONTROL PROBLEM ASSOCIATED
WITH THE HAMILTON-JACOBI-BELLMAN EQUATION*

AVNER FRIEDMANY AND PIERRE-LOUIS LIONS%

Abstract. Consider the Hamilton-Jacobi-Bellman equation max,, {A,,u(x)—f.(x)}=0 a.e. in R",
where A,, (m =1, 2, - - - ) are the infinitesimal generators of diffusion processes with constant coefficients and
with discount c¢,,, Z @ > 0. It is known that the solution can be represented as the optimal cost functional in
which one can switch from one stochastic system to another without penalty. In this paper it is shown that if,
for some k, Agfon(x)— Anfi(x)=c>0for all m # k, |x|> R, then Agu(x)— fi(x) =0 if |x| > R, for some R,
sufficiently large; that means that the optimal strategy when |x|> R, is to stay with the diffusion and cost
associated with Ay, fi.

1. The main result. For each positive integer m,let o™ = (o'} ) be an n X n matrix of
constants, and let 5™ = (b{") be an n-vector of constants. Let

a; = ) kZI CT:kO',k
and introduce the (generally degenerate) elliptic operator

m %o n o
(1.1) Apv=- Z aj———= % b'—+c™,
iji=1  0X; 0X; i=1  OX;
where ¢™ are constants. We assume that
(12) |a;;l|§C(), lbrléCO, Cmga,

where Cy, a are positive constants. We also assume that there exist numbers 6, € (0, 1)
(1=!=ny) and integers 1 =m; <m,<: - - <m,, such that

(1.3) Lo=1, Y Y apegzold  (v>0)
1= g
for all ¢ € R” (This assumption is not essential; see § 3, Remark 6).
Let f,.(x) be functions in W>®(R"), satisfying

(1.4) | fnllw2ommy = Cr;

the constants C; and Cy, a are independent of m.
Consider the Bellman equation

(1.5) sup {Au(x)~f.(x)}=0 ae.inR".

THEOREM 1.1. There exists a unique solution u(x) of (1.5) in W*®(R™).
This theorem is due to P. L. Lions [5]; under more restrictive assumptions it was

proved earlier by Krylov [2], [3]; see also [1], [4], [6] for the study of (1.5) in case of the
Dirichlet problem.

The solution of (1.5) has the probabilistic interpretation

(1.6) u(x)=1inf J(x, v),

* Received by the editors June 11, 1979.
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where v = v(¢) is any nonanticipative control function taking values 1,2, 3, - -,

(e o)

(1.7) J(x, v)=EU

0

For(ye(t, v)) exp [—c* 1] dt]

and y,(¢, v) is the stochastic integral defined by
dy®)=a"Pdw(®)+b"“dr,  y(0)=x,

where w(?) is an n-dimensional Brownian motion in the canonical Wiener space.

Thus, in the cost function J(x, v) one may switch from any diffusion process
(corresponding to o™, b™) with its corresponding running cost f,, and discount ¢™ to
any other one without any cost for the switching. The question naturally arises: Which is
the best diffusion to choose at a particular point x? Analytically, the problem can be
formulated as follows:

1.8) For a specific k, when does the equality

SUPmz1 {AmU (x) = fin(x)} = Aru(x) - fi(x) hold?

The purpose of this paper is to give a sufficient condition under which the equality in
(1.8) holds. The main result is contained in the following theorem.
THEOREM 1.2. Suppose there exist constants R >0 and ¢ >0 such that

(1.9) Arfu(x)= A, fe(x)=c forallm#k, |x|>R.
Then there exists a number R1> R such that
(1.10) sup {Anu(x) = fm(X)}=Agu(x)—fu(x) if |x|>R;.

The proof is givenin § 2. In § 3 we show that the condition (1.9) is rather sharp, and
make some remarks on generalizations of Theorem 1.2.

2. Proof of Theorem 1.2. The proof is divided into two parts: in part I we show
that it is sufficient to consider the case where k = 1, all the operators are uniformly
elliptic, and (1.5) is replaced by a penalized system approximating (1.5). In part II we
prove the theorem in this case, applying A, to the system and using some arguments
reminiscent to some which occur in variational inequalities.

Part I. Without loss of generality we may take k = 1. Then (1.9) becomes

(2.1) Aifu—Anfizc if|x|>R, m=z=2.
Without loss of generality we may assume that
the A,, are nondegenerate elliptic,
@2 with modulus of ellipticity independent of m

Indeed, otherwise we replace each A,,, by A}, = A,, —eA (A= Laplacian in R"). In view
of (1.4), the condition (2.1) remains true for the A;, (with another ¢ > 0) provided ¢ is
sufficiently small. As shown in [5], the corresponding solution u° of the Hamilton—
Jacobi-Bellman equation satisfies: u(x)—> u(x) if £ > 0. If we can prove that

(2.3) ASu*—f'=0 forlx|>R,
(with R, independent of ¢) then it would follow that also
Au—f'=0 if|x|>R,.

Thus it remains to prove the theorem under the assumption (2.2) (with R, independent
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of the modulus of ellipticity of the A,,).
Let B(t) be a C* function satisfying

(2.4) B()=0 ifr<O, 0<B'(t)=1 and B"(1)=0 ift=0
and set
2.5) p.0=E2,

Consider the system of elliptic equations
(2.6) Aty + Be (U — Um+1) = fins 1=m=N,

in R", where N is a fixed positive integer, to be taken arbitrarily large later on.
In[1], [4), [6]such a system is considered (with the assumption (2.2)) in a bounded

domain (), with boundary conditions u,, =0 on 8(}, and it is shown that the solution

um = usY satisfies

2.7) Unm(x)>u(x) ase->0, N->00,

where u(x) is the solution of the Hamilton-Jacobi-Bellman equation in {) with # = 0 on
3Q. The method of proof shows that by taking Q= {x; |x|<1/k}, k > o we obtain the
assertion (2.7) uniformly with respect to k; in fact the corresponding solution u "
satisfies

2.8) ui s an,

where 5" is the unique solution in W2>®(R") of (2.6), and

(2.9) igN>uas e-0, N-oo.

From now on we denote 5" by u,.. In view of (2.9), it suffices to show that
(2.10) Awu—f120 if|x|>Ry,
where R; is independent of £, N.

Part II. We shall suppose that
(2.11) Aur(x®)—f1(x°)<0 forsome x°, |x°|>R;

and derive a contradiction for a suitably large R;.
Consider the functions

(2.12) Zn(X) =[A1Un(x) = iO)]+¥lx=x,  ¥>0
in the set

(2.13) G, =Bp(x")ﬂ{lénmigN[Alum(x)—fl(x)]<0},
where

B,(x%) ={x;|x —x° <p}

and p is a sufficiently large positive number to be determined later on.
Notice that (since f € W) the uy, belong to WP for any p < o0, and therefore, G,
is an open set. On the part 8G, N B, (x°) of its boundary,

Aiu,—f1=0 foralll=m=N,
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hence
(2.14) z,>0 ondG,NB,(x°.
In view of the convexity of B(t),
¢ Be(tm =t +1) = ¢ Bl — 1)ty — U 1)
It follows that

Al[Amum +Ba(um - um+l)]§AmAlum +Bi‘(um - um+1)A1(um - um+1)

d d
_BZ (Um — um+1) Z a%ig(um - um+1)§(um - um+1)-
i 7

Applying A; to both sides of (2.6) and using the last relation and the inequality
B:(1)=0, we find that

Am(Alum)+Bm,e(Alum _Alum+l)§A1fm,

where

) 1.
(215) Bm,eEBe(um_um+1)=;B (um_um+l);0-
Hence
(216) Amzm +ﬂm,e(zm_zm+l)§£ma
where

{n=A1fm—Anfi+yAm(x —x°P).
In view of (1.2),
A, (x=xP)zalx —xP - CCo(1+|x —x°)).

Hence, by (2.1),

(2.17) g,,,(x)>§ ifxeG, 2=m=N,
(2.18) L(x)z=-Cy ifxeG,
provided p is such that

(2.19) G, <{x; |x|>R}

and provided y is sufficiently small, say y =1y,; v, depends on a and C,, but is
independent of ¢, N and the modulus of ellipticity of the A,,.
Since |A u,, — f1| = C, for any y we can choose p = p(y) such that

(2.20) Zm>0 on aBp(xO);
from now on we fix p =p(y).
Let
M; = min z;(x).
xeG,

Now, if (2.11) holds with R, sufficiently large, then (2.19) holds; we shall show that this
is impossible if p = p(y) and v is sufficiently small.

Clearly (2.11) implies that x°e G, and 22(x%) < 0. Therefore M,<0. Let y be a
point in G, such that z,(y)=M,. In view of (2.14), (2.20), y belongs to G,.
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Consequently, A,z,(y) <0. From (2.16), (2.17) we then obtain
Br.(22(y) ~ 2a(y) > 5.
Since B, =0 we deduce that z,(y) — z3(y) > 0 and, using also (2.15) we obtain
20 -20)2@)(3e).
It follows that
My—M,> (B’)_l(ge)

and, in particular, M3 <0.
Proceeding in this way step by step, we get

(2.21) 1\4,.—1\/1,.+1>(B')“‘(%s) 2=/=N  (Myoy=M)
and, in particular,
My<My-(N-1)(8)"(Se).

Let § be a point in G, such that z,(§) = M,. In view of (2.14), (2.20),  belongs to
O Using (2.18) and the inequality A;z(y) <O in the relation (2.16) for m =1, we get
(2.22) L) - z(7)==C.

Adding the inequalities (2.21), (2.22) we obtain

Cye>(N - 1)(,3')"‘(%3) 2(N-1)Ze ifeseo

since B'(¢) = 1. This is impossible if vy is sufficiently small.

3. Remarks and generalizations.

Remark 1. R, in Theorem 1.2 can be determined explicitly in terms of ¢, R and
the W norm of f,.

Remark 2. The proof of Theorem 1.2 remains valid if we replace (2.1) by the
weaker condition

(31) Akfm(x)_Amfk(x)g'Ym, Ym >0, m#k
provided
1 N
3.2) Nmzﬂyméc, c>0
m#k

Remark 3. If some of the c,, in (2.1) are equal to zero then the assertion of
Theorem 1.2 is generally false. Consider for example the case of

max (A u, Aru, Asu—f3)=0,
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where Aow=Aw+w, f3=0, A;f3=c>0. From (1.6), (1.7) we see that
(3.3) u>0.

Now, if the assertion of the theorem were valid in this case (with k = 1) then A ;u =0 if
|x|>R,. Since A,u =0, we deduce that u = A,u —A,;u =0 if |x|> R, contradicting
(3.3).

Remark 4. For two operators A, A,, Theorem 1.2 asserts that
(34) ifA1f2~A2f1§c>0for |X|>R, then A u =0 if |x|>R1.

In the special case of A;w =w, f; =0 this gives a well-known result on the support of
solutions of variational inequalities, namely, if

u=0, Au—f,=0, u(Au—f)=0 ae.inR"

and if f,Z¢>0 for |x|> R, then u =0 if |x|> R;. In this special case, the proof of
Theorem 1.2 extends to A; with variable coefficients.

Remark 5. To motivate the condition (2.1) notice that if the assertion of Theorem
1.2 holds then, for |x|> R, v, = Au —f,, satisfies

(3.5) A =A1A U —Aifn=AnA1Uu—Aifn=Anfi—A1fm

Since also v,, =0, the right-hand side of (3.5) cannot be “too positive.” In Theorem 1.2
we assume that this right-hand side is uniformly negative.

Remark 6. The proof of Theorem 1.2 is actually local; it shows that (1.10) holds in
an open set G provided (1.9) holds in a p-neighborhood of G, where p is a sufficiently
large postive number (independent of G). In particular, if (1.9) holds in a half space
x» > R, then (1.10) holds for x, > R, provided R; is sufficiently large.

Remark 7. If we drop the condition (1.5), then existence and uniqueness of a
solution (‘“‘suitably” regular) is given in [5]; the proof of Theorem 1.2 for this case
remains valid without any changes.

Remark 8. It seems natural to extend (1.8) by asking: When does the relation

(3.6) suzp: {Anu(x) = fu(x)}=max {A1u(x)—f1(x), Aru(x)—f2(x)}

hold? The answer cannot be very simple. This is due to the fact that

max (A,.g, Anh)—A,, max (g, h)

is a positive distribution, in general.
Let us explain the difficulties in the following one-dimensional example. Consider
2

d
A1=A2=A3=—W+a2, f1=—f, f2=0.

Then the Hamilton-Jacobi-Bellman equation for these operators reduces to

(3.7) max{Au+f", Asu—f3}=0,

and (3.6) reduces to

(3.8) Au+f =0 if|x|>R.
In general,

Asf ==Y a,6(x—x,)+g g-bounded,
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where a, >0, §(x) the Dirac function. Suppose

(3.9) Afs+Asf =c—Y ad(x —x,)
and set w = Asu —f5. If (3.8) holds then
(3.10) Aw=—Asf"—A\fs.
Writing w explicitly, in an interval a < x <0, and using (3.9), we get
3.11) w(x)=w—(‘21—2e_“(’““)+ Y. g—;-e”"‘(""‘m —%.
a xp>a O a

Since we must have w(x) =0, we obtain the necessary condition

(3.12) Y a,e *®* " =c¢ if x—aissufficiently large.

Xp>a

On the other hand, this condition is nearly sufficient. Indeed, we proceed as in the
proof of Theorem 1.2, assuming

A"+ (x% <0,

and designating by (a’, b') the largest interval containing x° where the inequality
Aiu+f"<0holds and a’= R. Then

Asu—f;=0 ifa'<x<b’,

and w=A,u+f" satisfies A;w =A3f +A;fsin (a’, b'). Representing w analogously
to (3.11) with a = a’ and taking x = x°, the inequality w(x°) <0 gives

~ —a(x%—a’)
w(a')e e (x0—
. _ Z a, e a(x x")"'+c<0;
o a'<x,<b'
this is impossible if
—_ 0o—
(3.13) X age ax0mx )T o,
a<x,<b'
where
W(a') —a(x0—a')
= e
n o

is either equal to zero or else is positive and very small if x° is sufficiently large. We have
thus shown that if (3.13) holds then A u + " =0atx° (andif w(a') =0then Aju+f" =
0in (a’, b").

In conclusion, the location and size of the measures arising in A; max (A,u —
f1, Aou —f>) affect the answer to the question (3.6) in the above special case, and
similarly also in the general case. If A, # A,, these measures involve, in addition to f,
f2, the function u and its first two derivatives.
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EXISTENCE DE SOLUTION ET ALGORITHME DE RESOLUTION
NUMERIQUE, DE PROBLEME DE CONTROLE OPTIMAL
DE DIFFUSION STOCHASTIQUE DEGENEREE OU NON*

JEAN PIERRE QUADRATY

Motivation et introduction. Donnons des exemples pratiques de contrle sto-
chastique que nous avons eu a résoudre.

1. Une gestion de réservoir Delebecque—Quadrat [8] (Probléme posé par EDF).

t le temps.

X, désigne les apports dans le réservoir. Ils sont modélisés par une diffusion
stochastique. X, =0 cette diffusion sera donc dégénérée.

S; le stock d’eau dans le réservoir a l'instant ¢, Smax[resp Smin] le stock maximum
[resp minimum].

u, le débit turbiné a l’instant ¢,

P(S,, u;) la puissance fournie par les turbines lorsque le débit est u,, le stock S,.

D(t) 1a demande d’électricité en puissance a I’instant ¢.

La puissance thermique a produire sera alors D(¢) — P(S,, u,), le colit associé sera:

C(D(1)=P(S,, us)).

Le probléme de contrdle stochastique s’écrit alors:
dX,=b(t, X,) dt+o(t, X,) dw, o=0pour X <0

—(X;—u,)" dt si S =Smax

(O. 1) dS; = (Xg - u,) dt Sl Smin < St < Smax,
(X; - u¢)+ dt si St = Smim Xt = Uy
T

Min E I C(D(t)—P(S, u,)) dt.

0

2. Un probléme de croissance de firme Bensoussan—Lesourne [9].

X, trésorerie a 'instant ¢,

y: capital investi a ’instant,

f(y:)(A dt + dw,) rendement du capital investi a 'instant (w, est un brownien),
v; investissement,

u, dividende versé aux actionnaires,

7 temps de faillite (trésorerie = 0).

Contraintes:

u, =0,
v, =0,
u, + v, = Af(y,) investissement + dividende
=rendement moyen de I'investissement.
* Received by the editors November 30, 1977, and in revised form March 5, 1979.
T Institut de Recherche d’Informatique et d’ Automatique, Rocquencourt, 78150 Le Chesnay, France.
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Le probléme de contréle stochastique correspondant:

Max EJ ue " dt,
0

vu

(0.2) dX, =f(y)Adt+dw,)—vdt—ud,
dy,=vdt.

Le critére représente la maximisation des dividendes actualisés (i taux d’actualisa-
tion) versés aux actionnaires.

3. Un probléme de gestion de portefeuille Merton [16]. Soit X, le capital dont on
dispose a I'instant ¢£. On a le choix entre acheter des actions a rendement aléatoire, et un
placement a rendement fixe. Notons u, la proportion investie dans les actions. Notons:

1+dR! le rendement des actions,

1+dR? le rendement du deuxiéme placement.

On modélise:

dR! = a, dt+odw, w, brownien;
dR? = a, dt.

Soit C, 1a consommation a I’instant du capital a 'instant, f(C;) la fonction d’utilité
de cette consommation.
L’évolution du capital est alors donnée par:

dX,=X,(udR! +(1—u) dR?)-Cads,

03) =Xu(a, dt+odw,)+(1—u)Xa, dt—Cdt, O=su=1,
) Le critére:

T

Max E | f(G)+¢(X).
u,C 0

¢ représente une fonction de legs, le critére représente la maximisation de ’utilité
de la consommation plus le leg en fin de gestion.

Nous constatons que ces trois problémes sont dégénérés, le terme de diffusion peut
s’annuler. Dans le troiséme probléme le contrdle apparait dans le terme de diffusion.
Dans le premier probléme, la deuxieéme équation d’évolution a un second membre
discontinu.

Le but de ce travail est de donner des théorémes d’existence pour de tels problémes,
et de caractériser la solution optimale de fagon a ce que I’on puisse la calculer effective-
ment.

Un certain nombre de résultats existent dans la littérature Krylov-Nisio [12],
Kushner—-Chen-Fu-Yu[14], Fleming—Rishel [10], Sentis [21], Bismut [4], Kushner [13]
mais aucun de ces travaux ne donne une réponse a ces trois problémes.

Ce travail donne une réponse compléte aux problémes 1 et 3 et un théoréme
d’existence pour le probléme 2 (la caractérisation des contrdles optimaux lorsqu’on
arréte processus n’étant pas donné dans ce travail).

La méthode de résolution utilise deux techniques:

1. La formulation faible Stroock—Varadhan [22] de diffusion stochastique (prob-

léme de martingale).



CONTROLE OPTIMAL DE DIFFUSION STOCHASTIQUE 201

2. Les techniques utilisées en contrble déterministe décrivant le systéme com-
mandé en terme de multiapplication Young [24], Castaing [6], Valadier [23],
Ekeland-Temam [9], Sentis [21].

On est donc amené a définir le probléme de martingale pour des multiapplications

s.c.s. (semi continue superieurement).

On donne un théoréme d’existence trés général qui contient comme cas particulier
des équations différentielles déterministes multivoques pour des multiapplications s.c.s.
La méthode employée est celle utilisée dans Stroock—Varadhan [22] dans leur “invari-
ance principle” montrant la convergence de chaine de Markov vers des diffusions, et
d’un lemme abstrait énoncé en 1.2.3.

Une fois I’existence assurée, pour de tels problémes, on montre que ’ensemble des
solutions au probleme de martingale multivoque est un ensemble convexe compact de
mesure de probabilités sur I’espace des fonctions continues sur (0, T).

L’existence d’une solution au probléme de contréle stochastique en découle alors
immédiatement.

La caractérisation du contrdle optimal se fait alors en déterminant une suite de
mesures convergeant étroitement vers une solution optimale; cette suite de mesures
étant obtenue comme solution de probléme ce contrlle de chaine de Markov. Les
problémes de contrble de chaine de Markov sont définis grice a une technique trés
proche de celle employée dans Sentis [21] pour la résolution de probléme de contrdle
déterministe. L’idée d’approcher le probléme de contréle stochastique par un probléme
de contr6le de chaine de Markov a été abondamment utilisé par Kushner [13] par
example Kushner-Chen-Fu Yu [17]; les techniques employées ici sont différentes et
permettent de résoudre complétement le probléme, alors que dans Kushner-Chen-Fu
Yu [14] (dans un cadre d’hypothéses moins général), le résultat obtenu peut s’énoncer
ainsi, on construit un feedback meilleur que tout feedback lipschitzien. On donne en III
un contre exemple montrant que ce résultat bien que pratiquement intéressant, est
insuffisant. On peut, avec ces feedbacks étre trés loin du cofit optimal (en fait, aussi loin
qu’on veut).

On donne enfin une suite de problémes de contrdle de chaine de Markov, en temps
discret, et a état discret qui converge vers une solution optimale. A chaque étape en
temps il faut résoudre un probléme de programmation mathématique (minimisation
d’une forme linéaire sur un ensemble convexe) en dimension finie. Ce probléme peut
dans certaines applications €tre lourd a résoudre. On donne alors des résultats qui
permettent d’obtenir un feedback meilleur que tout feedback lipschitzien (résultat du
type Kushner—-Chen-Fu Yu [14] dans un cadre plus général). Ces résultats peuvent
avoir un intérét pratique avec la restriction énoncée plus haut. Utilisant alors des
résultats de Bismut [4] on montre que le feedback meilleur que tout feedback
lipschitzien est optimal dans le cas non dégénéré. Ce qui permet de trouver des résultats
du méme type que ceux obtenus dans Goursat—Quadrat [11], Quadrat [19] par une
méthode purement probabiliste, dans un cadre plus général, alors que dans cet article la
méthode était basée essentiellement sur I’analyse numérique de I’équation de Bellman
correspondante.

L’ensemble des résultats obtenus par les techniques des équations aux dérivées
partielles est donné dans Bensoussan-Lions [1] bien que ne semblant pas pouvoir
atteindre le degré de généralité obtenu par les méthodes probabilistes. Cette premiére
méthode donne des résultats plus précis lorsqu’elle s’applique.

Signalons enfin une technique de semi-discrétisation en espace interprété en terme

de processus ponctuel convergeant étroitement vers la diffusion, développé dans Robin
[20].
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Les résultats de cet article ont été annoncés dans Quadrat [25]. L’extension de ces
résultats au cas des processus de diffusion avec sauts sera donné dans Quadrat [26].
PLAN.
1. Probléme de martingale.
1.1. Définition du probléme de martingale.
1.2. Construction d’une mesure solution du probléme de martingale.
1.2.1. Une famille de probabilité de transition, définitions et propriétés.
1.2.2. Une famille de probabilité sur C(0, T; R™), définitions et propriétés.
1.2.3. Un théoréme abstrait.
1.2.4. Le théoréme d’existence.
1.3. Propriétés des solutions du probléme de martingale.
2. Controle optimal de probleme de martingale.
2.1. Définition.
2.2. Théoréme d’existence.
2.3. Caractérisation d’un contrdle optimal (discrétisation en temps).
2.4. Caractérisation d’un contréle optimal (discrétisation en espace et en temps).
3. Quelques resultats particuliers.

1. Le probleme de martingale.
1.1. Définition du probléme de martingale.
1.1.1. Notations.

Soient

Q=C(0,T;R™), X(w) = w,
Fi=0(X,,s=1),

F = Fr la tribu des boréliens de (),

@ la tribu des prévisibles de (A X [0, TJ),

la multiapplication

(Hy) C: [0, TIXR™>G=R" xS"(m) s.c.s.,) @ valeur convexe dans un compact fixe
noté Mc, ou S, désigne le cone convexe des matrices symétriques non négatives.

Si I’on désigne par p; et p; les projections

pIZRmXS;—)Rm s
(%, y) pi(x,y)=x
D2 R™ XS; —>S;,

(%, y) p2x, y)=y

on appellera:
A la multiapplication p;° C,
B la multiapplication p;° C.

! s.c.s: semi continue supérieurement; s.c.i: semi continue inférieurement.
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On notera:
M, =sup sup |b|,
s,x beB(s,x)
M, =sup sup |a].
s,x aeA(s,x)
Pour

@eCy* ([0, TIXR™),
é=(b,a):[0, T1xQ->R™xS}, processusprévisible a valeur dans C,
on désigne par:
Leo(s, w)——(s,X(w))+ Z bi(s, w) (s,X(w))
2

N 9
+2 a;(s, w
|Z; ”( )8x,-6x,~

(8, Xs(w)).
Pour
¢ =(b,d):[0, TIXR™ >R™ XS,
on désignera par:
Lz (s, x)=—(s x)+ Z bi(s, x) Py (s, x)+Z a;(s, x) (s x).

My (Q)) désigne ’ensemble des mesures bornées muni de la topologie de la
convergence étroite.
M (Q) désigne le convexe des lois de probabilités sur Q.

1.1.2. Définition du probléme de martingale. Une mesure de probabilité P sur
(Q, F,, F) sera appelée solution du probléeme de martingale pour le doublet (x, C) si:

(i) PXo=x)=1

(ii) il existe un processus c(s, w) prévisible vérifiant:

é(s, w) e C(s, Xs(w))
t

o(t, Xi(w)) —I Lsp(s, w)ds est une (P, F;) martingale.
0

On désignera par:
P (K, C) ’ensemble ces mesures de probabilités sur ), solution du probléme de
martingale (x, C), x € K, K compact de R™.

1.2. Construction d’'une mesure solution du probléme de martingale.

1.2.1. Une famille de probabilités de transition. On se donne un nombre n € N, on
pose h = T/n. Pour p, a, 8, >0;

notons:

[~ (s, x) = { meMi(R™):

10,02 ([ -0, [ 6-0%r@) =6 0k als ke Cls 0,

(1.3) I ly -xl"w(dy)éph“}.

LEMME 1. II™%**E. [0, TIXR™ - ML (R™) est & valeur relativement compacte.
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Démonstration. Grace au critére de Prohorov, il suffit de montrer:
Ve>0 3IM, mx(ly—x|ZM)=e.

Or, I'inégalité de Tchebycheff donne:

Mh

M

En prenant M = M,/ \/;17; on obtient le résultat. [
LEMME 2. Soit ¢: R™ - R continue vérifiant:

(i)  IM, My |z|zM, > o(2)=|z|’M..

7"'s,x(ly'__xlgM)g

Soit une suite {m"}e M} (R™) convergent étroitement vers m vérifiant AB'>B et p:
Q) Jly—x"="@dy)=p
alors: ,
@ fly—x|*wdy)=p
(b) lim_, [ @(y —x,)7"(dy) = ©(y —x)m(dy) pour toute suite x, ~ x.
Démonstration. (a) Notons:

‘PM: R->R
X si—-M=x=M,
Yyx)=X M six>M,

—M six <-—M.
On a:

pz j ly — x| =" (dy) = J Vrelly —x®)m" (dy) — J Var(|ly —x|*)7r(dy)
et donc:

J"M(Iy —x|®)ymdy)=p M,
pzsup [ Waully =x1¥)m(dy) = [ sup Warlly =+/)m(dy) = [ Iy =+l"m(ay).
M M
14 ® |[etv-rm"@-[ et -vma)

=|[ @t =m-et—mymn|+|[ o536 i@y,
[loty —x0- oy =0l @)

éj lp(y —xn) —@(y —x)|7" (dy)
ly—x|=M3

+J‘ le(y —x2)—@(y —x)|7" (dy),
ly—x|=M3

I le(y—x.)—@(y—x)|m"(dy)= sup |o(y—x.)—e(y—x)[->0
ly—x|=M3 y—x|=M3
n - o0,
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En choisissant M3 suffisamment grand

| texmely—nln @ sM by b PMe
y—x|=M3

ly—x|=M3

M4 B' _n
§1‘,1133'—13 IIY’X| 7" (dy)
+|x——x"|BM6—>O, n - 0o,

en faisant tendre n et M3 00; d’autre part

[ ot =) = m)iay)|

(15) = |[ waeo oy 01"~ mi(ay)|

1

- B'/B|__n
@ BVE le(y —x)|°7#| 7" — m|(dy)

‘[Iw(y—x)l%M

W (y —x) est continue donc:
(1.6) J‘I’wa(y—x)(n"—ar) dy >0, n - 0o,
Grace a (i)

(1.7) j oI/ (y —x)|7" — ml(dy) = Ms j ly —x|®|7" — m|(dy) = 2pMs;
|

ely—x)|l=M
(1.4), (1.5), (1.6), (1.7)=>b en faisant tendre M ->oco. [

PROPOSITION 0. La multiapplication TI"<”**:[0, TIXR™ > M} (R™) est s.c.s.

Démonstration. Montrons qu’elle est de graphe fermé et donc grice au Lemme 1 2
valeur compacte:

Soit:
(ks Xk, ) une suite de [0, TIXR™ X ML(R™) convergeant vers (s, x, 7). Montrons
que 7€ I—[n,C,p.a,B

Pour cela il suffit de montrer que 7 vérifie (1.1), (1.2) et (1.3).

Or, (1.3) résulte du (a) du Lemme 2, tandis que (1.1) et (1.2) résulte de (b) du
Lemme 2.

1.2.2. Une famille de probabilités sur ). A partir de la famille de probabilité de
transition I1"<**# construisons une famille de probabilité sur Q de la fagon suivante:

Etant données une section borélienne 7, de [1™S**# construisons la mesure
notée

P sur (R™"*D 3 définie par:®
(1.8)

P:—,yo = Wh,yo(d)’l) T T (n-1h,y, 1 (dYn)

Considérons maintenant la variable aléatoire interpolation linéaire.
In
(Rmx<n+1)’ %) —> (Qa FT)’
Loy 9)(O = yi+ 75T e ih), telih, i+ D)

2 g8 désigne la tribu des boréliens.
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On désignera par P~ la mesure image de P, par I,. Notons alors:

(1.9) P, K, C,p,a B)={P%s ,,: m section borélienne de I1"“**# y,e K}
de méme:

@(MK9C7p7a’B)= U @(’%Kac’paa’ﬂ)~

neN

LEMME 3. (N, K, C, p, a, B) est étroitement relativement compacte pour Vo, B
a>1,4=zB>2.

Démonstration. On utilise le critére de relative étroite compacité suivant [3 th.
12.3Pb 7, p. 102]: (a) Ve >0 3L compactde R™:

P(X(0)eL)=1—-e¢ VPe®P(N,K,C,p,a,p).
2<B=4
(b) Iy=O0et §>1 et une fonction continue non décroissante F tels que:
Ep{|X (£2) = X (O)]"|X (6) = X (1)} = |F (12) = F (12)|°,
VPe #(N,K, C, p, a, B) 2<B=4deta>1,
Vi, tt, 0=t1=t=sH=T.

On obtient (a) en prenant L = K.
Démontrons le (b): Soit: t; =t=t,, B8 définien 1.3., y =3/2,

o[ - [ihn e[ e=((51)n

ou [ -] désigne la partie entiére.
Plagons nous dans le cas ou #{<t'<t"<t), les autres cas conduisant a des
démonstrations analogues. On a:

E|X, - X.|"1X. - X, |
=SM(B)E(IX,,— X4|”
+ |th ")(r"ly + |Xt"—Xt|y)(lX't —X,'P + IXt’ _)(t’l’P + ‘X{ _Xr.]y)
=M(B)(S1+S2+S5)

(1.10)

avec
81 =E{E(IX,,— X" +| X, — Xo|"|F)(| X, — X" +1 X0 — Xy|” + 1 X4 — X, )}
S, = E{lXt"—thyl)(x _Xt’ly}’
53 = E{E(lxt”—XtPIE')(le '—Xt"ly + |Xt'1’ _Xn'y)h

or:
-6
E(lth—thé'ylE”) =’! 2 hy2| E((‘X;é-kh _X'ti)‘ylE")
(1.11) <,t2_—t’2_|zha/2<M 1 inf(a/2.v)
’ =" =Mt - 13]

L hb(ih, Xi)

t"sih<t)

E( Xy~ Xo"|F) = My(y)E( Yy~ Ye|"|Fy) +E(

)
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avec:

Y.=X.— Y b(ih, Xin)h ou  b(ih, Xi) = E(Xq+1yn — Xin| Xin)

ih<t
= [ =Xy ()
Y, est une F;;, martingale on a alors:
E(Y,— Yo" |F) =S E((Yy— Yr)?|F)”? grce a I'inégalité de Jansen
=Mt —1)"

grice a la propriété de martingale de Y; et [ (y — X ) min x,, (dy) = ML,
En utilisant de plus le fait que:

spp lb(lh, ){,h)l §Mb

on obtient:
(1.12) E(| Xy~ Xo|"|Fo) = Mo(|ts — "] + |ty — ") = Mi|th — ">
D’autre part:
"=\ t—t'\"
E(X—<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>